1
|
Chen HH, Wu QJ, Zhang TN, Zhao YH. Gut microbiome and serum short-chain fatty acids are associated with responses to chemo- or targeted therapies in Chinese patients with lung cancer. Front Microbiol 2023; 14:1165360. [PMID: 37564290 PMCID: PMC10411610 DOI: 10.3389/fmicb.2023.1165360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Background The association between gut microbes and short-chain fatty acids (SCFAs) and therapeutic responses of patients with lung cancer (LC) receiving therapy remains unknown. Methods Fecal and serum samples were prospectively collected from patients with LC, classified as responders, if they presented durable clinical benefits, and non-responders, if not. The composition of gut microbes was analyzed using 16S ribosomal DNA sequencing. Serum SCFA concentrations were detected using gas chromatography. Cell proliferation, migration, invasion, cell cycle, and apoptosis assays were performed on isobutyric acid-treated A549 cells. Reverse transcription-quantitative PCR, Western blotting, immunocytochemistry, and immunofluorescence staining experiments have been performed to investigate the expression of associated genes or proteins. Results Non-responders harbored higher microbiome α-diversity but lower β-diversity compared with responders. Compared to the patients with low α-diversity, those with high α-diversity showed significantly shorter progression-free survival. Additionally, β-diversity has also been observed between these two groups. Specifically, Parasutterella, Clostridiaceae, and Prevotella_7 were more abundant among responders, whereas Bacteroides_stercoris and Christensenellaceae_R-7_group were more abundant in non-responders. The serum SCFA (especially acetate and isobutyrate) levels tended to be higher in responders. Isobutyric acid inhibited the proliferation, migration, and invasion of A549 cells by inducing apoptosis and G1/S arrest while upregulating the expression of GPR41, GPR43, and GPR5C and downregulating that of PAR1, and increasing the activity of histone acetyltransferases. Conclusion We revealed the influence of gut microbiota and SCFAs on the therapeutic responses in patients with LC and the anti-tumor effect of isobutyric acid, indicating their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Hamid Q, Hamoudi R. Derangement of cell cycle markers in peripheral blood mononuclear cells of asthmatic patients as a reliable biomarker for asthma control. Sci Rep 2021; 11:11873. [PMID: 34088958 PMCID: PMC8178351 DOI: 10.1038/s41598-021-91087-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
In asthma, most of the identified biomarkers pertain to the Th2 phenotype and no known biomarkers have been verified for severe asthmatics. Therefore, identifying biomarkers using the integrative phenotype-genotype approach in severe asthma is needed. The study aims to identify novel biomarkers as genes or pathways representing the core drivers in asthma development, progression to the severe form, resistance to therapy, and tissue remodeling regardless of the sample cells or tissues examined. Comprehensive reanalysis of publicly available transcriptomic data that later was validated in vitro, and locally recruited patients were used to decipher the molecular basis of asthma. Our in-silicoanalysis revealed a total of 10 genes (GPRC5A, SFN, ABCA1, KRT8, TOP2A, SERPINE1, ANLN, MKI67, NEK2, and RRM2) related to cell cycle and proliferation to be deranged in the severe asthmatic bronchial epithelium and fibroblasts compared to their healthy counterparts. In vitro, RT qPCR results showed that (SERPINE1 and RRM2) were upregulated in severe asthmatic bronchial epithelium and fibroblasts, (SFN, ABCA1, TOP2A, SERPINE1, MKI67, and NEK2) were upregulated in asthmatic bronchial epithelium while (GPRC5A and KRT8) were upregulated only in asthmatic bronchial fibroblasts. Furthermore, MKI76, RRM2, and TOP2A were upregulated in Th2 high epithelium while GPRC5A, SFN, ABCA1 were upregulated in the blood of asthmatic patients. SFN, ABCA1 were higher, while MKI67 was lower in severe asthmatic with wheeze compared to nonasthmatics with wheezes. SERPINE1 and GPRC5A were downregulated in the blood of eosinophilic asthmatics, while RRM2 was upregulated in an acute attack of asthma. Validation of the gene expression in PBMC of locally recruited asthma patients showed that SERPINE1, GPRC5A, SFN, ABCA1, MKI67, and RRM2 were downregulated in severe uncontrolled asthma. We have identified a set of biologically crucial genes to the homeostasis of the lung and in asthma development and progression. This study can help us further understand the complex interplay between the transcriptomic data and the external factors which may deviate our understanding of asthma heterogeneity.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, UCL, London, UK
| |
Collapse
|
3
|
Prognostic and clinicopathological significance of GPRC5A in various cancers: A systematic review and meta-analysis. PLoS One 2021; 16:e0249040. [PMID: 33788883 PMCID: PMC8011795 DOI: 10.1371/journal.pone.0249040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background GPRC5A is associated with various cancer initiation and progression. Controversial findings have been reported about GPRC5A prognostic characteristics, and no meta-analysis has been conducted to assess the relationship between GPRC5A and cancer prognosis. Therefore, the objective of this meta-analysis is to evaluate the overall prognostic effectiveness of GPRC5A. Methods We first conducted a systematic search in the PubMed, Embase, Web of Science, CNKI, Cochrane, and WangFang databases. The hazard ratio (HR) and odds ratios (OR) with 95% CI were then pooled to assess the associations between GPRC5A expression and overall survival (OS), disease-free survival (DFS), event-free survival (EFS), and clinicopathological characteristics. Chi-squared test and I2 statistics were completed to evaluate the heterogeneity in our study. A random‐effects model was used when significant heterogeneity existed (I2>50% and p<0.05); otherwise, we chose the fixed-effect model. Subgroup analysis was stratified by tumor type, region, HR obtained measurements, and sample capacity to explore the source of heterogeneity. Results In total, 15 studies with 624 patients met inclusion criteria of this study. Our results showed that higher expression of GPRC5A is associated with worse OS (HR:1.69 95%CI: 1.20–2.38 I2 = 75.6% p = 0.000), as well as worse EFS (HR:1.45 95%CI: 1.02–1.95 I2 = 0.0% p = 0.354). Subgroup analysis indicated that tumor type might be the source of high heterogeneity. Additionally, cancer patients with enhanced GPRC5A expression were more likely to lymph node metastasis (OR:1.95, 95%CI 1.33–2.86, I2 = 43.9%, p = 0.129) and advanced tumor stage (OR: 1.83, 95%CI 1.15–2.92, I2 = 61.3%, p = 0.035), but not associated with age, sex, differentiation, and distant metastasis. Conclusion GPRC5A can be a promising candidate for predicting medical outcomes and used for accurate diagnosis, prognosis prediction for patients with cancer; however, the predictive value of GPRC5A varies significantly according to cancer type. Further studies for this mechanism will be necessary to reveal novel insights into application of GPRC5A in cancers.
Collapse
|
4
|
Er J, Chao L, Yiwei L, Feng X, Fei Z, Kan W, Ruifei X. GPRC5a suppresses the proliferation of non-small cell lung cancer under wild type p53 background. Exp Lung Res 2020; 46:226-233. [PMID: 32410473 DOI: 10.1080/01902148.2020.1764667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: GPRC5a plays an important role in many types of cancers with intriguing dual functions. GPRC5a acts as oncogene or tumor suppressor in different types of cancer. It is interesting to illustrate why GPRC5a functions differently.Methods: Data mining method were used to analyze the potential prognostic value of GPRC5a expression for Non-Small Cell Lung Cancer (NSCLC) lung cancer patients. Then we used cell models to further investigate the effect of p53 mutation on GPRC5a expression and the thereafter cell biological behaviors.Results: Our results present here showed High mRNA-level expression of GPRC5a was associated with worse overall survival about lung cancer patients; mutation of p53 gene could result in up regulation of GPRC5a expression and promotion of cell proliferation in lung cancer cells. Our results not only demonstrate the role of GPRC5a as a tumor suppressor in lung cancer, but also revealed the tumor suppressive factor p53 regulated tightly on GPRC5a and cell growth of NSCLC cancer.Conclusions: Our results demonstrated that p53 upregulated GPRC5a expression in NSCLC cells, and the loss of p53 expression in NSCLC may be one of the mechanisms leading to the decreased GPRC5a expression in NSCLC.
Collapse
Affiliation(s)
- Jin Er
- Department of Respiratory Medicine, Hangzhou, Zhejiang, China
| | - Li Chao
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Yiwei
- Department of Respiratory Medicine, Hangzhou, Zhejiang, China
| | - Xing Feng
- Department of Thoracic Surgery, Hangzhou, Zhejiang, China
| | - Zhao Fei
- Department of Respiratory Medicine, Hangzhou, Zhejiang, China
| | - Wu Kan
- Medical Oncology, Affiliated Hangzhou First People 's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xie Ruifei
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang J, Yang Y, Cao Y, Tang X. miR‑342 inhibits glioma cell proliferation by targeting GPRC5A. Mol Med Rep 2019; 20:252-260. [PMID: 31115523 PMCID: PMC6579993 DOI: 10.3892/mmr.2019.10242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/09/2019] [Indexed: 11/26/2022] Open
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) play a key role in the biological behaviors and progression of glioma. However, the function and bio-molecular mechanisms of miR-342 in glioma remain largely unclear. In the present study, reverse transcription quantitative-polymerase chain reaction and western blotting were performed to determine the mRNA and protein expression levels of the factors investigated. MTT assay was performed to examine the proliferation rates. Luciferase reporter assay was performed to test the binding between miRNA-342 and its putative target. Data indicated that miR-342 expression was markedly decreased in human glioma tissues and cell line U87, and reduced miR-342 expression significantly promoted cell proliferation. In order to explore the mechanisms, G-protein coupled receptor family C group 5 member A (GPRC5A) was identified as a target of miR-342 and depletion of GPRC5A suppressed cell proliferation. Our findings demonstrated that miR-342 regulates the cell proliferation of glioma by targeting GPRC5A, which indicates that miR-342 is a target of interest regarding the treatment of refractory glioma, and it may provide a promising prognostic and therapeutic strategy for glioma treatment.
Collapse
Affiliation(s)
- Jianjiao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinyu Tang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|