1
|
Rakhshaninejad M, Fathian M, Shirkoohi R, Barzinpour F, Gandomi AH. Refining breast cancer biomarker discovery and drug targeting through an advanced data-driven approach. BMC Bioinformatics 2024; 25:33. [PMID: 38253993 PMCID: PMC10810249 DOI: 10.1186/s12859-024-05657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer remains a major public health challenge worldwide. The identification of accurate biomarkers is critical for the early detection and effective treatment of breast cancer. This study utilizes an integrative machine learning approach to analyze breast cancer gene expression data for superior biomarker and drug target discovery. Gene expression datasets, obtained from the GEO database, were merged post-preprocessing. From the merged dataset, differential expression analysis between breast cancer and normal samples revealed 164 differentially expressed genes. Meanwhile, a separate gene expression dataset revealed 350 differentially expressed genes. Additionally, the BGWO_SA_Ens algorithm, integrating binary grey wolf optimization and simulated annealing with an ensemble classifier, was employed on gene expression datasets to identify predictive genes including TOP2A, AKR1C3, EZH2, MMP1, EDNRB, S100B, and SPP1. From over 10,000 genes, BGWO_SA_Ens identified 1404 in the merged dataset (F1 score: 0.981, PR-AUC: 0.998, ROC-AUC: 0.995) and 1710 in the GSE45827 dataset (F1 score: 0.965, PR-AUC: 0.986, ROC-AUC: 0.972). The intersection of DEGs and BGWO_SA_Ens selected genes revealed 35 superior genes that were consistently significant across methods. Enrichment analyses uncovered the involvement of these superior genes in key pathways such as AMPK, Adipocytokine, and PPAR signaling. Protein-protein interaction network analysis highlighted subnetworks and central nodes. Finally, a drug-gene interaction investigation revealed connections between superior genes and anticancer drugs. Collectively, the machine learning workflow identified a robust gene signature for breast cancer, illuminated their biological roles, interactions and therapeutic associations, and underscored the potential of computational approaches in biomarker discovery and precision oncology.
Collapse
Affiliation(s)
- Morteza Rakhshaninejad
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Mohammad Fathian
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran.
| | - Reza Shirkoohi
- Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Boulevard, Tehran, 1419733141, Tehran, Iran
| | - Farnaz Barzinpour
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, 2007, NSW, Australia
- University Research and Innovation Center (EKIK), Óbuda University, Budapest, 1034, Hungary
| |
Collapse
|
2
|
Arabpour M, Mehrpour Layeghi S, Majidzadeh-A K, Tavakkoly Bazzaz J, Mamivand A, Naghizadeh MM, Shakoori A. An insight into the potential role of LINC00968 in luminal breast cancer: Case-control study and bioinformatics analysis. Biochem Biophys Rep 2023; 35:101531. [PMID: 37654678 PMCID: PMC10466910 DOI: 10.1016/j.bbrep.2023.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Background Luminal A and B subtypes of breast cancer (BC) comprises up to 70% of all BC patients. LncRNAs can affect many biological and pathological processes, and dysregulation of them is related to human cancers. The potential role of lncRNA LINC00968 in luminal BC is still unclear. Materials and methods We analyzed the LINC00968 expression across 44 paired luminal BC tissues from the TCGA-BRCA RNA sequencing dataset. Besides, we used the GEPIA2 web server and GENEVESTIGATOR software, as well. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) assay was performed to confirm the LINC00968 expression in 71 paired luminal BC tissues and two luminal A cell lines (MCF7 and T47D). Moreover, to better understanding the potential role of LINC00968 in luminal BC, computational data analyses including co-expression analysis, functional annotation analysis, and genetic alteration analysis have been done. Results The results of data analyses retrieved from BRCA dataset and databases revealed the significant downregulation of LINC00968 in luminal A and B BC. Also, the results of qRT-PCR in luminal BC tissues and cell lines confirmed the earlier data. LINC00968 expression was negatively associated with tumor stage and lymph node metastasis. Additionally, functional annotation analyses revealed that LINC00968 might be involved in vascular development and angiogenesis, extracellular matrix organization, and cell motility and migration. LINC00968 might play role in some cancer-related signaling pathways. Conclusion Our study found that downregulation of LINC00968 might promote tumorigenesis, invasion, and metastasis of luminal BC.
Collapse
Affiliation(s)
- Maedeh Arabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mamivand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers (Basel) 2021; 13:cancers13184544. [PMID: 34572770 PMCID: PMC8470181 DOI: 10.3390/cancers13184544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Collapse
|
4
|
Bendinelli B, Vignoli A, Palli D, Assedi M, Ambrogetti D, Luchinat C, Caini S, Saieva C, Turano P, Masala G. Prediagnostic circulating metabolites in female breast cancer cases with low and high mammographic breast density. Sci Rep 2021; 11:13025. [PMID: 34158597 PMCID: PMC8219761 DOI: 10.1038/s41598-021-92508-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Mammographic breast density (MBD) is a strong independent risk factor for breast cancer (BC). We designed a matched case-case study in the EPIC Florence cohort, to evaluate possible associations between the pre-diagnostic metabolomic profile and the risk of BC in high- versus low-MBD women who developed BC during the follow-up. A case-case design with 100 low-MBD (MBD ≤ 25%) and 100 high-MDB BC cases (MBD > 50%) was performed. Matching variables included age, year and type of mammographic examination. 1H NMR metabolomic spectra were available for 87 complete case-case sets. The conditional logistic analyses showed an inverse association between serum levels of alanine, leucine, tyrosine, valine, lactic acid, pyruvic acid, triglycerides lipid main fraction and 11 VLDL lipid subfractions and high-MBD cases. Acetic acid was directly associated with high-MBD cases. In models adjusted for confounding variables, tyrosine remained inversely associated with high-MBD cases while 3 VLDL subfractions of free cholesterol emerged as directly associated with high-MBD cases. A pathway analysis showed that the "phenylalanine, tyrosine and tryptophan pathway" emerged and persisted after applying the FDR procedure. The supervised OPLS-DA analysis revealed a slight but significant separation between high- and low-MBD cases. This case-case study suggested a possible role for pre-diagnostic levels of tyrosine in modulating the risk of BC in high- versus low-MBD women. Moreover, some differences emerged in the pre-diagnostic concentration of other metabolites as well in the metabolomic fingerprints among the two groups of patients.
Collapse
Affiliation(s)
- Benedetta Bendinelli
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy
| | - Alessia Vignoli
- grid.20765.360000 0004 7402 7708Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy
| | - Melania Assedi
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy
| | - Daniela Ambrogetti
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy
| | - Claudio Luchinat
- grid.8404.80000 0004 1757 2304Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy ,grid.8404.80000 0004 1757 2304Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Saverio Caini
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy
| | - Calogero Saieva
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy
| | - Paola Turano
- grid.8404.80000 0004 1757 2304Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy ,grid.8404.80000 0004 1757 2304Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139 Florence, Italy
| |
Collapse
|
5
|
Holstein E, Dittmann A, Kääriäinen A, Pesola V, Koivunen J, Pihlajaniemi T, Naba A, Izzi V. The Burden of Post-Translational Modification (PTM)-Disrupting Mutations in the Tumor Matrisome. Cancers (Basel) 2021; 13:1081. [PMID: 33802493 PMCID: PMC7959462 DOI: 10.3390/cancers13051081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To evaluate the occurrence of mutations affecting post-translational modification (PTM) sites in matrisome genes across different tumor types, in light of their genomic and functional contexts and in comparison with the rest of the genome. METHODS This study spans 9075 tumor samples and 32 tumor types from The Cancer Genome Atlas (TCGA) Pan-Cancer cohort and identifies 151,088 non-silent mutations in the coding regions of the matrisome, of which 1811 affecting known sites of hydroxylation, phosphorylation, N- and O-glycosylation, acetylation, ubiquitylation, sumoylation and methylation PTM. RESULTS PTM-disruptive mutations (PTMmut) in the matrisome are less frequent than in the rest of the genome, seem independent of cell-of-origin patterns but show dependence on the nature of the matrisome protein affected and the background PTM types it generally harbors. Also, matrisome PTMmut are often found among structural and functional protein regions and in proteins involved in homo- and heterotypic interactions, suggesting potential disruption of matrisome functions. CONCLUSIONS Though quantitatively minoritarian in the spectrum of matrisome mutations, PTMmut show distinctive features and damaging potential which might concur to deregulated structural, functional, and signaling networks in the tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Holstein
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Annalena Dittmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Anni Kääriäinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Vilma Pesola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Jarkko Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA;
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
- Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Finnish Cancer Institute, 00130 Helsinki, Finland
| |
Collapse
|
6
|
Mighri N, Hamdi Y, Boujemaa M, Othman H, Ben Nasr S, El Benna H, Mejri N, Labidi S, Ayari J, Jaidene O, Bouaziz H, Ben Rekaya M, M'rad R, Haddaoui A, Rahal K, Boussen H, Boubaker S, Abdelhak S. Identification of Novel BRCA1 and RAD50 Mutations Associated With Breast Cancer Predisposition in Tunisian Patients. Front Genet 2020; 11:552971. [PMID: 33240314 PMCID: PMC7677579 DOI: 10.3389/fgene.2020.552971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Deleterious mutations on BRCA1/2 genes are known to confer high risk of developing breast and ovarian cancers. The identification of these mutations not only helped in selecting high risk individuals that need appropriate prevention approaches but also led to the development of the PARP-inhibitors targeted therapy. This study aims to assess the prevalence of the most frequent BRCA1 mutation in Tunisia, c.211dupA, and provide evidence of its common origin as well as its clinicopathological characteristics. We also aimed to identify additional actionable variants using classical and next generation sequencing technologies (NGS) which would allow to implement cost-effective genetic testing in limited resource countries. Patients and Methods Using sanger sequencing, 112 breast cancer families were screened for c.211dupA. A set of patients that do not carry this mutation were investigated using NGS. Haplotype analysis was performed to assess the founder effect and to estimate the age of this mutation. Correlations between genetic and clinical data were also performed. Results The c.211dupA mutation was identified in 8 carriers and a novel private BRCA1 mutation, c.2418dupA, was identified in one carrier. Both mutations are likely specific to North-Eastern Tunisia. Haplotype analysis supported the founder effect of c.211dupA and showed its recent origin. Phenotype-genotype correlation showed that both BRCA1 mutations seem to be associated with a severe phenotype. Whole Exome Sequencing (WES) analysis of a BRCA negative family revealed a Variant of Unknown Significance, c.3647C > G on RAD50. Molecular modeling showed that this variant could be classified as deleterious as it is responsible for destabilizing the RAD50 protein structure. Variant prioritization and pathway analysis of the WES data showed additional interesting candidate genes including MITF and ANKS6. Conclusion We recommend the prioritization of BRCA1-c.211dupA screening in high risk breast cancer families originating from the North-East of Tunisia. We also highlighted the importance of NGS in detecting novel mutations, such as RAD50-c.3647C > G. In addition, we strongly recommend using data from different ethnic groups to review the pathogenicity of this variant and reconsider its classification in ClinVar.
Collapse
Affiliation(s)
- Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,The Military Hospital of Tunis, Department of Medical Oncology, Tunis, Tunisia
| | - Houda El Benna
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Jihen Ayari
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,The Military Hospital of Tunis, Department of Medical Oncology, Tunis, Tunisia
| | - Olfa Jaidene
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Hanen Bouaziz
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ridha M'rad
- Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Abderrazek Haddaoui
- The Military Hospital of Tunis, Department of Medical Oncology, Tunis, Tunisia
| | - Khaled Rahal
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|