1
|
Zhang Q, Li J, Wang C, Li Z, Luo P, Gao F, Sun W. N6-Methyladenosine in Cell-Fate Determination of BMSCs: From Mechanism to Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0340. [PMID: 38665846 PMCID: PMC11045264 DOI: 10.34133/research.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
The methylation of adenosine base at the nitrogen-6 position is referred to as "N6-methyladenosine (m6A)" and is one of the most prevalent epigenetic modifications in eukaryotic mRNA and noncoding RNA (ncRNA). Various m6A complex components known as "writers," "erasers," and "readers" are involved in the function of m6A. Numerous studies have demonstrated that m6A plays a crucial role in facilitating communication between different cell types, hence influencing the progression of diverse physiological and pathological phenomena. In recent years, a multitude of functions and molecular pathways linked to m6A have been identified in the osteogenic, adipogenic, and chondrogenic differentiation of bone mesenchymal stem cells (BMSCs). Nevertheless, a comprehensive summary of these findings has yet to be provided. In this review, we primarily examined the m6A alteration of transcripts associated with transcription factors (TFs), as well as other crucial genes and pathways that are involved in the differentiation of BMSCs. Meanwhile, the mutual interactive network between m6A modification, miRNAs, and lncRNAs was intensively elucidated. In the last section, given the beneficial effect of m6A modification in osteogenesis and chondrogenesis of BMSCs, we expounded upon the potential utility of m6A-related therapeutic interventions in the identification and management of human musculoskeletal disorders manifesting bone and cartilage destruction, such as osteoporosis, osteomyelitis, osteoarthritis, and bone defect.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopedics,
Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
| | - Junyou Li
- School of Mechanical Engineering,
Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery,
Peking UniversityThird Hospital, Peking University, Beijing 100191, China
| | - Zhizhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Fuqiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Sun
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Orthopaedic Surgery of the Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Qiu L, Ma L, Chen D, Zhang N, Cai J, Zhang Q, Wang X, Yi H, Yao H, Fan FY. Novel_circ_003686 regulates the osteogenic differentiation of MSCs in patients with myeloma bone disease through miR-142-5p/IGF1 axis. J Bone Oncol 2023; 43:100509. [PMID: 38021072 PMCID: PMC10654027 DOI: 10.1016/j.jbo.2023.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Circ_003686 is a novel_circRNA with abnormally low expression found in the samples of multiple myeloma bone disease (MBD) patients. The current research intended to investigate the effects of novel_circ_003686 in osteogenesis-induced differentiation of bone marrow mesenchymal stem cells (BMSCs) in MBD. Methods BMSCs were extracted from MBD patients and normal participants, the pcDNA3.1 encoding the circ_003686 (ov-circ_003686), miR-142-5p-mimic/inhibitor and siRNA oligonucleotides targeting insulin like growth factor 1 (IGF1, si-IGF1) were applied to intervene circ_003686, miR-142-5p and IGF1 levels, respectively. Results: Results showed that ov-circ_003686 could mediate the osteogenesis-induced differentiation of MBD-BMSC, and luciferase assay and RIP experiments confirmed that circ_003686 could bind to miR-142-5p. MiR-142-5p-inhibitor helped osteogenesis-induced differentiation, while miR-142-5p-mimic inhibited osteogenesis-induced differentiation and reversed the promoting effect of ov-circ_003686, suggesting that circ_003686/miR-142-5p axis participated in osteogenesis-induced differentiation of MBD-BMSC. In addition, miR-142-5p binds to the target gene IGF1 and negatively adjust its expression. Si-IGF1 significantly inhibited the osteogenesis-induced differentiation and reversed the promotion effects of miR-142-5p-inhibitor and ov-circ_003686. Moreover, circ_003686/miR-142-5p/IGF1 axis meaningfully regulates protein expressions in the PI3K/AKT pathway. Conclusion In conclusion, this research confirmed that circ_003686 regulated the osteogenesis-induced differentiation of MBD-BMSC by sponging miR-142-5p and mediating IGF1, and the PI3K/AKT pathway may also be involved.
Collapse
Affiliation(s)
| | | | | | - Nan Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Jiao Cai
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Qian Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Xiao Wang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Hai Yi
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theatre, Chengdu, SiChuan, China
| |
Collapse
|
3
|
Chakraborty N, Holmes-Hampton GP, Gautam A, Kumar R, Hritzo B, Legesse B, Dimitrov G, Ghosh SP, Hammamieh R. Early to sustained impacts of lethal radiation on circulating miRNAs in a minipig model. Sci Rep 2023; 13:18496. [PMID: 37898651 PMCID: PMC10613244 DOI: 10.1038/s41598-023-45250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Early diagnosis of lethal radiation is imperative since its intervention time windows are considerably short. Hence, ideal diagnostic candidates of radiation should be easily accessible, enable to inform about the stress history and objectively triage subjects in a time-efficient manner. Therefore, the small molecules such as metabolites and microRNAs (miRNAs) from plasma are legitimate biomarker candidate for lethal radiation. Our objectives were to comprehend the radiation-driven molecular pathogenesis and thereby determine biomarkers of translational potential. We investigated an established minipig model of LD70/45 total body irradiation (TBI). In this pilot study, plasma was collected pre-TBI and at multiple time points post-TBI. The majority of differentially expressed miRNAs and metabolites were perturbed immediately after TBI that potentially underlined the severity of its acute impact. The integrative network analysis of miRNA and metabolites showed a cohesive response; the early and consistent perturbations of networks were linked to cancer and the shift in musculoskeletal atrophy synchronized with the comorbidity-networks associated with inflammation and bioenergy synthesis. Subsequent comparative pipeline delivered 92 miRNAs, which demonstrated sequential homology between human and minipig, and potentially similar responses to lethal radiation across these two species. This panel promised to retrospectively inform the time since the radiation occurred; thereby could facilitate knowledge-driven interventions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Raina Kumar
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Bernadette Hritzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Betre Legesse
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
4
|
Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:903278. [PMID: 35652090 PMCID: PMC9150698 DOI: 10.3389/fcell.2022.903278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily available and frequently used for bone regeneration in clinics. Osteogenic differentiation of BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and inhibitory effects on osteogenic differentiation of BMSCs. During the physiological condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are downregulated. The opposite effects might occur during bone degenerative disease conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via exosomes participate in the regulatory process of osteogenic differentiation of BMSCs. In this review, we summarize the recent advances in the regulatory role of ncRNAs on osteogenic differentiation of BMSCs during physiological and pathological conditions. We also discuss the prospects of the application of modulation of ncRNAs function in BMSCs to promote bone tissue regeneration in clinics.
Collapse
Affiliation(s)
- Xiaoying Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ming Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhan Shi
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Goud VR, Chakraborty R, Chakraborty A, Lavudi K, Patnaik S, Sharma S, Patnaik S. A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Comput Biol Med 2022; 145:105436. [PMID: 35366472 PMCID: PMC8942883 DOI: 10.1016/j.compbiomed.2022.105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
The causative agent of the COVID-19 pandemic, the SARS-CoV-2 virus has yielded multiple relevant mutations, many of which have branched into major variants. The Omicron variant has a huge similarity with the original viral strain (first COVID-19 strain from Wuhan). Among different genes, the highly variable orf8 gene is responsible for crucial host interactions and has undergone multiple mutations and indels. The sequence of the orf8 gene of the Omicron variant is, however, identical with the gene sequence of the wild type. orf8 modulates the host immunity making it easier for the virus to conceal itself and remain undetected. Variants seem to be deleting this gene without affecting the viral replication. While analyzing, we came across the conserved orf7a gene in the viral genome which exhibits a partial sequence homology as well as functional similarity with the SARS-CoV-2 orf8. Hence, we have proposed here in our hypothesis that, orf7a might be an alternative reserve of orf8 present in the virus which was compensating for the lost gene. A computational approach was adopted where we screened various miRNAs targeted against the orf8 gene. These miRNAs were then docked onto the orf8 mRNA sequences. The same set of miRNAs was then used to check for their binding affinity with the orf7a reference mRNA. Results showed that miRNAs targeting the orf8 had favorable shape complementarity and successfully docked with the orf7a gene as well. These findings provide a basis for developing new therapeutic approaches where both orf8 and orf7a can be targeted simultaneously.
Collapse
Affiliation(s)
| | | | | | - Kousalya Lavudi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sriram Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swati Sharma
- School of Biotechnology, KIIT University, Bhubaneswar, India,Dept. of Skill Buildings Shri Ramasamy Memorial University, Sikkim, Gangtok, 737102, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India,Corresponding author. School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
6
|
Rong W, Rome C, Yao S. Increased Expression of miR-7a-5p and miR-592 during Expansion of Rat Dental Pulp Stem Cells and Their Implication in Osteogenic Differentiation. Cells Tissues Organs 2022; 211:41-56. [PMID: 34530424 PMCID: PMC8766878 DOI: 10.1159/000519600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/12/2021] [Indexed: 01/03/2023] Open
Abstract
Dental pulp stem cells (DPSCs) possess strong osteogenic differentiation potential and are promising cell sources in regenerative medicine. However, such differentiation capacity progressively declines during their in vitro expansion. MicroRNAs (miRNAs) play important roles in modulating stem cell differentiation. This study aimed (1) to determine if miR-7a-5p and miR-592 are involved in maintaining and regulating osteogenic differentiation of DPSCs, and (2) to explore their potential regulatory pathways. We found that the expression of miR-7a-5p and miR-592 was significantly upregulated during the expansion of rat DPSCs (rDPSCs). Overexpression of these miRNAs inhibited the osteogenic/odontogenic differentiation of rDPSCs, as evidenced by calcium deposition and osteogenic/odontogenic gene expression. RT-qPCR determined that miR-592 could downregulate heat shock protein B8, whose expression is reduced during the expansion of rDPSCs. Furthermore, RNA-seq and bioinformatics analysis identified significant signaling pathways of miR-7a-5p and miR-592 in regulating osteogenic differentiation, including TNF, MAPK, and PI3K-Akt pathways. We conclude that upregulating miR-7a-5p and miR-592 suppresses the osteogenic differentiation of rDPSCs during their in vitro expansion, likely via TNF, MAPK, and PI3K-Akt pathways. The results may shed light on application of miR-7a-5p and miR-592 for maintaining osteo-differentiation potential in stem cells for bone regeneration and bone-related disease treatment.
Collapse
Affiliation(s)
| | | | - Shaomian Yao
- Corresponding author: Shaomian Yao, Ph.D., Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA, Tel: +1-225-578-9889, Fax: +1-225-578-9895,
| |
Collapse
|
7
|
Han X, Fan Z. MicroRNAs Regulation in Osteogenic Differentiation of Mesenchymal Stem Cells. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.747068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cell with the potential of self-renewal and multidirectional differentiation. They can be obtained from a variety of tissues and can differentiate into a variety of cell types under different induction conditions, including osteoblasts. Because of this osteogenic property, MSCs have attracted much attention in the treatment of bone metabolism-related diseases. MicroRNAs (miRNAs), as an epigenetic factor, are thought to play an important regulatory role in the process of osteogenic differentiation of MSCs. In recent years, increasingly evidence shows that miRNAs imbalance is involved in the regulation of osteoporosis and fracture. In this review, miRNAs involved in osteogenic differentiation and their mechanisms for regulating the expression of target genes are reviewed. In addition, we also discuss the potential clinical applications and possible directions of this field in the future.
Collapse
|
8
|
A Molecular Signature of Circulating MicroRNA Can Predict Osteolytic Bone Disease in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153877. [PMID: 34359778 PMCID: PMC8345491 DOI: 10.3390/cancers13153877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Multiple myeloma bone disease (MMBD) is one of the most important complications of multiple myeloma with a great impact on quality of life. Recent advances in the field of imaging techniques provided clinicians with a variety of imaging modalities with high sensitivity for the diagnosis of MMBD. However, no circulating biomarkers are available to support the diagnosis of MMBD in cases where the results are inconclusive. The aim of our study was to investigate the clinical utility of 19 miRNAs implicated in osteoporosis in MMBD. Our results suggest that the levels of circulating let-7b-5p, miR-143-3p, miR-17-5p, miR-335-5p, and miR-214-3p (standalone or combined in multi-miRNA models) can effectively predict the presence of MMBD in newly diagnosed MM patients. Abstract Background: Multiple myeloma bone disease (MMBD) constitutes a common and severe complication of multiple myeloma (MM), impacting the quality of life and survival. We evaluated the clinical value of a panel of 19 miRNAs associated with osteoporosis in MMBD. Methods: miRNAs were isolated from the plasma of 62 newly diagnosed MM patients with or without MMBD. First-strand cDNA was synthesized, and relative quantification was performed using qPCR. Lastly, we carried out extensive biostatistical analysis. Results: Circulating levels of let-7b-5p, miR-143-3p, miR-17-5p, miR-214-3p, and miR-335-5p were significantly higher in the blood plasma of MM patients with MMBD compared to those without. Receiver operating characteristic curve and logistic regression analyses showed that these miRNAs could accurately predict MMBD. Furthermore, a standalone multi-miRNA–based logistic regression model exhibited the best predictive potential regarding MMBD. Two of those miRNAs also have a prognostic role in MM since survival analysis indicated that lower circulating levels of both let-7b-5p and miR-335-5p were associated with significantly worse progression-free survival, independently of the established prognostic factors. Conclusions: Our study proposes a miRNA signature to facilitate MMBD diagnosis, especially in ambiguous cases. Moreover, we provide evidence of the prognostic role of let-7b-5p and miR-335-5p as non-invasive prognostic biomarkers in MM.
Collapse
|
9
|
Multiple Myeloma Bone Disease: Implication of MicroRNAs in Its Molecular Background. Int J Mol Sci 2021; 22:ijms22052375. [PMID: 33673480 PMCID: PMC7956742 DOI: 10.3390/ijms22052375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy arising from terminally differentiated plasma cells. In the majority of cases, symptomatic disease is characterized by the presence of bone disease. Multiple myeloma bone disease (MMBD) is a result of an imbalance in the bone-remodeling process that leads to increased osteoclast activity and decreased osteoblast activity. The molecular background of MMBD appears intriguingly complex, as several signaling pathways and cell-to-cell interactions are implicated in the pathophysiology of MMBD. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate the expression of their target mRNAs. Numerous miRNAs have been witnessed to be involved in cancer and hematological malignancies and their role has been characterized either as oncogenic or oncosuppressive. Recently, scientific research turned towards miRNAs as regulators of MMBD. Scientific data support that miRNAs finely regulate the majority of the signaling pathways implicated in MMBD. In this review, we provide concise information regarding the molecular pathways with a significant role in MMBD and the miRNAs implicated in their regulation. Moreover, we discuss their utility as molecular biomarkers and highlight the putative usage of miRNAs as novel molecular targets for targeted therapy in MMBD.
Collapse
|
10
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA;
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Lucia Otòn-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Frontini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Ilaria Bononi
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70, Eliporto Street, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Raimondi L, De Luca A, Giavaresi G, Raimondo S, Gallo A, Taiana E, Alessandro R, Rossi M, Neri A, Viglietto G, Amodio N. Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology. Noncoding RNA 2020; 6:ncrna6030037. [PMID: 32916806 PMCID: PMC7549375 DOI: 10.3390/ncrna6030037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies have disclosed the mechanisms underlying increased osteoclast formation and activity triggered by the various cellular components of the MM bone marrow microenvironment, leading to the identification of novel targets for therapeutic intervention. In this regard, recent attention has been given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in bone homeostasis both in physiological and pathological settings. In this review, we will analyze major signaling pathways involved in MMBD pathophysiology, and report emerging evidence of their regulation by different classes of ncRNAs.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| | - Angela De Luca
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
| | - Alessia Gallo
- IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Research Department, 90127 Palermo, Italy;
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| |
Collapse
|
12
|
Emerging Insights on the Biological Impact of Extracellular Vesicle-Associated ncRNAs in Multiple Myeloma. Noncoding RNA 2020; 6:ncrna6030030. [PMID: 32764460 PMCID: PMC7549345 DOI: 10.3390/ncrna6030030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnosis and therapy response prediction, we will report evidence of their potential use as clinical biomarkers.
Collapse
|