1
|
Jia L, Zhu S, Zhu M, Huang L, Xu S, Luo Y, Xiao J, Su H, Huang S, Tan Q. Triptolide Inhibits the Biological Processes of HUVECs and HepG2 Cells via the Serine Palmitoyltransferase Long Chain Base Subunit 2/Sphingosine-1-Phosphate Signaling Pathway. DISEASE MARKERS 2022; 2022:9119423. [PMID: 36438896 PMCID: PMC9699786 DOI: 10.1155/2022/9119423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 09/10/2024]
Abstract
Triptolide (TP) has demonstrated innumerous biological effects and pharmacological potential against different cancer types. Hepatocellular carcinoma has a high incidence in men, and its incidence is increasing year by year. Studies have shown that angiogenesis plays an important role in the formation of tumors and that angiogenesis is closely related to tumor growth and metastasis. Deregulation of sphingolipids signaling has been associated with several pathological conditions, including cancer. In the present study, we aimed at exploring the potential molecular mechanism of TP's antivascular and antitumor effects in vitro from the perspective of sphinolipids. Human umbilical vein endothelial cells (HUVECs) and HepG2 cells were, respectively, treated with different concentrations of TP and transfected. Then, the effect of HUVECs on HepG2 cells was investigated using a three-dimensional coculture model system. CCK-8 assay was performed for cell proliferation. Cell migration and invasion abilities were assessed using the transwell assay. Cell adhesion and tube formation were detected by Matrigel. RT-PCR and western blotting were used to detect the mRNA and protein expression. The S1P production was measured via ELISA assay. Our results showed that TP inhibited HUVECs and HepG2 cells proliferation, migration, invasion, adhesion, angiogenesis, and serine palmitoyltransferase long chain base subunit 2 (SPTLC2) expression; upregulating SPTLC2 facilitated the proliferation, migration, invasion, adhesion, angiogenesis, and sphingosine-1-phosphate (S1P) production of HUVECs and HepG2 cells, while interfering with SPTLC2 expression inhibited them; HUVECs facilitated the proliferation, migration, invasion, S1P production, S1PR1, and S1PR2 expression of HepG2 cells, while S1PR3 expression was decreased. In conclusion, SPTLC2 may be associated with the antivascular and antitumor effects of TP, and SPTLC2 is expected to become a new marker for tumor therapy. HUVECs can promote the proliferation, migration, and invasion of HepG2 cells, which may be related to the S1P/sphingosine-1-phosphate receptor (S1PR) signaling pathway.
Collapse
Affiliation(s)
- Lulu Jia
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
| | - Shengnan Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
| | - Mingfei Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
| | - Lingyue Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
| | - Siyuan Xu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
| | - Yuqin Luo
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
| | - Juan Xiao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Huazhen Su
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Shaoyuan Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Qinyou Tan
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
2
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
3
|
Guo F, Zhu X, Zhao Q, Huang Q. miR‑589‑3p sponged by the lncRNA TINCR inhibits the proliferation, migration and invasion and promotes the apoptosis of breast cancer cells by suppressing the Akt pathway via IGF1R. Int J Mol Med 2020; 46:989-1002. [PMID: 32705168 PMCID: PMC7388824 DOI: 10.3892/ijmm.2020.4666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
The long non-coding (lnc)RNA named tissue differentiation inducing non-protein coding RNA (TINCR) is a tumor marker that has not been studied in breast cancer. The present study aimed to investigate the TINCR-targeting micro (mi)RNAs and the regulatory mechanisms of TINCR in breast cancer. Following prediction by TargetScan and confirmation by dual-luciferase reporter assay, TINCR was demonstrated to be a target gene for miR-589-3p. The expression of TINCR and miR-589-3p in breast cancer and adjacent tissues was detected by reverse transcription-quantitative (RT-q)PCR, and the correlation between TINCR and miR-589-3p expression was determined by using Spearman correlation analysis. The 5-years survival was analyzed in patients with breast cancer according to TINCR expression (high or low). The effects of TINCR and miR-589-3p on the proliferation, apoptosis, migratory and invasive abilities of some breast cancer cell lines were detected by MTT assay, flow cytometry, wound healing assay and Transwell assay. The target gene of miR-589-3p was predicted and verified by TargetScan and dual-luciferase reporter assay, and the mechanism of miR-589-3p involvement in breast cancer cells was explored by overexpression or downregulation of miR-589-3p in breast cancer cells. RT-qPCR and western blotting were used to determine the expression of the insulin-like growth factor 1 receptor (IGF1R)/AKT pathway-related genes. The results demonstrated that TINCR expression level was negatively correlated with miR-589-3p expression level in breast cancer tissues and that patients with high expression of TINCR presented with lower survival rates. In addition, TINCR overexpression in cancer cells inhibited miR-589-3p expression, and cell transfection with miR-589-3p mimic partially reversed the effect of TINCR overexpression on the promotion of cancer cell proliferation, migration and invasion, and on the inhibition of cancer cell apoptosis. Furthermore, IGF1R, which is a target gene of miR-589-3p, increased cancer cell proliferation, migration and invasion and inhibited cancer cell apoptosis; however, these effects were partially reversed by miR-589-3p mimic. Furthermore, the results demonstrated that miR-589-3p mimic could downregulate the protein expression of IGF1R and p-AKT. In addition, TINCR overexpression downregulated miR-589-3p expression level. miR-589-3p partially reversed the effects of TINCR overexpression on cancer cell proliferation, migration and invasion, and inhibited cancer cell apoptosis by inhibiting the IGF1R-Akt pathway. The results from the present study demonstrated that TINCR may sponge miR-589-3p in order to inhibit IGF1R-Akt pathway activation in breast cancer cells, promoting therefore cancer cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Fangdong Guo
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiaoyu Zhu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qingquan Zhao
- Department of Breast and Thyroid Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Qirong Huang
- Department of Breast and Thyroid Surgery, Chengdu Dongli Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|