1
|
Masoud A, Mohamadynejad P. Identification of lncRNA PCAT19 as potential novel biomarker for colorectal cancer. Gene 2024; 891:147828. [PMID: 37748628 DOI: 10.1016/j.gene.2023.147828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Long non-coding RNAs have been implicated in biological processes, and are dysregulated in types of cancer. Studies have shown that PCAT19 and CKMT2-AS1 lncRNAs promote tumor growth, invasion, and metastasis by regulating signaling pathways and modulating the gene expression. This study investigated the expression levels of lncRNAs PCAT19 and CKMT2-AS1 in colorectal tumors and normal tissues. First, Using GEPIA2 database, we compared the expression level of target lncRNAs between primary colon adenocarcinoma tumor and normal tissues. Then, the expression levels of lncRNAs PCAT19 and CKMT2-AS1 were detected in 35 colorectal tumors and paired adjacent tissues using qRT-PCR. A receiver operating characteristic (ROC) curve was used to evaluate the value of these lncRNAs as biomarkers. Statistical analysis based on GEPIA2 showed that both lncRNAs PCAT19 and CKMT2-AS1 were significantly decreased in colon adenocarcinoma compared to the normal group (P < 0.001). Experimental analysis showed that the expression level of lncRNA PCAT19 was decreased in colorectal tumors (p < 0.0001) compared to normal tissues. While the expression level of lncRNA CKMT2-AS1 did not change in tumor tissues, it decreased in non-metastatic tumors compared to normal tissues (p = 0.04). The significantly downregulation of lncRNA PCAT19 expression in both metastatic and non-metastatic colorectal tumors compared to normal tissue suggests that PCAT19 may play a role in the carcinogenesis and progression of colorectal cancer and may provide potential therapeutic targets for colorectal cancer. Based on the results of ROC curve analysis, lncRNA PCAT19 may also serves as a novel potential good biomarker in diagnosis colorectal cancer (AUC = 0.94, p < 0.0001) but no significant was found for lncRNA CKMT2-AS1 (p > 0.05).
Collapse
Affiliation(s)
- Atousa Masoud
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
2
|
Cui Y, Wu Y, Zhang M, Zhu Y, Su X, Kong W, Zheng X, Sun G. Identification of prognosis-related lncRNAs and cell validation in lung squamous cell carcinoma based on TCGA data. Front Oncol 2023; 13:1240868. [PMID: 37965447 PMCID: PMC10642190 DOI: 10.3389/fonc.2023.1240868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Objective To discern long non-coding RNAs (lncRNAs) with prognostic relevance in the context of lung squamous cell carcinoma (LUSC), we intend to predict target genes by leveraging The Cancer Genome Atlas (TCGA) repository. Subsequently, we aim to investigate the proliferative potential of critical lncRNAs within the LUSC milieu. Methods DESeq2 was employed to identify differentially expressed genes within the TCGA database. Following this, we utilized both univariate and multivariate Cox regression analyses to identify lncRNAs with prognostic relevance. Noteworthy lncRNAs were selected for validation in cell lines. The intracellular localization of these lncRNAs was ascertained through nucleocytoplasmic isolation experiments. Additionally, the impact of these lncRNAs on cellular proliferation, invasion, and migration capabilities was investigated using an Antisense oligonucleotides (ASO) knockdown system. Results Multivariate Cox regression identified a total of 12 candidate genes, consisting of seven downregulated lncRNAs (BRE-AS1, CCL15-CCL14, DNMBP-AS1, LINC00482, LOC100129034, MIR22HG, PRR26) and five upregulated lncRNAs (FAM83A-AS1, LINC00628, LINC00923, LINC01341, LOC100130691). The target genes associated with these lncRNAs exhibit significant enrichment within diverse biological pathways, including metabolic processes, cancer pathways, MAPK signaling, PI3K-Akt signaling, protein binding, cellular components, cellular transformation, and other functional categories. Furthermore, nucleocytoplasmic fractionation experiments demonstrated that LINC00923 and LINC01341 are predominantly localized within the cellular nucleus. Subsequent investigations utilizing CCK-8 assays and colony formation assays revealed that the knockdown of LINC00923 and LINC01341 effectively suppressed the proliferation of H226 and H1703 cells. Additionally, transwell assays showed that knockdown of LINC00923 and LINC01341 significantly attenuated the invasive and migratory capacities of H226 and H1703 cells. Conclusion This study has identified 12 candidate lncRNA associated with prognostic implications, among which LINC00923 and LINC01341 exhibit potential as markers for the prediction of LUSC outcomes.
Collapse
Affiliation(s)
- Yishuang Cui
- School of Public Health, North China University of Science and Technology, Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Yanan Wu
- School of Public Health, North China University of Science and Technology, Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Mengshi Zhang
- School of Public Health, North China University of Science and Technology, Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Yingze Zhu
- School of Public Health, North China University of Science and Technology, Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Xin Su
- School of Public Health, North China University of Science and Technology, Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Wenyue Kong
- School of Public Health, North China University of Science and Technology, Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Xuan Zheng
- School of Public Health, North China University of Science and Technology, Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| |
Collapse
|
3
|
Lin Z, Fan W, Sui X, Wang J, Zhao J. Necroptosis-Related LncRNA Signatures for Prognostic Prediction in Uterine Corpora Endometrial Cancer. Reprod Sci 2023; 30:576-589. [PMID: 35854199 PMCID: PMC9988759 DOI: 10.1007/s43032-022-01023-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Necroptosis is one of the common modes of apoptosis, and it has an intrinsic association with cancer prognosis. However, the role of the necroptosis-related long non-coding RNA LncRNA (NRLncRNAs) in uterine corpora endometrial cancer (UCEC) has not yet been fully elucidated at present. Therefore, the present study is designed to investigate the potential prognostic value of necroptosis-related LncRNAs in UCEC. In the present study, the expression profiles and clinical data of UCEC patients were downloaded from TCGA database to identify the differentially expressed NRLncRNAs associated with overall survival. A LncRNA risk model was constructed via Cox regression analysis, and its prognostic value was evaluated. We have also further evaluated the relationships between the LncRNA features and the related cellular function, related pathways, immune status, and immune checkpoints m6A-related genes. Seven signatures, including PCAT19, CDKN2B-AS1, LINC01936, LINC02178, BMPR1B-DT, LINC00237, and TRPM2-AS, were established to assess the overall survival (OS) of the UCEC in the present study. Survival analysis and ROC curves indicated that the correlated signature has good predictable performance. The normogram could accurately predict the overall survival of the patients with an excellent clinical practical value. Enrichment analysis of gene sets indicated that risk signals were enriched in several immune-related pathways. In addition, the risk characteristics were significantly correlated with immune cells, immune function, immune cell infiltration, immune checkpoints, and some m6A-related genes. This study has identified seven necroptosis-related LncRNA signatures for the first time, providing a valuable basis for a more accurate prognostic prediction of UCEC.
Collapse
Affiliation(s)
- Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Weisen Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Juntao Wang
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, 250012 Shandong China
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| |
Collapse
|
4
|
Liu Y, Han Y, Zhang Y, Lv T, Peng X, Huang J. LncRNAs has been identified as regulators of Myeloid-derived suppressor cells in lung cancer. Front Immunol 2023; 14:1067520. [PMID: 36817434 PMCID: PMC9932034 DOI: 10.3389/fimmu.2023.1067520] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lung tumours are widespread pathological conditions that attract much attention due to their high incidence of death. The immune system contributes to the progression of these diseases, especially non-small cell lung cancer, resulting in the fast evolution of immune-targeted therapy. Myeloid-derived suppressor cells (MDSCs) have been suggested to promote the progression of cancer in the lungs by suppressing the immune response through various mechanisms. Herein, we summarized the clinical studies on lung cancer related to MDSCs. However, it is noteworthy to mention the discovery of long non-coding RNAs (lncRNAs) that had different phenotypes and could regulate MDSCs in lung cancer. Therefore, by reviewing the different phenotypes of lncRNAs and their regulation on MDSCs, we summarized the lncRNAs' impact on the progression of lung tumours. Data highlight LncRNAs as anti-cancer agents. Hence, we aim to discuss their possibilities to inhibit tumour growth and trigger the development of immunosuppressive factors such as MDSCs in lung cancer through the regulation of lncRNAs. The ultimate purpose is to propose novel and efficient therapy methods for curing patients with lung tumours.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China.,Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yukun Han
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Zhang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Oo JA, Pálfi K, Warwick T, Wittig I, Prieto-Garcia C, Matkovic V, Tomašković I, Boos F, Izquierdo Ponce J, Teichmann T, Petriukov K, Haydar S, Maegdefessel L, Wu Z, Pham MD, Krishnan J, Baker AH, Günther S, Ulrich HD, Dikic I, Leisegang MS, Brandes RP. Long non-coding RNA PCAT19 safeguards DNA in quiescent endothelial cells by preventing uncontrolled phosphorylation of RPA2. Cell Rep 2022; 41:111670. [PMID: 36384122 PMCID: PMC9681662 DOI: 10.1016/j.celrep.2022.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
In healthy vessels, endothelial cells maintain a stable, differentiated, and growth-arrested phenotype for years. Upon injury, a rapid phenotypic switch facilitates proliferation to restore tissue perfusion. Here we report the identification of the endothelial cell-enriched long non-coding RNA (lncRNA) PCAT19, which contributes to the proliferative switch and acts as a safeguard for the endothelial genome. PCAT19 is enriched in confluent, quiescent endothelial cells and binds to the full replication protein A (RPA) complex in a DNA damage- and cell-cycle-related manner. Our results suggest that PCAT19 limits the phosphorylation of RPA2, primarily on the serine 33 (S33) residue, and thereby facilitates an appropriate DNA damage response while slowing cell cycle progression. Reduction in PCAT19 levels in response to either loss of cell contacts or knockdown promotes endothelial proliferation and angiogenesis. Collectively, PCAT19 acts as a dynamic guardian of the endothelial genome and facilitates rapid switching from quiescence to proliferation.
Collapse
Affiliation(s)
- James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Katalin Pálfi
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany; Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, 60596 Frankfurt, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany
| | - Vigor Matkovic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt, Germany
| | - Ines Tomašković
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany
| | - Frederike Boos
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Judit Izquierdo Ponce
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Tom Teichmann
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | | | - Shaza Haydar
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, 81675 Munich, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Munich, Munich, Germany
| | - Zhiyuan Wu
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, 81675 Munich, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Munich, Munich, Germany
| | - Minh Duc Pham
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, 60596 Frankfurt, Germany; Genome Biologics, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Jaya Krishnan
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany; Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, 60596 Frankfurt, Germany; Cardio-Pulmonary Institute, Giessen, Germany
| | - Andrew H Baker
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland; CARIM Institute, University of Maastricht, Universiteitssingel 50, 6200 Maastricht, the Netherlands
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt, Germany; Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| |
Collapse
|
6
|
Yaseen Y, Kubba A, Shihab W, Tahtamouni L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new series of niflumic acid (NF) derivatives were synthesized by esterification of (NF) to give ester compound 1, which was treated with hydrazine hydrate to produce (NF) hydrazide 2. Hydrazine-1-carboxamide compounds (3A–C), and hydrazine-1-carbothioamide derivatives (4A–D) were synthesized by treatment of (NF) hydrazide with phenyl isocyanate, and phenyl isothiocyanate derivatives, respectively. The cyclization of (4B–D) and (3B) was achieved using NaOH solution to produce 1,2,4-triazole derivatives (5A–C) and 6, respectively. The prepared compounds were characterized using IR, 1HNMR, 13CNMR, and MS (ESI) spectroscopy. A molecular docking study was performed to evaluate the binding affinity of the synthesized compounds against EGFR and VEGFR kinase domains which revealed that compounds 3B, and 4A had the best binding energy (-7.87, and -7.33 kcal/mol, respectively) against VEGFR, while compound 5A had the best binding energy (-7.95 kcal/mol) against EGFR. The biological investigation results indicated that all the tested compounds caused cell killing in the two cancer cell lines (Hep G2 and A549) studied, with compound 4C being the most cytotoxic, as well as being cancer selective. Additionally, compound 4C-treated Hep G2 cells were arrested at the S and G2/M cell cycle phases. Cytotoxicity of compound 4C was attributed to apoptosis as determined by flow cytometry and qRT-PCR results of the apoptosis markers p53, BAX, and caspase-3. Finally, compound 4C inhibited VEGFR kinase activity, while compound 5B inhibited EGFR kinase activity. In conclusion, the novel (NF) derivatives are potent anticancer agents, inhibiting cell proliferation by inhibiting EGFR and VEGFR tyrosine kinase enzymes.
Collapse
|
7
|
PCAT19 Regulates the Proliferation and Apoptosis of Lung Cancer Cells by Inhibiting miR-25-3p via Targeting the MAP2K4 Signal Axis. DISEASE MARKERS 2022; 2022:2442094. [PMID: 35615401 PMCID: PMC9126706 DOI: 10.1155/2022/2442094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
Both PCAT19 and miR-25-3p have been reported in lung cancer studies, but whether there is a correlation between the two and whether they jointly regulate the progress of lung cancer have not been reported yet. Therefore, this study carried out a further in-depth research. The expression of PCAT19 was detected in lung cancer (LC) tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of PCAT19 on tumor growth was detected in a tumor-bearing model of nude mice. PCAT19-transfected cells were treated with Honokiol and anisomycin. The effects of PCAT19 on proliferation, apoptosis, and cycle of LC cells were investigated by biomolecule experiments. The effects of PCAT19 on the expressions of mitogen-activated protein kinase- (MAPK-) related proteins were evaluated by western blotting. The expression of PCAT19 was decreased in LC tissues and related to patient survival, tumor size, and pathology. In addition, upregulation of PCAT19 hindered LC cell proliferation, miR-25-3p expression, and the activation of extracellular regulated protein kinases (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK), while facilitating LC cell apoptosis. Furthermore, upregulation of PCAT19 reversed the effects of Honokiol and anisomycin on promoting cell proliferation and inhibiting cell apoptosis. Collectively, our findings show that upregulated PCAT19 suppresses proliferation yet promotes the apoptosis of LC cells through modulating the miR-25-3p/MAP2K4 signaling axis.
Collapse
|
8
|
Alsaad H, Kubba A, Tahtamouni LH, Hamzah AH. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e83158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of 1,2,4 triazole derivatives (H7-12) have been synthesized by reacting an excess of hydrazine hydrate with carbothioamide derivatives (H1-6). The final compounds (HB1-HB6) were synthesized by reacting the triazole derivatives with mefenamic acid using DCC as a coupling agent. The chemical structures were confirmed by FT-IR, 1H, and 13C-NMR spectra, and some physicochemical properties were determined. The cytotoxicity of the different compounds (HB1-HB6) was evaluated by the MTT assay against two human epithelial cancer cell lines, A549 lung carcinoma and Hep G2 hepatocyte carcinoma, and one normal human cell line WI-38 lung fibroblasts. The mode of cell killing (apoptosis versus necrosis), as well as the effect on cell cycle phases were evaluated via flow cytometry. Additionally, EGFR tyrosine kinase inhibition assay was performed. The results presented in the current study indicate that the six tested compounds exhibited cytotoxicity against both cancer cell lines, and the lowest IC50 was achieved with compound HB5 against Hep G2 cancer cells which was found to be highly selective against cancer cells. HB5-treated Hep G2 cells were arrested at the S and G2/M cell cycle phases. Compound HB5 caused cell killing via apoptosis rather than necrosis, and this was achieved by inhibiting EGFR tyrosine kinase activity needed for cell proliferation, and cell cycle progression. In silico pre-ADMET studies confirmed all final compounds don’t cause CNS side effects, with little liver dysfunction effect.
Collapse
|
9
|
Tang X, Hua X, Peng X, Pei Y, Chen Z. Integrated Dissection of lncRNA-miRNA-mRNA Pairs and Potential Regulatory Role of lncRNA PCAT19 in Lung Adenocarcinoma. Front Genet 2022; 12:765275. [PMID: 35095999 PMCID: PMC8790230 DOI: 10.3389/fgene.2021.765275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the main cause of cancer-related deaths worldwide. Long noncoding RNAs have been reported to play an important role in various cancers due to their special functions. Therefore, identifying the lncRNAs involved in LUAD tumorigenesis and development can help improve therapeutic strategies. The TCGA-LUAD RNA expression profile was downloaded from The Cancer Genome Atlas, and a total of 49 differential lncRNAs, 112 differential miRNAs, and 2,953 differential mRNAs were screened. Through Kaplan–Meier curves, interaction networks, hub RNAs (lncRNAs, miRNAs, and mRNAs) were obtained. These hub genes are mainly involved in cell proliferation, cell cycle, lung development, and tumor-related signaling pathways. Two lncRNAs (SMIM25 and PCAT19) more significantly related to the prognosis of LUAD were screened by univariate Cox analysis, multivariate Cox analysis, and risk model analysis. The qPCR results showed that the expression levels of SMIM25 and PCAT19 were downregulated in clinical tissues, A549 and SPC-A1 cells, which were consistent with the bioinformatics analysis results. Subsequently, the PCAT19/miR-143-3p pairs were screened through the weighted gene co-expression network analysis and miRNA-lncRNA regulatory network. Dual luciferase detection confirmed that miR-143-3p directly targets PCAT19, and qPCR results indicated that the expression of the two is positively correlated. Cell function tests showed that overexpression of PCAT19 could significantly inhibit the proliferation, migration, and invasion of A549 and SPC-A1 cells. In contrast, knockout of PCAT19 can better promote the proliferation and migration of A549 and SPC-A1 cells. The expression of PCAT19 was negatively correlated with tumor grade, histological grade, and tumor mutation load in LUAD. In addition, co-transfection experiments confirmed that the miR-143-3p mimic could partially reverse the effect of PCAT19 knockout on the proliferation of A549 and SPC-A1 cells. In summary, PCAT19 is an independent prognostic factor in patients with LUAD that can regulate the proliferation, migration, and invasion of LUAD cells and may be a potential biomarker for the diagnosis of LUAD. PCAT19/miR-143-3p plays a very important regulatory role in the occurrence and development of LUAD.
Collapse
Affiliation(s)
| | - Xiaoyan Hua
- Department of Oncology, Wannian County Hospital of Traditional Chinese Medicine, Shangrao, China
| | - Xujin Peng
- Department of Oncology, Wannian County Hospital of Traditional Chinese Medicine, Shangrao, China
| | - Yongyan Pei
- School of Medicine and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhigang Chen
- Department of Oncology, Shangrao People's Hospital, Shangrao, China
| |
Collapse
|
10
|
Xiao L, Yuan W, Huang C, Luo Q, Xiao R, Chen ZH. LncRNA PCAT19 induced by SP1 and acted as oncogene in gastric cancer competitively binding to miR429 and upregulating DHX9. J Cancer 2022; 13:102-111. [PMID: 34976174 PMCID: PMC8692695 DOI: 10.7150/jca.61961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are crucial in cancer biological processes. To investigate if lncRNA contributes to gastric cancer (GC), we conducted a bioinformatics analysis in human microarray datasets, and the results showed that lncRNA prostate cancer-associated transcript 19 (PCAT19) was upregulated in GC. Quantitative reverse-transcriptase PCR and in situ hybridization assays also revealed that PCAT19 was upregulated in GC tissues. The PCAT19 expression in GC was significantly related to tumor size, lymph node metastasis, and pathological stage. Moreover, patients with higher PCAT19 expression levels were more likely to have a poor prognosis for overall survival. The knockdown of PCAT19 by siRNA significantly suppressed the proliferation and invasion of GC cells. The cell distribution of PCAT19 in GC cells was examined by fluorescence in situ hybridization assay, and the results showed that it was mainly located in the cytoplasm. Mechanistically, PCAT19 sponges miR-429 and promotes DHX9 expression. In addition, the transcription factor SP1 is involved in PCAT19 activation. Our results demonstrate that lncRNA PCAT19 is induced by SP1 and acts as an oncogene in GC that competitively binds to miR429 and upregulates DHX9.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weijie Yuan
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Changhao Huang
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingqing Luo
- Department of Oncology, Hunan Provincial People's Hospital, Changsha 410002, China
| | - Runsha Xiao
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zi-Hua Chen
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Huo M, Zheng X, Bai N, Xu R, Yang G, Zhao Z. LncRNA PCAT19 Regulates Neuropathic Pain via Regulation of miR-182-5p/JMJD1A in a Rat Model of Chronic Constriction Injury. Neuroimmunomodulation 2022; 29:161-170. [PMID: 34518490 DOI: 10.1159/000518847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Neuropathic pain (NP) is one of the most severe chronic pain types. In recent years, more and more studies have shown that long noncoding RNA (LncRNA) plays a key role in a variety of human diseases, including NP. However, the role of LncRNA prostate cancer-associated transcript 19 (PCAT19) in NP and its specific mechanism remain unclear. METHODS A chronic constrictive injury (CCI) rat model was established. Rat paw withdrawal threshold and paw withdrawal latency were used to evaluate the neuronal pain behavior of rats in this model. mRNA expression of PCAT19, neuroinflammatory factor, microRNA (miR)-182-5p, and Jumonji domain containing 1A (JMJD1A) were detected by quantitative real-time PCR. ELISA analysis was used to detect inflammatory factor protein expression. Dual-luciferase reporter assay was used to evaluate the targeting relationship between genes. RESULTS PCAT19 was continuously upregulated in CCI rats. miR-182-5p was the target of PCAT19, and miR-182-5p was increased after PCAT19 knockdown. NP behaviors such as mechanical ectopic pain and thermal hyperalgesia as well as neuroinflammation can be reduced by knocking down PCAT19. However, the injection of miR-182-5p antagomir significantly reversed the level of the NP behaviors and neuroinflammation caused by PCAT19 knockdown. Besides, dual-luciferase reporter assay showed that JMJD1A was the target gene of miR-182-5p. The level of JMJD1A in CCI rats increased with time. After PCAT19 knockdown, JMJD1A was significantly decreased, but inhibition of miR-182-5p can reverse its levels. CONCLUSION This study shows that PCAT19 plays a role in NP by targeting the miR-182-5p/JMJD1A axis, and PCAT19 can be used as a new therapeutic target for NP.
Collapse
Affiliation(s)
- Miao Huo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xingxing Zheng
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ruifen Xu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Guang Yang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ziyu Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
12
|
Ward Z, Schmeier S, Saddic L, Sigurdsson MI, Cameron VA, Pearson J, Miller A, Morley-Bunker A, Gorham J, Seidman JG, Moravec CS, Sweet WE, Aranki SF, Body S, Muehlschlegel JD, Pilbrow AP. Novel and Annotated Long Noncoding RNAs Associated with Ischemia in the Human Heart. Int J Mol Sci 2021; 22:ijms222111324. [PMID: 34768754 PMCID: PMC8583240 DOI: 10.3390/ijms222111324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of cardiovascular diseases. We aimed to identify novel lncRNAs associated with the early response to ischemia in the heart. METHODS AND RESULTS RNA sequencing data gathered from 81 paired left ventricle samples from patients undergoing cardiopulmonary bypass was collected before and after a period of ischemia. Novel lncRNAs were validated with Oxford Nanopore Technologies long-read sequencing. Gene modules associated with an early ischemic response were identified and the subcellular location of selected lncRNAs was determined with RNAscope. A total of 2446 mRNAs, 270 annotated lncRNAs and one novel lncRNA differed in response to ischemia (adjusted p < 0.001, absolute fold change >1.2). The novel lncRNA belonged to a gene module of highly correlated genes that also included 39 annotated lncRNAs. This module associated with ischemia (Pearson correlation coefficient = -0.69, p = 1 × 10-23) and activation of cell death pathways (p < 6 × 10-9). A further nine novel cardiac lncRNAs were identified, of which, one overlapped five cis-eQTL eSNPs for the gene RWD Domain-Containing Sumoylation Enhancer (RWDD3) and was itself correlated with RWDD3 expression (Pearson correlation coefficient -0.2, p = 0.002). CONCLUSION We have identified 10 novel lncRNAs, one of which was associated with myocardial ischemia and may have potential as a novel therapeutic target or early marker for myocardial dysfunction.
Collapse
Affiliation(s)
- Zoe Ward
- Christchurch Heart Institute, University of Otago, Christchurch 8011, New Zealand; (V.A.C.); (A.P.P.)
- Correspondence: ; Tel.: +64-3-364-0543
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand;
| | - Louis Saddic
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Martin I. Sigurdsson
- Department of Anesthesiology and Critical Care Medicine, Landspitali—The National University Hospital of Iceland, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland;
| | - Vicky A. Cameron
- Christchurch Heart Institute, University of Otago, Christchurch 8011, New Zealand; (V.A.C.); (A.P.P.)
| | - John Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch 8011, New Zealand;
| | - Allison Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (A.M.); (A.M.-B.)
| | - Arthur Morley-Bunker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (A.M.); (A.M.-B.)
| | - Josh Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; (J.G.); (J.G.S.)
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; (J.G.); (J.G.S.)
| | - Christine S. Moravec
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44122, USA; (C.S.M.); (W.E.S.)
| | - Wendy E. Sweet
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44122, USA; (C.S.M.); (W.E.S.)
| | - Sary F. Aranki
- Department of Surgery, Division of Cardiac Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.F.A.); (J.D.M.)
| | - Simon Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA 02115, USA;
| | - Jochen D. Muehlschlegel
- Department of Surgery, Division of Cardiac Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.F.A.); (J.D.M.)
| | - Anna P. Pilbrow
- Christchurch Heart Institute, University of Otago, Christchurch 8011, New Zealand; (V.A.C.); (A.P.P.)
| |
Collapse
|
13
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
14
|
Zhou L, Xing C, Zhou D, Yang R, Cai M. Downregulation of lncRNA FGF12-AS2 suppresses the tumorigenesis of NSCLC via sponging miR-188-3p. Open Med (Wars) 2020; 15:986-996. [PMID: 33344773 PMCID: PMC7724005 DOI: 10.1515/med-2020-0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Non-small-cell lung carcinoma (NSCLC) seriously threatens the health of human beings. Aberrant expression of lncRNAs has been confirmed to be related with the progression of multiple malignant tumors, including NSCLC. LncRNA FGF12-AS2 has been considered to be upregulated in NSCLC. However, the mechanism by which FGF12-AS2 promotes the tumorigenesis of NSCLC remains elusive. Methods Gene and protein expressions in NSCLC cells were measured by q-PCR and western blot, respectively. CCK-8 and immunofluorescence staining were performed to detect the cell proliferation. Cell apoptosis was tested by flow cytometry. Transwell assay was used to detect the cell migration and invasion. Finally, the dual luciferase report assay was used to verify the relation among FGF12-AS2, miR-188-3p, and NCAPG2. Results Downregulation of FGF12-AS2 significantly inhibited the proliferation of NSCLC cells via inducing apoptosis. In addition, FGF12-AS2 silencing notably suppressed the migration and invasion of A549 cells. Meanwhile, FGF12-AS2 modulated the progression of NSCLC via regulation of miR-188-3p/NCAPG2 axis. Finally, knockdown of FGF12-AS2 inhibited the tumorigenesis of NSCLC via suppressing the EMT process of NSCLC. Conclusion Downregulation of lncRNA FGF12-AS2 suppressed the tumorigenesis of NSCLC via sponging miR-188-3p. Thus, FGF12-AS2 may serve as a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Chen Xing
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Dongxia Zhou
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Rong Yang
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Maohuai Cai
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| |
Collapse
|
15
|
Zhang X, Su Y, Lin H, Yao X. The impacts of ubiquilin 1 (UBQLN1) knockdown on cells viability, proliferation, and apoptosis are mediated by p53 in A549 lung cancer cells. J Thorac Dis 2020; 12:5887-5895. [PMID: 33209421 PMCID: PMC7656338 DOI: 10.21037/jtd-20-1362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Little is known about the relationship between ubiquilin 1 (UBQLN1) and p53, both of them have been implicated in the development and progression of non-small cell lung cancer (NSCLC). In this study, we aimed to explore the role of loss of UBQLN1 in cell viability and proliferation, and cell apoptosis in human lung adenocarcinoma A549 cells. Methods Cell viability, proliferation, and apoptosis were determined by MTT, BrdU, and TUNEL assays, respectively. Adenoviruses carrying cDNA or siRNA were used to overexpress or silence target protein. Dihydroethidium (DHE) staining was performed to measure the real-time formation of intracellular reactive oxygen species (ROS). The chymotrypsin-like activity of 20S proteasome core was determined by using synthetic fluorogenic peptide substrate. Results UBQLN1 silencing led to a reduction of p53 protein levels and overexpression of p53 reversed the effects of UBQLN1 knockdown (KD) on cell viability, proliferation, and apoptosis. Furthermore, deficiency of UBQLN1 activated autophagy activity but did not affect proteasome activity. Inhibition of autophagy restored p53 protein levels in UBQLN1-KD A549 cells. In addition, UBQLN1 KD markedly inhibited phosphorylation of mammalian target of rapamycin (mTOR) and its downstream ribosomal S6 kinase (S6K). Conclusions Our experiments suggested that the regulation of UBQLN1 on cell viability, proliferation, and apoptosis was mediated by mTOR/autophagy/p53 signaling pathway.
Collapse
Affiliation(s)
- Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunshu Su
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|