1
|
Dziubek K, Faktor J, Lokhande KB, Shrivastava A, Papak I, Chrusciel E, Pilch M, Hupp T, Marek-Trzonkowska N, Singh A, Parys M, Kote S. PD-1 interactome in osteosarcoma: identification of a novel PD-1/AXL interaction conserved between humans and dogs. Cell Commun Signal 2024; 22:605. [PMID: 39696578 DOI: 10.1186/s12964-024-01935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
The PD-1/PDL-1 immune checkpoint inhibitors revolutionized cancer treatment, yet osteosarcoma remains a therapeutic challenge. In some types of cancer, PD-1 receptor is not solely expressed by immune cells but also by cancer cells, acting either as a tumor suppressor or promoter. While well-characterized in immune cells, little is known about the role and interactome of the PD-1 pathway in cancer. We investigated PD-1 expression in human osteosarcoma cells and studied PD-1 protein-protein interactions in cancer. Using U2OS cells as a model, we confirmed PD-1 expression by western blotting and characterized its intracellular as well as surface localization through flow cytometry and immunofluorescence. High-throughput analysis of PD-1 interacting proteins was performed using a pull-down assay and quantitative mass spectrometry proteomic analysis. For validation and molecular modeling, we selected tyrosine kinase receptor AXL-a recently reported cancer therapeutic target. We confirmed the PD-1/AXL interaction by immunoblotting and proximity ligation assay (PLA). Molecular dynamics (MD) simulations uncovered binding affinities and domain-specific interactions between extracellular (ECD) and intracellular (ICD) domains of PD-1 and AXL. ECD complexes exhibited strong binding affinity, further increasing for the ICD complexes, emphasizing the role of ICDs in the interaction. PD-1 phosphorylation mutant variants (Y223F and Y248F) did not disrupt the interaction but displayed varying strengths and binding affinities. Using bemcentinib, a selective AXL inhibitor, we observed reduced binding affinity in the PD-1/AXL interaction, although it was not abrogated. To facilitate the future translation of this finding into clinical application, we sought to validate the interaction in canine osteosarcoma. Osteosarcoma spontaneously occurs at significantly higher frequency in dogs and shares close genetic and pathological similarities with humans. We confirmed endogenous expression of PD-1 and AXL in canine osteosarcoma cells, with PD-1/AXL interaction preserved in the dog cells. Also, the interacting residues remain conserved in both species, indicating an important biological function of the interaction. Our study shed light on the molecular basis of the PD-1/AXL interaction with the implication for its conservation across species, providing a foundation for future research aimed at improving immunotherapy strategies and developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Kiran Bharat Lokhande
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad, India
| | - Ashish Shrivastava
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Elzbieta Chrusciel
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Magdalena Pilch
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Theodore Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdansk, Gdansk, Poland
| | - Ashutosh Singh
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
2
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in the management of orthopedic surgical challenges. Int J Surg 2024; 110:6330-6344. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells (MSCs) is easier and can be further grown in vitro . In this review, we have discussed orthopedic-related issues including bone defects and fractures, nonunions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of MSCs. It aims to objectify the idea of stem cells, with a major focus on the application of MSCs from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of MSCs may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
3
|
O’Donoghue JC, Freeman FE. Make it STING: nanotechnological approaches for activating cGAS/STING as an immunomodulatory node in osteosarcoma. Front Immunol 2024; 15:1403538. [PMID: 39403376 PMCID: PMC11471590 DOI: 10.3389/fimmu.2024.1403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive bone cancer primarily affecting children, adolescents, and young adults. The current gold standard for treatment of osteosarcoma patients consists of two to three rounds of chemotherapy, followed by extensive surgical intervention from total limb reconstruction to amputation, followed by additional rounds of chemotherapy. Although chemotherapy has advanced the treatment of osteosarcoma significantly, the overall 5-year survival rate in resistant forms of osteosarcoma is still below 20%. The interaction between cancer and the immune system has long been recognized as a critical aspect of tumour growth. Tumour cells within the tumour microenvironment (TME) suppress antitumour immunity, and immunosuppressive cells and cytokines provide the extrinsic factors of tumour drug resistance. Emerging research demonstrates an immunostimulatory role for the cGAS/STING pathway in osteosarcoma, typically considered an immune-cold or immunosuppressed cancer type. cGAS/STING signalling appears to drive an innate immune response against tumours and potentiates the efficacy of other common therapies including chemo and radiotherapy. Nanotechnological delivery systems for improved therapy delivery for osteosarcoma have also been under investigation in recent years. This review provides an overview of cGAS/STING signalling, its divergent roles in the context of cancer, and collates current research which activates cGAS/STING as an adjuvant immunomodulatory target for the treatment of osteosarcoma. It will also discuss current nanotechnological delivery approaches that have been developed to stimulate cGAS/STING. Finally, it will highlight the future directions that we believe will be central to the development of this transformative field.
Collapse
Affiliation(s)
- Jordan C. O’Donoghue
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona E. Freeman
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- I-Form Centre, School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
4
|
Song D, Yin X, Che C. Distinct Gene Expression and Immune Features Between Different Neutrophil Extracellular Trap-Related Osteosarcoma Subtypes. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05021-2. [PMID: 39096473 DOI: 10.1007/s12010-024-05021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
We sought to determine neutrophil extracellular trap (NET)-related genes' potential value in improving the efficacy of diagnosis and identifying novel therapeutic targets for osteosarcoma. Data were obtained from TARGET, GEO, and CCLE database. Differentially expressed genes were identified between the subtypes based on NET-related genes. PPI network was constructed using STRING, following by ClueGO enrichment analysis. Infiltration of immune cells was calculated by ssGSEA. Risk Score model was built by LASSO Cox regression analysis. Western blot and qRT-PCR were applied to validate the expression of genes used in the model. We identified 19 NET-related genes with prognostic potential in osteosarcoma using univariate Cox regression analysis. Patients from TARGET were clustered into two subtypes with distinct prognosis and immune features. 381 DEGs were identified between the two NET subtypes. Risk Score based on BST1, SELPLG, FPR1 and TNFRSF10C was reliable to predict the prognosis of osteosarcoma patients. The four genes expressed significantly lower in osteosarcoma than normal cells. Low Risk Score individuals only existed in C1 subtype with better prognosis. Osteosarcoma were clustered into two subtypes based on NET-related genes. Risk Score model constructed by four NET-related gene was able to independently predict the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Delei Song
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zibo, 255036, China
| | - Xuqing Yin
- Department of East Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, 255036, China
| | - Chunqing Che
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zibo, 255036, China.
| |
Collapse
|
5
|
Long S, Zhong Y, Liu J. Aurora-B: a novel biomarker in the invasion and metastasis of osteosarcoma. Biomark Med 2024; 18:639-647. [PMID: 39069957 PMCID: PMC11370910 DOI: 10.1080/17520363.2024.2366160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024] Open
Abstract
Osteosarcoma (OS), a primary human malignant tumor that affects the bones, mostly arises in children and adolescents. Even though surgical resection followed by radiotherapy and chemotherapy has improved the survival rate up to 60%, the long-term positive effect for most patients with OS is not satisfactory. Hence, elucidating the specific mechanisms involved in the pathogenesis of OS is particularly important. Aurora-B, a serine/threonine kinase, plays a crucial role in centrosome regulation, spindle formation and chromosomal separation during mitosis. It has been found that Aurora-B overexpression is related to the occurrence and development of several malignant tumors, including OS. This article summarizes the role of Aurora-B in the invasion and metastasis of OS.
Collapse
Affiliation(s)
- Siping Long
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- The Fourth Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330100, China
| | - Yanxin Zhong
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Provincial Key Laboratory of Spine & Spinal Cord Disease, Nanchang, Jiangxi, 330006, China
| | - Jiaming Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Provincial Key Laboratory of Spine & Spinal Cord Disease, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
6
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
7
|
Buckley DN, Tew BY, Gooden C, Salhia B. A comprehensive analysis of minimally differentially methylated regions common to pediatric and adult solid tumors. NPJ Precis Oncol 2024; 8:125. [PMID: 38824198 PMCID: PMC11144230 DOI: 10.1038/s41698-024-00590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/14/2024] [Indexed: 06/03/2024] Open
Abstract
Cancer is the second most common cause of death in children aged 1-14 years in the United States, with 11,000 new cases and 1200 deaths annually. Pediatric cancers typically have lower mutational burden compared to adult-onset cancers, however, the epigenomes in pediatric cancer are highly altered, with widespread DNA methylation changes. The rarity of pediatric cancers poses a significant challenge to developing cancer-type specific biomarkers for diagnosis, prognosis, or treatment monitoring. In the current study, we explored the potential of a DNA methylation profile common across various pediatric cancers. To do this, we conducted whole genome bisulfite sequencing (WGBS) on 31 recurrent pediatric tumor tissues, 13 normal tissues, and 20 plasma cell-free (cf)DNA samples, representing 11 different pediatric cancer types. We defined minimal focal regions that were differentially methylated across samples in the multiple cancer types which we termed minimally differentially methylated regions (mDMRs). These methylation changes were also observed in 506 pediatric and 5691 adult cancer samples accessed from publicly available databases, and in 44 pediatric cancer samples we analyzed using a targeted hybridization probe capture assay. Finally, we found that these methylation changes were detectable in cfDNA and could serve as potential cfDNA methylation biomarkers for early detection or minimal residual disease.
Collapse
Affiliation(s)
- David N Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Zhou C, Balmer L, Song M, Mahara G, Wu K, Wang W, Wang H. Identification of circRNA biomarkers in osteosarcoma: An updated systematic review and meta-analysis. Noncoding RNA Res 2024; 9:341-349. [PMID: 38505307 PMCID: PMC10945140 DOI: 10.1016/j.ncrna.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/21/2024] Open
Abstract
Circular RNAs (circRNAs) play a crucial role in cancer development and progression. This study aimed to identify potential circRNA biomarkers for osteosarcoma. Articles published from January 2010 to September 2023 were searched across eight databases to compare circRNA expression profiles in osteosarcoma and control samples (human, animal and cell lines). Meta-analysis was conducted under a random effects model. Subgroup analysis of circRNAs in different samples and tissues was performed. Diagnostic value was evaluated using receiver operator characteristic curves. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis explored functions of circRNA host genes. A circRNA-miRNA-mRNA axis depicted the regulatory mechanism in osteosarcoma. Among 1356 circRNAs with differential expression were identified across 226 original studies, only 74 were reported in at least three published sub-studies. Meta-analysis identified 58 dysregulated circRNAs (52 upregulated and 6 downregulated). Eleven circRNAs consistently showed dysregulation in tissues and cell lines, with hsa_circ_0005721 showing potential as a circulating biomarker in osteosarcoma. Sensitivity analysis demonstrated 97 % consistency. The overall area under the curve was 0.87 (95 % CI, 0.83-0.89). GO and KEGG enrichment analyses revealed host gene involvement in cancer. The circRNA-miRNA-mRNA axis revealed the regulatory axis and interactions within osteosarcoma specifically. This study demonstrates circRNAs as potential diagnostic biomarkers for osteosarcoma. Consistently reported dysregulated circRNAs are potential biomarkers in osteosarcoma pathogenesis, with hsa_circ_0005721 as a potential circulating biomarker for diagnosis and treatment.
Collapse
Affiliation(s)
- Chunbin Zhou
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Lois Balmer
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
| | - Manshu Song
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
| | - Gehendra Mahara
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Kezhou Wu
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wei Wang
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Hu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Minimally Invasive Spine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
9
|
Luo X, Zhang J, Guo C, Jiang N, Zhang F, Jiao Q, Xu K, Yang J, Qu G, Lv XB, Zhang Z. Solute carrier family 35 member A2 regulates mitophagy through the PI3K/AKT/mTOR axis, promoting the proliferation, migration, and invasion of osteosarcoma cells. Gene 2024; 898:148110. [PMID: 38151177 DOI: 10.1016/j.gene.2023.148110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The treatment of osteosarcoma patients exhibits individual variability, underscoring the critical importance of targeted therapy. Although (Solute carrier family 35 member A2) SLC35A2's role in the progression of various cancers has been extensively investigated, its specific implications in osteosarcoma remain unexplored. Leveraging data from the (The Cancer Genome Atlas) TCGA and (Genotype-Tissue Expression) GTEx databases, we have discerned that SLC35A2 is notably upregulated in osteosarcoma and correlates with the prognosis of osteosarcoma patients. Consequently, it becomes imperative to delve into the role of SLC35A2 in the context of osteosarcoma. Our research substantiates that SLC35A2 exerts a notable influence on mitochondrial autophagy in osteosarcoma, thereby exerting cascading effects on the proliferation, migration, invasion, and apoptosis of osteosarcoma cells. Mechanistically, SLC35A2 orchestrates mitochondrial autophagy via the PI3K/AKT/mTOR signaling pathway. Moreover, we have conducted rigorous animal experiments to further corroborate the repercussions of SLC35A2 on osteosarcoma growth. In summation, our study elucidates that SLC35A2's modulation of mitochondrial autophagy through the PI3K/AKT/mTOR signaling pathway constitutes a pivotal factor in the malignant progression of osteosarcoma, unveiling promising therapeutic targets for patients grappling with this condition.
Collapse
Affiliation(s)
- Xiaohui Luo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiongfeng Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chong Guo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ning Jiang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Quahui Jiao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Gaoyang Qu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Shanmugavadivu A, Lekhavadhani S, Miranda PJ, Selvamurugan N. Current approaches in tissue engineering-based nanotherapeutics for osteosarcoma treatment. Biomed Mater 2024; 19:022003. [PMID: 38324905 DOI: 10.1088/1748-605x/ad270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | | | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
11
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
12
|
Chang TY, Lan KC, Wu CH, Sheu ML, Yang RS, Liu SH. Nε-(1-Carboxymethyl)-L-lysine/RAGE Signaling Drives Metastasis and Cancer Stemness through ERK/NFκB axis in Osteosarcoma. Int J Biol Sci 2024; 20:880-896. [PMID: 38250151 PMCID: PMC10797696 DOI: 10.7150/ijbs.90817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Osteosarcoma is an extremely aggressive bone cancer with poor prognosis. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), can link to cancer progression, tumorigenesis and metastasis, although the underlying mechanism remains unclear. The role of CML in osteosarcoma progression is still unclear. We hypothesized that CML could promote migration, invasion, and stemness in osteosarcoma cells. CML and its receptor (RAGE; receptor for AGE) were higher expressed at advanced stages in human osteosarcoma tissues. In mouse models, which streptozotocin was administered to induce CML accumulation in the body, the subcutaneous tumor growth was not affected, but the tumor metastasis using tail vein injection model was enhanced. In cell models (MG63 and U2OS cells), CML enhanced tumor sphere formation and acquisition of cancer stem cell characteristics, induced migration and invasion abilities, as well as triggered the epithelial-mesenchymal transition process, which were associated with RAGE expression and activation of downstream signaling pathways, especially the ERK/NFκB pathway. RAGE inhibition elicited CML-induced cell migration, invasion, and stemness through RAGE-mediated ERK/NFκB pathway. These results revealed a crucial role for CML in driving stemness and metastasis in osteosarcoma. These findings uncover a potential CML/RAGE connection and mechanism to osteosarcoma progression and set the stage for further investigation.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hung Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Zhang W, Xu S, Liu P, Li X, Yu X, Kang B. Predicting the Efficacy of Novel Synthetic Compounds in the Treatment of Osteosarcoma via Anti-Receptor Activator of Nuclear Factor-κB Ligand (RANKL)/Receptor Activator of Nuclear Factor-κB (RANK) Targets. Med Chem 2024; 20:733-740. [PMID: 38468522 PMCID: PMC11348461 DOI: 10.2174/0115734064287922240222115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Osteosarcoma (OS) currently demonstrates a rising incidence, ranking as the predominant primary malignant tumor in the adolescent demographic. Notwithstanding this trend, the pharmaceutical landscape lacks therapeutic agents that deliver satisfactory efficacy against OS. OBJECTIVE This study aimed to authenticate the outcomes of prior research employing the HM and GEP algorithms, endeavoring to expedite the formulation of efficacious therapeutics for osteosarcoma. METHODS A robust quantitative constitutive relationship model was engineered to prognosticate the IC50 values of innovative synthetic compounds, harnessing the power of gene expression programming. A total of 39 natural products underwent optimization via heuristic methodologies within the CODESSA software, resulting in the establishment of a linear model. Subsequent to this phase, a mere quintet of descriptors was curated for the generation of non-linear models through gene expression programming. RESULTS The squared correlation coefficients and s2 values derived from the heuristics stood at 0.5516 and 0.0195, respectively. Gene expression programming yielded squared correlation coefficients and mean square errors for the training set at 0.78 and 0.0085, respectively. For the test set, these values were determined to be 0.71 and 0.0121, respectively. The s2 of the heuristics for the training set was discerned to be 0.0085. CONCLUSION The analytic scrutiny of both algorithms underscores their commendable reliability in forecasting the efficacy of nascent compounds. A juxtaposition based on correlation coefficients elucidates that the GEP algorithm exhibits superior predictive prowess relative to the HM algorithm for novel synthetic compounds.
Collapse
Affiliation(s)
- Wenhua Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Gansu, China
| | - Siping Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Gansu, China
| | - Peng Liu
- Department of Plastic Surgery, The Second Clinical College of Lanzhou University, Gansu, China
| | - Xusheng Li
- The 940 Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Gansu, China
| | - Xinyuan Yu
- The 940 Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Gansu, China
| | - Bing Kang
- The 940 Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Gansu, China
| |
Collapse
|
14
|
Zhang Y, Ru N, Xue Z, Gan W, Pan R, Wu Z, Chen Z, Wang H, Zheng X. The role of mitochondria-related lncRNAs in characterizing the immune landscape and supervising the prognosis of osteosarcoma. J Bone Oncol 2023; 43:100506. [PMID: 37868616 PMCID: PMC10585401 DOI: 10.1016/j.jbo.2023.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Mitochondrial damage is related to the functional properties of immune cells as well as to tumorigenesis and progression. Nevertheless, there is an absence concerning the systematic evaluation of mitochondria-associated lncRNAs (MALs) in the immune profile and tumor microenvironment of osteosarcoma patients. Based on transcriptomic and clinicopathological data from the TARGET database, MAL-related patterns were ascertained by consistent clustering, and gene set variation analysis of the different patterns was completed. Next, a MAL-derived scoring system was created using Cox and LASSO regression analyses and validated by Kaplan-Meier and ROC curves. The GSEA, ESTIMATE, and CIBERSORT algorithms were utilized to characterize the immune status and underlying biological functions in the different MAL score groups. MAL-derived risk scores were well stabilized and outperformed traditional clinicopathological features to reliably predict 5-year survival in osteosarcoma cohorts. Moreover, patients with increased MAL scores were observed to suffer from poorer prognosis, higher tumor purity, and an immunosuppressive microenvironment. Based on estimated half-maximal inhibitory concentrations, the low-MAL score group benefited more from gemcitabine and docetaxel, and less from thapsigargin and sunitinib compared to the high-MAL score group. Pan-cancer analysis demonstrated that six hub MALs were strongly correlated with clinical outcomes, immune subtypes, and tumor stemness indices in various common cancers. Finally, we verified the expression patterns of hub MALs in osteosarcoma with qRT-PCR. In summary, we identified the crosstalk between prognostic MALs and tumor-infiltrating immune cells in osteosarcoma, providing a potential strategy to ameliorate clinical stratification management.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Nan Ru
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and NewDrugs Research, Guangzhou, China
| | - Zhaowen Xue
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Wenyi Gan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ruilin Pan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zelin Wu
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zihang Chen
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
- Department of psychology, Li Ka Shing Faculty of Medicine, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Jiang Z, Han K, Min D, Kong W, Wang S, Gao M. Identification of the methotrexate resistance-related diagnostic markers in osteosarcoma via adaptive total variation netNMF and multi-omics datasets. Front Genet 2023; 14:1288073. [PMID: 37937197 PMCID: PMC10625916 DOI: 10.3389/fgene.2023.1288073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Osteosarcoma is one of the most common malignant bone tumors with high chemoresistance and poor prognosis, exhibiting abnormal gene regulation and epigenetic events. Methotrexate (MTX) is often used as a primary agent in neoadjuvant chemotherapy for osteosarcoma; However, the high dosage of methotrexate and strong drug resistance limit its therapeutic efficacy and application prospects. Studies have shown that abnormal expression and dysfunction of some coding or non-coding RNAs (e.g., DNA methylation and microRNA) affect key features of osteosarcoma progression, such as proliferation, migration, invasion, and drug resistance. Comprehensive multi-omics analysis is critical to understand its chemoresistant and pathogenic mechanisms. Currently, the network analysis-based non-negative matrix factorization (netNMF) method is widely used for multi-omics data fusion analysis. However, the effects of data noise and inflexible settings of regularization parameters affect its performance, while integrating and processing different types of genetic data is also a challenge. In this study, we introduced a novel adaptive total variation netNMF (ATV-netNMF) method to identify feature modules and characteristic genes by integrating methylation and gene expression data, which can adaptively choose an anisotropic smoothing scheme to denoise or preserve feature details based on the gradient information of the data by introducing an adaptive total variation constraint in netNMF. By comparing with other similar methods, the results showed that the proposed method could extract multi-omics fusion features more effectively. Furthermore, by combining the mRNA and miRNA data of methotrexate (MTX) resistance with the extracted feature genes, four genes, Carboxypeptidase E (CPE), LIM, SH3 protein 1 (LASP1), Pyruvate Dehydrogenase Kinase 1 (PDK1) and Serine beta-lactamase-like protein (LACTB) were finally identified. The results showed that the gene signature could reliably predict the prognostic status and immune status of osteosarcoma patients.
Collapse
Affiliation(s)
- Zhihan Jiang
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Kun Han
- Department of Medical Oncology, The Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daliu Min
- Department of Medical Oncology, The Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Min Gao
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| |
Collapse
|
16
|
Amer MF, Mohamed A, Ismail A, Bayoumi LA, Shibel PEE, Elnaggar GN. Possible Role of IL-6R/STAT3/MiRNA-34a Feedback Loop in Osteosarcoma. Asian Pac J Cancer Prev 2023; 24:3269-3274. [PMID: 37774081 PMCID: PMC10762735 DOI: 10.31557/apjcp.2023.24.9.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Osteosarcoma is considered the most common primary malignant tumor that develops from the primary osteoblasts. MiRNAs are small non-coding RNAs that play a key role in tumorigenesis. The aim of this study was to detect the possible relationship between expression levels of miRNA-34a and levels of Signal transducer and activator of transcription 3 (STAT3) and interleukin-6 receptor (IL-6R) in osteosarcoma and the possible role of this relationship in development of metastases in these patients. METHODS A total of thirty-six (36) bone samples were included in the study. They were divided into 3 groups: Group (I): Twelve normal bone samples as control group. Group (II): Twelve patients with non-metastatic osteosarcoma. Group (III): Twelve patients with metastatic osteosarcoma. MiRNA-34a expression levels were estimated using qRT-PCR. STAT3 and IL-6R levels were measured by ELISA. RESULTS Expression level of miRNA-34a was downregulated in osteosarcoma groups compared to control group. STAT3 and IL-6R levels were upregulated in osteosarcoma groups compared to control group. This difference in expression levels was found to be more significant in the metastatic group than the non-metastatic one (P<0.001 each). There was a significant positive correlation between STAT3 and IL-6R (r=0.868, P<0.001), and a significant inverse correlation between IL6 and miRNA-34a (r=-0.993, P<0.001). CONCLUSION miRNA-34a, STAT3 and IL-6R feedback loop could be a potential target for treatment of osteosarcoma and can be used as prognostic indicator for this disease.
Collapse
Affiliation(s)
- Marwa Fathy Amer
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Abbas Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Abeer Ismail
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Lamiaa Ali Bayoumi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | - Ghada Nabil Elnaggar
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
17
|
Hu Y, Zhang H, Guo Z, Zhou J, Zhang W, Gong M, Wu J. CKM and TERT dual promoters drive CRISPR-dCas9 to specifically inhibit the malignant behavior of osteosarcoma cells. Cell Mol Biol Lett 2023; 28:52. [PMID: 37415116 DOI: 10.1186/s11658-023-00464-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Improvements in treatment and chemotherapy have increased the survival rate of osteosarcoma, but overall efficacy remains low, highlighting the need for new gene therapy methods. Clustered regularly interspaced short palindromic repeats-deactivated Cas9 (CRISPR-dCas9) technology offers a promising strategy, but targeting osteosarcoma cells precisely is a challenge. We designed a system to achieve specific expression of CRISPR-dCas9-KRAB in osteosarcoma cells by using the creatine kinase muscle (CKM) promoter to drive dCas9-KRAB and the telomerase reverse transcriptase (TERT) promoter to drive single guide (sg)RNA expression. We inhibited the MDM2 proto-oncogene using this system in vitro, which efficiently inhibited the malignant behavior of osteosarcoma cells and induced apoptosis without affecting normal cells. In vivo experiments demonstrated that this system effectively inhibited the growth of subcutaneously transplanted tumors in nude mice. These findings provide a new method for precise identification and intervention of osteosarcoma with significant implications for the development of gene therapy methods for other cancers. Future research should focus on optimizing this system for clinical translation.
Collapse
Affiliation(s)
- Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Zengfeng Guo
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Wang Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Ming Gong
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Jiawen Wu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China.
| |
Collapse
|
18
|
Parchami M, Haghiralsadat F, Sadeghian-Nodoushan F, Hemati M, Shahmohammadi S, Ghasemi N, Sargazi G. A new approach to the development and assessment of doxorubicin-loaded nanoliposomes for the treatment of osteosarcoma in 2D and 3D cell culture systems. Heliyon 2023; 9:e15495. [PMID: 37153425 PMCID: PMC10160703 DOI: 10.1016/j.heliyon.2023.e15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Doxorubicin (DOX) is an effective anticancer drug used for the treatment of osteosarcoma. Liposomal nanocarriers for doxorubicin administration are now regarded as one of the most promising approaches to overcome multiple drug resistance and adverse side effects. The use of hydrogel as a 3D scaffold to mimic the cellular environment and provide comparable biological conditions for deeper investigations of cellular processes has attracted considerable attention. This study aimed to evaluate the impact of liposomal doxorubicin on the osteosarcoma cell line in the presence of alginate hydrogel as a three-dimensional scaffold. Different liposomal formulations based on cholesterol, phospholipids, and surfactants containing doxorubicin were developed using the thin-layer hydration approach to improve therapeutic efficacy. The final selected formulation was superficially modified using DSPE-mPEG2000. A three-dimensional hydrogel culture model with appropriate structure and porosity was synthesized using sodium alginate and calcium chloride as crosslinks for hydrogel. Then, the physical properties of liposomal formulations, such as mechanical and porosity, were characterized. The toxicity of the synthesized hydrogel was also assessed. Afterward, the cytotoxicity of nanoliposomes was analyzed on the Saos-2 and HFF cell lines in the presence of a three-dimensional alginate scaffold using the MTT assay. The results indicated that the encapsulation efficiency, the amount of doxorubicin released within 8 h, the mean size of vesicles, and the surface charge were 82.2%, 33.0%, 86.8 nm, and -4.2 mv, respectively. As a result, the hydrogel scaffolds showed sufficient mechanical resistance and suitable porosity. The MTT assay demonstrated that the synthesized scaffold had no cytotoxicity against cells, while nanoliposomal DOX exhibited marked toxicity against the Saos-2 cell line in the 3D culture medium of alginate hydrogel compared to the free drug in the 2D culture medium. Our research showed that the 3D culture model physically resembles the cellular matrix, and nanoliposomal DOX with proper size could easily penetrate into cells and cause higher cytotoxicity compared to the 2D cell culture.
Collapse
Affiliation(s)
- Mastaneh Parchami
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Haghiralsadat
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Corresponding author. Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Tel.: +989132507158.
| | - Fatemeh Sadeghian-Nodoushan
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdie Hemati
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Corresponding author. Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.Tel.: +09135140586.
| | - Sajjad Shahmohammadi
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Bouali Ave, Safaeyeh, Yazd, Iran
| | - Ghasem Sargazi
- Non-communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
19
|
Pires SF, de Barros JS, da Costa SS, de Oliveira Scliar M, Van Helvoort Lengert A, Boldrini É, da Silva SRM, Tasic L, Vidal DO, Krepischi ACV, Maschietto M. DNA methylation patterns suggest the involvement of DNMT3B and TET1 in osteosarcoma development. Mol Genet Genomics 2023; 298:721-733. [PMID: 37020053 DOI: 10.1007/s00438-023-02010-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
DNA methylation may be involved in the development of osteosarcomas. Osteosarcomas commonly arise during the bone growth and remodeling in puberty, making it plausible to infer the involvement of epigenetic alterations in their development. As a highly studied epigenetic mechanism, we investigated DNA methylation and related genetic variants in 28 primary osteosarcomas aiming to identify deregulated driver alterations. Methylation and genomic data were obtained using the Illumina HM450K beadchips and the TruSight One sequencing panel, respectively. Aberrant DNA methylation was spread throughout the osteosarcomas genomes. We identified 3146 differentially methylated CpGs comparing osteosarcomas and bone tissue samples, with high methylation heterogeneity, global hypomethylation and focal hypermethylation at CpG islands. Differentially methylated regions (DMR) were detected in 585 loci (319 hypomethylated and 266 hypermethylated), mapped to the promoter regions of 350 genes. These DMR genes were enriched for biological processes related to skeletal system morphogenesis, proliferation, inflammatory response, and signal transduction. Both methylation and expression data were validated in independent groups of cases. Six tumor suppressor genes harbored deletions or promoter hypermethylation (DLEC1, GJB2, HIC1, MIR149, PAX6, and WNT5A), and four oncogenes presented gains or hypomethylation (ASPSCR1, NOTCH4, PRDM16, and RUNX3). Our analysis also revealed hypomethylation at 6p22, a region that contains several histone genes. Copy-number changes in DNMT3B (gain) and TET1 (loss), as well as overexpression of DNMT3B in osteosarcomas provide a possible explanation for the observed phenotype of CpG island hypermethylation. While the detected open-sea hypomethylation likely contributes to the well-known osteosarcoma genomic instability, enriched CpG island hypermethylation suggests an underlying mechanism possibly driven by overexpression of DNMT3B likely resulting in silencing of tumor suppressors and DNA repair genes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marília de Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ljubica Tasic
- Laboratory of Biological Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
- Research Center, Boldrini Children's Hospital, Campinas, SP, Brazil.
| |
Collapse
|
20
|
Dey H, Vasudevan K, Doss C. GP, Kumar SU, El Allali A, Alsamman AM, Zayed H. Integrated gene network analysis sheds light on understanding the progression of Osteosarcoma. Front Med (Lausanne) 2023; 10:1154417. [PMID: 37081847 PMCID: PMC10110863 DOI: 10.3389/fmed.2023.1154417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Osteosarcoma is a rare disorder among cancer, but the most frequently occurring among sarcomas in children and adolescents. It has been reported to possess the relapsing capability as well as accompanying collateral adverse effects which hinder the development process of an effective treatment plan. Using networks of omics data to identify cancer biomarkers could revolutionize the field in understanding the cancer. Cancer biomarkers and the molecular mechanisms behind it can both be understood by studying the biological networks underpinning the etiology of the disease. Methods In our study, we aimed to highlight the hub genes involved in gene-gene interaction network to understand their interaction and how they affect the various biological processes and signaling pathways involved in Osteosarcoma. Gene interaction network provides a comprehensive overview of functional gene analysis by providing insight into how genes cooperatively interact to elicit a response. Because gene interaction networks serve as a nexus to many biological problems, their employment of it to identify the hub genes that can serve as potential biomarkers remain widely unexplored. A dynamic framework provides a clear understanding of biological complexity and a pathway from the gene level to interaction networks. Results Our study revealed various hub genes viz. TP53, CCND1, CDK4, STAT3, and VEGFA by analyzing various topological parameters of the network, such as highest number of interactions, average shortest path length, high cluster density, etc. Their involvement in key signaling pathways, such as the FOXM1 transcription factor network, FAK-mediated signaling events, and the ATM pathway, makes them significant candidates for studying the disease. The study also highlighted significant enrichment in GO terms (Biological Processes, Molecular Function, and Cellular Processes), such as cell cycle signal transduction, cell communication, kinase binding, transcription factor activity, nucleoplasm, PML body, nuclear body, etc. Conclusion To develop better therapeutics, a specific approach toward the disease targeting the hub genes involved in various signaling pathways must have opted to unravel the complexity of the disease. Our study has highlighted the candidate hub genes viz. TP53, CCND1 CDK4, STAT3, VEGFA. Their involvement in the major signaling pathways of Osteosarcoma makes them potential candidates to be targeted for drug development. The highly enriched signaling pathways include FOXM1 transcription pathway, ATM signal-ling pathway, FAK mediated signaling events, Arf6 signaling events, mTOR signaling pathway, and Integrin family cell surface interactions. Targeting the hub genes and their associated functional partners which we have reported in our studies may be efficacious in developing novel therapeutic targets.
Collapse
Affiliation(s)
- Hrituraj Dey
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - S. Udhaya Kumar
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Alsamman M. Alsamman
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Wang L, Pan S. The regulatory effects of p53 on the typical and atypical ferroptosis in the pathogenesis of osteosarcoma: A systematic review. Front Genet 2023; 14:1154299. [PMID: 37065475 PMCID: PMC10090352 DOI: 10.3389/fgene.2023.1154299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Study background: As a rare condition, osteosarcoma affects approximately 3% of all cancer patients. Its exact pathogenesis remains largely unclear. The role of p53 in up- and down-regulating atypical and typical ferroptosis in osteosarcoma remains unclear. The primary objective of the present study is investigating the role of p53 in regulating typical and atypical ferroptosis in osteosarcoma. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and the Patient, Intervention, Comparison, Outcome, and Studies (PICOS) protocol were used in the initial search. The literature search was performed in six electronic databases, including EMBASE, Cochrane library of trials, Web of Science, PubMed, Google Scholar, and Scopus Review, using keywords connected by Boolean operators. We focused on studies that adequately defined patient profiles described by PICOS. Results and discussion: We found that p53 played fundamental up- and down-regulatory roles in typical and atypical ferroptosis, resulting in either advancement or suppression of tumorigenesis, respectively. Direct and indirect activation or inactivation of p53 downregulated its regulatory roles in ferroptosis in osteosarcoma. Enhanced tumorigenesis was attributed to the expression of genes associated with osteosarcoma development. Modulation of target genes and protein interactions, especially SLC7A11, resulted in enhanced tumorigenesis. Conclusion: Typical and atypical ferroptosis in osteosarcoma were regulatory functions of p53. The activation of MDM2 inactivated p53, leading to the downregulation of atypical ferroptosis, whereas activation of p53 upregulated typical ferroptosis. Further studies should be performed on the regulatory roles of p53 to unmask its possible clinical applications in the management of osteosarcoma.
Collapse
Affiliation(s)
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Jiang X, Tang F, Zhang J, He M, Xie T, Tang H, Liu J, Luo K, Lu S, Liu Y, Lu J, He M, Wei Q. High GNG4 predicts adverse prognosis for osteosarcoma: Bioinformatics prediction and experimental verification. Front Oncol 2023; 13:991483. [PMID: 36845726 PMCID: PMC9950737 DOI: 10.3389/fonc.2023.991483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Background Guanine nucleotide binding (G) protein subunit γ 4 (GNG4) is closely related to the malignant progression and poor prognosis of various tumours. However, its role and mechanism in osteosarcoma remain unclear. This study aimed to elucidate the biological role and prognostic value of GNG4 in osteosarcoma. Methods Osteosarcoma samples in the GSE12865, GSE14359, GSE162454 and TARGET datasets were selected as the test cohorts. The expression level of GNG4 between normal and osteosarcoma was identified in GSE12865 and GSE14359. Based on the osteosarcoma single-cell RNA sequencing (scRNA-seq) dataset GSE162454, differential expression of GNG4 among cell subsets was identified at the single-cell level. As the external validation cohort, 58 osteosarcoma specimens from the First Affiliated Hospital of Guangxi Medical University were collected. Patients with osteosarcoma were divided into high- and low-GNG4 groups. The biological function of GNG4 was annotated using Gene Ontology, gene set enrichment analysis, gene expression correlation analysis and immune infiltration analysis. Kaplan-Meier survival analysis was conducted and receiver operating characteristic (ROC) curves were calculated to determine the reliability of GNG4 in predicting prognostic significance and diagnostic value. Functional in vitro experiments were performed to explore the function of GNG4 in osteosarcoma cells. Results GNG4 was generally highly expressed in osteosarcoma. As an independent risk factor, high GNG4 was negatively correlated with both overall survival and event-free survival. Furthermore, GNG4 was a good diagnostic marker for osteosarcoma, with an area under the receiver operating characteristic curve (AUC) of more than 0.9. Functional analysis suggested that GNG4 may promote the occurrence of osteosarcoma by regulating ossification, B-cell activation, the cell cycle and the proportion of memory B cells. In in vitro experiments, silencing of GNG4 inhibited the viability, proliferation and invasion of osteosarcoma cells. Conclusion Through bioinformatics analysis and experimental verification, high expression of GNG4 in osteosarcoma was identified as an oncogene and reliable biomarker for poor prognosis. This study helps to elucidate the significant potential of GNG4 in carcinogenesis and molecular targeted therapy for osteosarcoma.
Collapse
Affiliation(s)
- Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fuxing Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Spinal Bone Disease, Yulin Orthopedics Hospital of Chinese and Western Medicine, Yulin, Guangxi, China
| | - Junlei Zhang
- Department of Sports Medicine, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Luo
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shenglin Lu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jili Lu
- Department of Orthopaedics, the People’s Hospital of Baise, Baise, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Maolin He
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| |
Collapse
|
23
|
Farzaneh M, Najafi S, Anbiyaee O, Azizidoost S, Khoshnam SE. LncRNA MALAT1-related signaling pathways in osteosarcoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:21-32. [PMID: 35790599 DOI: 10.1007/s12094-022-02876-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is a common and malignant form of bone cancer, which affects children and young adults. OS is identified by osteogenic differentiation and metastasis. However, the exact molecular mechanism of OS development and progression is still unclear. Recently, long non-coding RNAs (lncRNA) have been proven to regulate OS proliferation and drug resistance. LncRNAs are longer than 200 nucleotides that represent the extensive applications in the processing of pre-mRNA and the pathogenesis of human diseases. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA known as a transcriptional and translational regulator. The aberrant expression of MALAT1 has been shown in several human cancers. The high level of MALAT1 is involved in OS cell growth and tumorigenicity by targeting several signaling pathways and miRNAs. Hence, MALAT1 might be a suitable approach for OS diagnosis and treatment. In this review, we will summarize the role of lncRNA MALAT1 in the pathophysiology of OS.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Preparation, Optimisation, and In Vitro Evaluation of [ 18F]AlF-NOTA-Pamidronic Acid for Bone Imaging PET. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227969. [PMID: 36432069 PMCID: PMC9696850 DOI: 10.3390/molecules27227969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
[18F]sodium fluoride ([18F]NaF) is recognised to be superior to [99mTc]-methyl diphosphate ([99mTc]Tc-MDP) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in bone imaging. However, there is concern that [18F]NaF uptake is not cancer-specific, leading to a higher number of false-positive interpretations. Therefore, in this work, [18F]AlF-NOTA-pamidronic acid was prepared, optimised, and tested for its in vitro uptake. NOTA-pamidronic acid was prepared by an N-Hydroxysuccinimide (NHS) ester strategy and validated by liquid chromatography-mass spectrometry analysis (LC-MS/MS). Radiolabeling of [18F]AlF-NOTA-pamidronic acid was optimised, and it was ensured that all quality control analysis requirements for the radiopharmaceuticals were met prior to the in vitro cell uptake studies. NOTA-pamidronic acid was successfully prepared and radiolabeled with 18F. The radiolabel was prepared in a 1:1 molar ratio of aluminium chloride (AlCl3) to NOTA-pamidronic acid and heated at 100 °C for 15 min in the presence of 50% ethanol (v/v), which proved to be optimal. The preliminary in vitro results of the binding of the hydroxyapatite showed that [18F]AlF-NOTA-pamidronic acid was as sensitive as [18F]sodium fluoride ([18F]NaF). Normal human osteoblast cell lines (hFOB 1.19) and human osteosarcoma cell lines (Saos-2) were used for the in vitro cellular uptake studies. It was found that [18F]NaF was higher in both cell lines, but [18F]AlF-NOTA-pamidronic acid showed promising cellular uptake in Saos-2. The preliminary results suggest that further preclinical studies of [18F]AlF-NOTA-pamidronic acid are needed before it is transferred to clinical research.
Collapse
|
25
|
Kazantseva L, Becerra J, Santos-Ruiz L. Traditional Medicinal Plants as a Source of Inspiration for Osteosarcoma Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155008. [PMID: 35956961 PMCID: PMC9370649 DOI: 10.3390/molecules27155008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is one of the most common types of bone cancers among paediatric patients. Despite the advances made in surgery, chemo-, and radiotherapy, the mortality rate of metastatic osteosarcoma remains unchangeably high. The standard drug combination used to treat this bone cancer has remained the same for the last 20 years, and it produces many dangerous side effects. Through history, from ancient to modern times, nature has been a remarkable source of chemical diversity, used to alleviate human disease. The application of modern scientific technology to the study of natural products has identified many specific molecules with anti-cancer properties. This review describes the latest discovered anti-cancer compounds extracted from traditional medicinal plants, with a focus on osteosarcoma research, and on their cellular and molecular mechanisms of action. The presented compounds have proven to kill osteosarcoma cells by interfering with different pathways: apoptosis induction, stimulation of autophagy, generation of reactive oxygen species, etc. This wide variety of cellular targets confer natural products the potential to be used as chemotherapeutic drugs, and also the ability to act as sensitizers in drug combination treatments. The major hindrance for these molecules is low bioavailability. A problem that may be solved by chemical modification or nano-encapsulation.
Collapse
Affiliation(s)
- Liliya Kazantseva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - José Becerra
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
| | - Leonor Santos-Ruiz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| |
Collapse
|
26
|
Feleke M, Feng W, Rothzerg E, Song D, Wei Q, Kõks S, Wood D, Liu Y, Xu J. Single-cell RNA-seq identification of four differentially expressed survival-related genes by a TARGET: Osteosarcoma database analysis. Exp Biol Med (Maywood) 2022; 247:921-930. [PMID: 35285281 PMCID: PMC9189571 DOI: 10.1177/15353702221080131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 09/05/2023] Open
Abstract
Osteosarcoma (OS) differentially expressed genes (DEGs) have been predicted using the data portal of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET). In this study, we sought to identify cell types that specially express key DEGs (MUC1, COL13A1, JAG2, and KAZALD1) in each of the nine identified cell populations derived from tissues of OS tumors with single-cell RNA-sequencing data. Gene expression levels were pairwise compared between cell clusters and a p value < 0.05 was considered differentially expressed. It was revealed that MUC1 is expressed at high levels in osteoblastic OS cells followed by carcinoma-associated fibroblasts (CAFs) and plasmocytes, respectively. COL13A1 is highly expressed in osteoblastic OS cells, CAFs, and endothelial cells (ECs), respectively. The KAZALD1 gene is expressed in CAFs and osteoblastic OS cells at high levels, but at very low levels in plasmocytes, osteoclasts, NK/T, myeloid cells 1, myeloid cells 2, ECs, and B cells. JAG2 is expressed at significantly high levels in ECs and osteoblastic OS cells, and at relatively lower levels in all other cell types. Interestingly, LSAMP, as an established gene in the development of OS shows high expression in osteoblastic OS cells and CAFs but low in other cells such as osteoclasts. Our findings here highlight the heterogeneity of OS cells and cell-type-dependent DEGs which have potential as therapeutic targets in OS.
Collapse
Affiliation(s)
- Mesalie Feleke
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenyu Feng
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
27
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
28
|
Zhong W, Wu Z, Yuan Y, Luo W. Meta-analysis of the prognosis after surgical treatment of osteosarcoma complicated by pathologic fracture. Am J Transl Res 2022; 14:2580-2592. [PMID: 35559384 PMCID: PMC9091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
AIM To evaluate the prognosis of surgical treatment of osteosarcoma complicated by pathologic fracture. MATERIALS AND METHODS We searched articles in PubMed, Web of Science, and Embase for studies published up to January 1, 2022, that reported the surgical prognosis of osteosarcoma patients complicated with/without pathologic fracture. The specific outcome indicators used in the meta-analysis included the local recurrence rate (LRR), distant metastasis rate (DMR), overall survival (OS) rate and disease-free survival (DFS) rate after surgical treatment such as amputation or limb salvage in the pathologic fracture group and non-pathologic fracture group. Crude and adjusted Odds Ratio (OR) with 95% confidence intervals were used to compare data between the case group and control group. Fifteen studies and 3839 patients were included in the final meta-analysis. RESULTS The difference between the pathologic fractures group and the non-pathologic fracture group was not statistically significance in LRR analysis (OR = 1.27, 95% CI: 0.88-1.84, P > 0.05); however, a statistically significant difference was found between two groups in DMR (OR = 1.42, 95% CI: 1.03-1.95, P < 0.05). For survival rates, the following ORs were found: 3-year OS (OR = 1.71, 95% CI: 1.25-2.35, P < 0.05); 5-year OS (OR = 1.41, 95% CI: 1.06-1.87, P < 0.05); 3-year DFS (OR = 1.88, 95% CI: 1.20-2.94, P < 0.05); and 5-year DFS (OR = 1.49, 95% CI: 1.10-2.03, P < 0.05). The pooled estimate of OR is 1.48 (95% CI: 0.72-3.04, P > 0.05) for local recurrence and 1.82 (95% CI: 0.92-3.60, P > 0.05) for distant metastasis in the amputation group and the limb salvage group for osteosarcoma patients with pathologic fractures, respectively. Our analysis indicated that patients with a pathologic fracture have a higher risk of DMR after surgery, but there is no significant difference in LRR between patients with a pathologic fracture and without. Additionally, in osteosarcoma patients with a pathologic fracture, there was no difference in LDR or DMR between limb-salvage surgery and amputation. CONCLUSION Complicated with pathologic fracture is a negative prognostic indicator of osteosarcoma, and its poor survival rates (both OS and DFS) may be associated with a higher DMR. For osteosarcoma patients with pathologic fractures treated with standard treatment, LRR and DMR exhibit no significant difference between amputation and limb-salvage surgery.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University87th Xiangya Road, Changsha, Hunan, P. R. China
| | - Ziyi Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University87th Xiangya Road, Changsha, Hunan, P. R. China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University87th Xiangya Road, Changsha, Hunan, P. R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University87th Xiangya Road, Changsha, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalChangsha, Hunan, P. R. China
| |
Collapse
|
29
|
Zhou X, Yang Y, Li Y, Liang G, Kang D, Zhou B, Li Q. METTL3 Contributes to Osteosarcoma Progression by Increasing DANCR mRNA Stability via m6A Modification. Front Cell Dev Biol 2022; 9:784719. [PMID: 35096816 PMCID: PMC8790117 DOI: 10.3389/fcell.2021.784719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Osteosarcoma (OS) is the most prevalent bone cancer among children and adolescents, with relatively high mortality rates. RNA N6-methyladenosine (m6A) is the most common human mRNA modification with diverse functions in a variety of biological processes. Previous studies indicated that methyltransferase-like 3 (METTL3), the first methyltransferase to be identified, acted as an oncogene or tumor suppressor in multiple human cancers. However, its functions and underlying mechanisms in OS progression remain unclear; therefore, we explored these processes. Methods: We used real-time quantitative PCR (RT-qPCR) and Western blot assays to explore METTL3 expression in OS tumor tissues and five OS cell lines to assess its clinical significance. To further examine the functional role of METTL3 during OS progression, CCK-8 analyses, transwell assays, and xenograft model studies were conducted after silencing METTL3. Additionally, underlying mechanisms were also explored using RIP-seq and RIP-qPCR approaches. Results: METTL3 was upregulated in OS tumor tissues and cell lines and was associated with a worse prognosis. Moreover, METTL3 silencing suppressed OS cell proliferation, migration, and invasion. Also, in vivo METTL3 oncogenic functions were confirmed in the xenograft model. Comprehensive mechanistic analyses identified long non-coding RNA (lncRNA) DANCR as a potential target of METTL3, as indicated by reduced DANCR levels after METTL3 silencing. Also, lncRNA DANCR knockdown repressed OS cell proliferation, migration, and invasion. Furthermore, both METTL3 and lncRNA DANCR silencing significantly suppressed OS growth and metastasis. Finally, we hypothesized that METTL3 regulated DANCR expression via m6A modification-mediated DANCR mRNA stability. Conclusion: METTL3 contributes to OS progression by increasing DANCR mRNA stability via m6A modification, meaning that METTL3 may be a promising therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Xinying Zhou
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yang Yang
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuejun Li
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guojun Liang
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dawei Kang
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bing Zhou
- Department of Orthopedics, Longtan Hospital of Guangxi Autonomous Region, Liuzhou, China
| | - Qingchu Li
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Liu D, Wang R, Wang Y, Wang Y, Wang L. Prospero homeobox 1 promotes proliferation, migration, and invasion of osteosarcoma cells and its clinical significance. Bioengineered 2022; 13:2259-2271. [PMID: 35030967 PMCID: PMC8974179 DOI: 10.1080/21655979.2021.2024330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. Prospero homeobox 1 (PROX1) is a key transcription factor involved in some cancers, but the role of PROX1 in OS is unclear. This study aimed to explore the clinical and biology significance of PROX1 in OS. Fifty-four OS tissues and matched nontumor tissues were collected to explore the relationship between PROX1 expression and clinical characteristics and prognosis. qRT-PCR and immunohistochemistry were used to investigate the expression patterns of PROX1 in OS tissues and cells. CCK-8, wound healing, and transwell assays were used to detect the effects of PROX1 on the proliferation, migration, and invasion of OS cells. Transcriptome sequencing, bioinformatics analysis and qRT-PCR were used to explore the regulatory network of PROX1. PROX1 was significantly higher in OS tissues and cells compared to normal tissues and cell lines. In OS patients, high expression of PROX1 was associated with Enneking stage (P < 0.001) and M classification (P < 0.001). High PROX1 expression predicted a poorer overall survival (P = 0.0047). Compared with untreated cells, OS cells overexpressing PROX1 showed higher proliferation, migration, and invasion abilities, while knockdown of PROX1 suppressed these abilities. The results of Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the down regulated genes were mainly enriched in TNF signaling pathway, MAPK signaling pathway, and neuroactive ligand-receptor interaction. High PROX1 expression was significantly associated with poor overall survival in OS patients. PROX1 may be a promising prognostic marker and therapeutic target for OS patients.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ran Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuefeng Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Wang
- Faculty of Medicine and Surgery, University of Pavia, Pavia (PV), Italy
| | - Liantang Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Identification of Key Genes and Pathways in Osteosarcoma by Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7549894. [PMID: 35075370 PMCID: PMC8783756 DOI: 10.1155/2022/7549894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022]
Abstract
Purpose Osteosarcoma (OS) is the most primary bone malignant tumor in adolescents. Although the treatment of OS has made great progress, patients' prognosis remains poor due to tumor invasion and metastasis. Materials and Methods We downloaded the expression profile GSE12865 from the Gene Expression Omnibus database. We screened differential expressed genes (DEGs) by making use of the R limma software package. Based on Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, we performed the function and pathway enrichment analyses. Then, we constructed a Protein-Protein Interaction network and screened hub genes through the Search Tool for the Retrieval of Interacting Genes. Result By analyzing the gene expression profile GSE12865, we obtained 703 OS-related DEGs, which contained 166 genes upregulated and 537 genes downregulated. The DEGs were primarily abundant in ribosome, cell adhesion molecules, ubiquitin-ubiquitin ligase activity, and p53 signaling pathway. The hub genes of OS were KDR, CDH5, CD34, CDC42, RBX1, POLR2C, PPP2CA, and RPS2 through PPI network analysis. Finally, GSEA analysis showed that cell adhesion molecules, chemokine signal pathway, transendothelial migration, and focal adhesion were associated with OS. Conclusion In this study, through analyzing microarray technology and bioinformatics analysis, the hub genes and pathways about OS are identified, and the new molecular mechanism of OS is clarified.
Collapse
|
32
|
Wang C, Liang C. The insertion and dysregulation of transposable elements in osteosarcoma and their association with patient event-free survival. Sci Rep 2022; 12:377. [PMID: 35013466 PMCID: PMC8748539 DOI: 10.1038/s41598-021-04208-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of transposable elements (TEs) has been explored in a variety of cancers. However, TE activities in osteosarcoma (OS) have not been extensively studied yet. By integrative analysis of RNA-seq, whole-genome sequencing (WGS), and methylation data, we showed aberrant TE activities associated with dysregulations of TEs in OS tumors. Specifically, expression levels of LINE-1 and Alu of different evolutionary ages, as well as subfamilies of SVA and HERV-K, were significantly up-regulated in OS tumors, accompanied by enhanced DNA repair responses. We verified the characteristics of LINE-1 mediated TE insertions, including target site duplication (TSD) length (centered around 15 bp) and preferential insertions into intergenic and AT-rich regions as well as intronic regions of longer genes. By filtering polymorphic TE insertions reported in 1000 genome project (1KGP), besides 148 tumor-specific somatic TE insertions, we found most OS patient-specific TE insertions (3175 out of 3326) are germline insertions, which are associated with genes involved in neuronal processes or with transcription factors important for cancer development. In addition to 68 TE-affected cancer genes, we found recurrent germline TE insertions in 72 non-cancer genes with high frequencies among patients. We also found that +/− 500 bps flanking regions of transcription start sites (TSS) of LINE-1 (young) and Alu showed lower methylation levels in OS tumor samples than controls. Interestingly, by incorporating patient clinical data and focusing on TE activities in OS tumors, our data analysis suggested that higher TE insertions in OS tumors are associated with a longer event-free survival time.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biology, Miami University, Oxford, Ohio, 45056, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio, 45056, USA.
| |
Collapse
|
33
|
LIM Kinases in Osteosarcoma Development. Cells 2021; 10:cells10123542. [PMID: 34944050 PMCID: PMC8699892 DOI: 10.3390/cells10123542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Tumorigenesis is a long-term and multistage process that often leads to the formation of metastases. During this pathological course, two major events appear to be crucial: primary tumour growth and metastatic expansion. In this context, despite research and clinical advances during the past decades, bone cancers remain a leading cause of death worldwide among paediatric cancer patients. Osteosarcomas are the most common malignant bone tumours in children and adolescents. Notwithstanding advances in therapeutic treatments, many patients succumb to these diseases. In particular, less than 30% of patients who demonstrate metastases at diagnosis or are poor responders to chemotherapy survive 5 years after initial diagnosis. LIM kinases (LIMKs), comprising LIMK1 and LIMK2, are common downstream effectors of several signalization pathways, and function as a signalling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. In recent decades, several reports have indicated that the functions of LIMKs are mainly implicated in the regulation of actin microfilament and the control of microtubule dynamics. Previous studies have thus identified LIMKs as cancer-promoting regulators in multiple organ cancers, such as breast cancer or prostate cancer. This review updates the current understanding of LIMK involvement in osteosarcoma progression.
Collapse
|
34
|
Leite TC, Watters RJ, Weiss KR, Intini G. Avenues of research in dietary interventions to target tumor metabolism in osteosarcoma. J Transl Med 2021; 19:450. [PMID: 34715874 PMCID: PMC8555297 DOI: 10.1186/s12967-021-03122-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer, affecting mostly children and adolescents. Although much progress has been made throughout the years towards treating primary OS, the 5-year survival rate for metastatic OS has remained at only 20% for the last 30 years. Therefore, more efficient treatments are needed. Recent studies have shown that tumor metabolism displays a unique behavior, and plays important roles in tumor growth and metastasis, making it an attractive potential target for novel therapies. While normal cells typically fuel the oxidative phosphorylation (OXPHOS) pathway with the products of glycolysis, cancer cells acquire a plastic metabolism, uncoupling these two pathways. This allows them to obtain building blocks for proliferation from glycolytic intermediates and ATP from OXPHOS. One way to target the metabolism of cancer cells is through dietary interventions. However, while some diets have shown anticancer effects against certain tumor types in preclinical studies, as of yet none have been tested to treat OS. Here we review the features of tumor metabolism, in general and about OS, and propose avenues of research in dietary intervention, discussing strategies that could potentially be effective to target OS metabolism.
Collapse
Affiliation(s)
- Taiana Campos Leite
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Rebecca Jean Watters
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kurt Richard Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Intini
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Zhao H, Zhang M, Yang X, Song D. Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells. J Microbiol Biotechnol 2021; 31:1331-1342. [PMID: 34373436 PMCID: PMC9705835 DOI: 10.4014/jmb.2106.06028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.
Collapse
Affiliation(s)
- Haoliang Zhao
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Ming Zhang
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Xuejing Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Dong Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China,Corresponding author Phone: +86-0351-8368114 E-mail:
| |
Collapse
|
36
|
Lu L, Wang Y, Chen J, Li Y, Liang Q, Li F, Zhen C, Xie K. Targeting Mps1 in combination with paclitaxel inhibits osteosarcoma progression by modulating spindle assembly checkpoint and Akt/mTOR signaling. Oncol Lett 2021; 22:797. [PMID: 34584572 PMCID: PMC8461758 DOI: 10.3892/ol.2021.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/29/2021] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents and is characterized by early metastasis and frequent recurrence, which greatly affects patient prognosis and survival rates. However, the treatment of OS, its recurrence and subsequent metastasis is now at a clinical bottleneck. To explore new OS chemotherapeutic targets, investigate new therapeutic strategies and improve patient prognosis and survival rates, the roles of paclitaxel (PTX) and monopolar spindle kinase 1 (Mps1) in OS were investigated using in vivo and in vitro models. Mps1 expression was upregulated in OS samples and associated with patient survival times. Moreover, spindle assembly checkpoint (SAC) activation and upregulation of Akt/mTOR signaling were both positively associated with OS progression. PTX treatment significantly inhibited Mps1 expression, as well as migration of OS cells both in vitro. In addition, the combination of Mps1 knockdown and PTX treatment inhibited OS progression in vivo. Mps1 overexpression inhibited the expression of SAC markers and upregulated Akt and mTOR expression, while Mps1 knockdown had the opposite effect. Cells subjected to combined Mps1 knockdown and PTX treatment exhibited activation of SAC and inhibition of Akt/mTOR signaling compared with Mps1 knockdown or PTX treatment alone. Based on these observations, Mps1 inhibition combined with PTX treatment may represent a potentially effective strategy for the treatment of OS.
Collapse
Affiliation(s)
- Lu Lu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Yuhai Wang
- Academy of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 755000, P.R. China
| | - Jian Chen
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Ye Li
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Qingyang Liang
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Feng Li
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Chuanchuan Zhen
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Kegong Xie
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
37
|
Wang J, Gong M, Xiong Z, Zhao Y, Xing D. Bioinformatics integrated analysis to investigate candidate biomarkers and associated metabolites in osteosarcoma. J Orthop Surg Res 2021; 16:432. [PMID: 34225733 PMCID: PMC8256509 DOI: 10.1186/s13018-021-02578-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND This study hoped to explore the potential biomarkers and associated metabolites during osteosarcoma (OS) progression based on bioinformatics integrated analysis. METHODS Gene expression profiles of GSE28424, including 19 human OS cell lines (OS group) and 4 human normal long bone tissue samples (control group), were downloaded. The differentially expressed genes (DEGs) in OS vs. control were investigated. The enrichment investigation was performed based on DEGs, followed by protein-protein interaction network analysis. Then, the feature genes associated with OS were explored, followed by survival analysis to reveal prognostic genes. The qRT-PCR assay was performed to test the expression of these genes. Finally, the OS-associated metabolites and disease-metabolic network were further investigated. RESULTS Totally, 357 DEGs were revealed between the OS vs. control groups. These DEGs, such as CXCL12, were mainly involved in functions like leukocyte migration. Then, totally, 38 feature genes were explored, of which 8 genes showed significant associations with the survival of patients. High expression of CXCL12, CEBPA, SPARCL1, CAT, TUBA1A, and ALDH1A1 was associated with longer survival time, while high expression of CFLAR and STC2 was associated with poor survival. Finally, a disease-metabolic network was constructed with 25 nodes including two disease-associated metabolites cyclophosphamide and bisphenol A (BPA). BPA showed interactions with multiple prognosis-related genes, such as CXCL12 and STC2. CONCLUSION We identified 8 prognosis-related genes in OS. CXCL12 might participate in OS progression via leukocyte migration function. BPA might be an important metabolite interacting with multiple prognosis-related genes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Mingzhi Gong
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Zhenggang Xiong
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Yangyang Zhao
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Deguo Xing
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| |
Collapse
|
38
|
Nørregaard KS, Jürgensen HJ, Gårdsvoll H, Engelholm LH, Behrendt N, Søe K. Osteosarcoma and Metastasis Associated Bone Degradation-A Tale of Osteoclast and Malignant Cell Cooperativity. Int J Mol Sci 2021; 22:ijms22136865. [PMID: 34202300 PMCID: PMC8269025 DOI: 10.3390/ijms22136865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer-induced bone degradation is part of the pathological process associated with both primary bone cancers, such as osteosarcoma, and bone metastases originating from, e.g., breast, prostate, and colon carcinomas. Typically, this includes a cancer-dependent hijacking of processes also occurring during physiological bone remodeling, including osteoclast-mediated disruption of the inorganic bone component and collagenolysis. Extensive research has revealed the significance of osteoclast-mediated bone resorption throughout the course of disease for both primary and secondary bone cancer. Nevertheless, cancer cells representing both primary bone cancer and bone metastasis have also been implicated directly in bone degradation. We will present and discuss observations on the contribution of osteoclasts and cancer cells in cancer-associated bone degradation and reciprocal modulatory actions between these cells. The focus of this review is osteosarcoma, but we will also include relevant observations from studies of bone metastasis. Additionally, we propose a model for cancer-associated bone degradation that involves a collaboration between osteoclasts and cancer cells and in which both cell types may directly participate in the degradation process.
Collapse
Affiliation(s)
- Kirstine Sandal Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
- Correspondence: ; Tel.: +45-3545-6030
| | - Henrik Jessen Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Lars Henning Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; (H.J.J.); (H.G.); (L.H.E.); (N.B.)
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark;
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
39
|
Chen Y, Tang G, Qian H, Chen J, Cheng B, Zhou C, Shen Y. LncRNA LOC100129620 promotes osteosarcoma progression through regulating CDK6 expression, tumor angiogenesis, and macrophage polarization. Aging (Albany NY) 2021; 13:14258-14276. [PMID: 34015762 PMCID: PMC8202873 DOI: 10.18632/aging.203042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 01/30/2023]
Abstract
Osteosarcoma is a malignant tumor with high mortality in children and adolescents. The mechanism of osteosarcoma metastasis is currently unclear. Abnormal expression of long non-coding RNA (lncRNA) plays an important role in tumor metastasis. We used bioinformatics to analyze the differences in gene expression between osteosarcoma in situ and osteosarcoma lung metastases. CCK-8 was used to detect the effect of lncRNA LOC100129620 on the proliferation of osteosarcoma cells. The effect of LOC100129620 on the invasion of osteosarcoma cells was assessed by Transwell assay. The regulatory effect of LOC100129620 on miR-335-3p was examined using RNA pull-down and luciferase reporter gene assays. The effect of LOC100129620 on the polarization of macrophages was detected by quantitative real-time fluorescent PCR. The results show that LOC100129620 can promote the proliferation and migration of osteosarcoma cells. LOC100129620 can promote the proliferation of osteosarcoma in vivo. LOC100129620 can bind to miR-335-3p and regulate its function. MiR-335-3p mediates the regulatory effects of LOC100129620 on CDK6. LOC100129620 promotes the formation of blood vessels and the polarization of macrophages. The LOC100129620/miR-335-3p/CDK6 signaling pathway promotes the metastasis of osteosarcoma by regulating the proliferation of osteosarcoma cells, angiogenesis, and macrophage polarization.
Collapse
Affiliation(s)
- Yong Chen
- Orthopedic Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hongbin Qian
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ji Chen
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Bing Cheng
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Chengliang Zhou
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yixin Shen
- Orthopedic Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
40
|
The effects of MEX3A knockdown on proliferation, apoptosis and migration of osteosarcoma cells. Cancer Cell Int 2021; 21:197. [PMID: 33827584 PMCID: PMC8028067 DOI: 10.1186/s12935-021-01882-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Osteosarcoma is an aggressive malignant tumor which has attracted worldwide attention. MEX3A may be associated with tumors while has not yet seen its coverage on osteosarcoma. Herein, this study was to investigate the correlation between MEX3A and the progression of osteosarcoma. Methods Firstly, we determined that expression of MEX3A was significantly higher in osteosarcoma tissues than that in marginal bone by immunohistochemical staining. Additionally, MEX3A expression was downregulated by the RNAi‐mediated knockdown. The functions of MEX3A knockdown on proliferation, apoptosis, cell cycle, migration was assessed by MTT assay, flow cytometry, wound-healing assay and Transwell assay, respectively. Knockdown of MEX3A resulted in suppressing cell proliferation, increasing cell apoptosis, inducing the G2 phase cell cycle arrest, and attenuating cellular migration. Furthermore, mouse xenograft model confirmed inhibitory effects of MEX3A knockdown on osteosarcoma formation. Results The preliminary exploration on the molecular mechanism of MEX3A in osteosarcoma cells showed that the induction of apoptosis needs the participation of a series of apoptosis- associated factors, such as upregulation of Caspase 3, Caspase 8 and HSP60, downregulation of HSP27 and XIAP. Conclusions In summary, these findings predicated that therapy directed at decreasing MEX3A expression is a potential osteosarcoma treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01882-3.
Collapse
|
41
|
Ren Z, Li J, Zhao S, Qiao Q, Li R. Knockdown of MCM8 functions as a strategy to inhibit the development and progression of osteosarcoma through regulating CTGF. Cell Death Dis 2021; 12:376. [PMID: 33828075 PMCID: PMC8027380 DOI: 10.1038/s41419-021-03621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone derived from osteoblasts, which is a noteworthy threat to the health of children and adolescents. In this study, we found that MCM8 has significantly higher expression level in osteosarcoma tissues in comparison with normal tissues, which was also correlated with more advanced tumor grade and pathological stage. In agreement with the role of MCM proteins as indicators of cell proliferation, knockdown/overexpression of MCM8 inhibited/promoted osteosarcoma cell proliferation in vitro and tumor growth in vivo. Also, MCM8 knockdown/overexpression was also significantly associated with the promotion/inhibition of cell apoptosis and suppression/promotion of cell migration. More importantly, mechanistic study identified CTGF as a potential downstream target of MCM8, silencing of which could enhance the regulatory effects of MCM8 knockdown and alleviate the effects of MCM8 overexpression on osteosarcoma development. In summary, MCM8/CTGF axis was revealed as critical participant in the development and progression of osteosarcoma and MCM8 may be a promising therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong, Hefei, 230601, China
| | - Shanwen Zhao
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China.,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China
| | - Qi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Runguang Li
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China. .,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China. .,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China. .,Department of Orthopedics, Linzhi People's Hospital, Linzhi, 860000, China.
| |
Collapse
|
42
|
Gîrd CE, Costea T, Mitran V. Evaluation of cytotoxic activity and anticancer potential of indigenous Rosemary (Rosmarinus officinalis L.) and Oregano (Origanum vulgare L.) dry extracts on MG-63 bone osteosarcoma human cell line. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:525-535. [PMID: 35024741 PMCID: PMC8848263 DOI: 10.47162/rjme.62.2.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We aimed to investigate the cytotoxic activity of indigenous Rosemary and Oregano freeze-dried extracts upon MG-63 osteosarcoma human cell line. We have determined the influence of analyzed dry extracts on cell morphology, cell survival and cell proliferation. The evaluation of dry extracts effect upon cell proliferation and viability was assessed by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) method. For cytotoxicity evaluation, Live & Dead and lactate dehydrogenase assays have been used. To further investigate the potential anticancer effect, we have studied the influence of dry extracts upon cells, by means of caspase-3/7 assay and proliferation cell nuclear antigen (PCNA) expression. Cells were incubated with extracts in the following concentration range (100–700 μg/mL) for 24 hours. According to our results, both dry extracts have shown cytotoxic effects by means of all used methods. Bone osteosarcoma cells viability significantly decreased with increasing concentration of analyzed extracts (beyond 300 μg/mL for Rosemary dry extract and only at 700 μg/mL for Oregano dry extract). According to our results, apoptosis is one of the main mechanisms involved in the cytotoxic properties of analyzed extracts. Moreover, Rosemary extract has also shown decreased expression of PCNA, when compared to control (untreated cells). Both extracts were standardized in phenolic compounds (being a rich source of flavones and phenolcarboxylic acids), so we assume that these are the main constituents involved in the cytotoxic effect. Still, further preclinical studies are needed to confirm the antitumor properties and to go deeply in the molecular mechanisms involved.
Collapse
Affiliation(s)
- Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | |
Collapse
|
43
|
Rathore R, Van Tine BA. Pathogenesis and Current Treatment of Osteosarcoma: Perspectives for Future Therapies. J Clin Med 2021; 10:1182. [PMID: 33809018 PMCID: PMC8000603 DOI: 10.3390/jcm10061182] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and young adults. The standard-of-care curative treatment for osteosarcoma utilizes doxorubicin, cisplatin, and high-dose methotrexate, a standard that has not changed in more than 40 years. The development of patient-specific therapies requires an in-depth understanding of the unique genetics and biology of the tumor. Here, we discuss the role of normal bone biology in osteosarcomagenesis, highlighting the factors that drive normal osteoblast production, as well as abnormal osteosarcoma development. We then describe the pathology and current standard of care of osteosarcoma. Given the complex heterogeneity of osteosarcoma tumors, we explore the development of novel therapeutics for osteosarcoma that encompass a series of molecular targets. This analysis of pathogenic mechanisms will shed light on promising avenues for future therapeutic research in osteosarcoma.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Brian A. Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA;
- Division of Pediatric Hematology and Oncology, St. Louis Children’s Hospital, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
44
|
Ding L, Sun R, Yan Q, Wang C, Han X, Cui Y, Li R, Liu J. MiR-506 exerts antineoplastic effects on osteosarcoma cells via inhibition of the Skp2 oncoprotein. Aging (Albany NY) 2021; 13:6724-6739. [PMID: 33621206 PMCID: PMC7993745 DOI: 10.18632/aging.202530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/11/2020] [Indexed: 12/27/2022]
Abstract
S-phase kinase-associated protein 2 (Skp2) performs oncogenic functions in cancers; however, how Skp2 is regulated post-transcriptionally is elusive in osteosarcoma. Therefore, we determined whether miR-506 could directly target Skp2 in osteosarcoma to perform its tumor suppressive functions. Here, we found that miR-506 mimics suppressed cell viability, induced apoptosis, and attenuated migration and invasion in osteosarcoma cells. Moreover, upregulation of Skp2 accelerated cell viability and motility and rescued the tumor suppressive effect of miR-506 in osteosarcoma cells. Moreover, downregulation of Skp2 inhibited cell viability and decreased cell motility, which enhanced the antitumor activity induced by miR-506 mimic transfection in osteosarcoma cells. Our western blotting results implied that miR-506 inhibited Skp2 expression and subsequently upregulated Foxo1 and p57 in OS cells. In summary, miR-506 performs an anticancer activity via directly targeting Skp2 in osteosarcoma cells, indicating that inactivation of Skp2 by miR-506 might be an alternative strategy for treating osteosarcoma.
Collapse
Affiliation(s)
- Lu Ding
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.,Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Rongxin Sun
- Department of Orthopedics, Sixth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Qi Yan
- Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China
| | - Chengwei Wang
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Xiaoping Han
- Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yong Cui
- Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Rong Li
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.,Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China.,Postdoctoral Research Center on Clinical Medicine, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Jiwen Liu
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.,Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
45
|
Qiu Z, Du X, Chen K, Dai Y, Wang S, Xiao J, Li G. Gene signatures with predictive and prognostic survival values in human osteosarcoma. PeerJ 2021; 9:e10633. [PMID: 33520450 PMCID: PMC7812922 DOI: 10.7717/peerj.10633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is a common malignancy seen mainly in children and adolescents. The disease is characterized by poor overall prognosis and lower survival due to a lack of predictive markers. Many gene signatures with diagnostic, prognostic, and predictive values were evaluated to achieve better clinical outcomes. Two public data series, GSE21257 and UCSC Xena, were used to identify the minimum number of robust genes needed for a predictive signature to guide prognosis of patients with osteosarcoma. The lasso regression algorithm was used to analyze sequencing data from TCGA-TARGET, and methods such as Cox regression analysis, risk factor scoring, receiving operating curve, KMplot prognosis analysis, and nomogram were used to characterize the prognostic predictive power of the identified genes. Their utility was assessed using the GEO osteosarcoma dataset. Finally, the functional enrichment analysis of the identified genes was performed. A total of twenty-gene signatures were found to have a good prognostic value for predicting patient survival. Gene ontology analysis showed that the key genes related to osteosarcoma were categorized as peptide–antigen binding, clathrin-coated endocytic vesicle membrane, peptide binding, and MHC class II protein complex. The osteosarcoma related genes in these modules were significantly enriched in the processes of antigen processing and presentation, phagocytosis, cell adhesion molecules, Staphylococcus aureus infection. Twenty gene signatures were identified related to osteosarcoma, which would be helpful for predicting prognosis of patients with OS. Further, these signatures can be used to determine the subtypes of osteosarcoma.
Collapse
Affiliation(s)
- Zhongpeng Qiu
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xinhui Du
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Kai Chen
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yi Dai
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Sibo Wang
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jun Xiao
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Gang Li
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
46
|
Gao Y, Bai L, Shang G. Notch-1 promotes the malignant progression of osteosarcoma through the activation of cell division cycle 20. Aging (Albany NY) 2020; 13:2668-2680. [PMID: 33411691 PMCID: PMC7880405 DOI: 10.18632/aging.202314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
The molecular mechanism of osteosarcoma (OS) pathogenesis is poorly understood. The Notch signaling pathway has been shown to be critically involved in tumorigenesis, including OS. Therefore, we explored the molecular mechanism by which the Notch-1 signaling pathway is involved in OS progression. Several approaches were carried out to determine the biological function of Notch-1 in OS cells. The MTT results revealed that Notch-1 overexpression increased the viability of OS cells, whereas Notch-1 downregulation reduced cell viability. Consistently, modulation of Notch-1 regulated apoptosis and the migratory and invasive abilities of OS cells. Mechanistic studies showed that Notch-1 overexpression augmented cell division cycle 20 (Cdc20) expression in OS cells. Moreover, overexpression of Cdc20 alleviated the inhibitory effects of Notch-1 downregulation on the viability, migration and invasion of OS cells. Our study offers a promising OS treatment strategy by inhibiting Notch-1.
Collapse
Affiliation(s)
- Yuan Gao
- Graduate School, China Medical University, Shenyang, Liaoning Province, PR China
| | - Lunhao Bai
- Department of Orthopedic Surgery, ShengJing Hospital, China Medical University, Liaoning, PR China
| | - Guanning Shang
- Department of Orthopedic Surgery, ShengJing Hospital, China Medical University, Liaoning, PR China
| |
Collapse
|
47
|
Cabrera-Andrade A, López-Cortés A, Jaramillo-Koupermann G, González-Díaz H, Pazos A, Munteanu CR, Pérez-Castillo Y, Tejera E. A Multi-Objective Approach for Anti-Osteosarcoma Cancer Agents Discovery through Drug Repurposing. Pharmaceuticals (Basel) 2020; 13:ph13110409. [PMID: 33266378 PMCID: PMC7700154 DOI: 10.3390/ph13110409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor. Although nowadays 5-year survival rates can reach up to 60–70%, acute complications and late effects of osteosarcoma therapy are two of the limiting factors in treatments. We developed a multi-objective algorithm for the repurposing of new anti-osteosarcoma drugs, based on the modeling of molecules with described activity for HOS, MG63, SAOS2, and U2OS cell lines in the ChEMBL database. Several predictive models were obtained for each cell line and those with accuracy greater than 0.8 were integrated into a desirability function for the final multi-objective model. An exhaustive exploration of model combinations was carried out to obtain the best multi-objective model in virtual screening. For the top 1% of the screened list, the final model showed a BEDROC = 0.562, EF = 27.6, and AUC = 0.653. The repositioning was performed on 2218 molecules described in DrugBank. Within the top-ranked drugs, we found: temsirolimus, paclitaxel, sirolimus, everolimus, and cabazitaxel, which are antineoplastic drugs described in clinical trials for cancer in general. Interestingly, we found several broad-spectrum antibiotics and antiretroviral agents. This powerful model predicts several drugs that should be studied in depth to find new chemotherapy regimens and to propose new strategies for osteosarcoma treatment.
Collapse
Affiliation(s)
- Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador;
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170125, Ecuador
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Correspondence: (A.C.-A.); (E.T.)
| | - Andrés López-Cortés
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28029 Madrid, Spain
| | - Gabriela Jaramillo-Koupermann
- Laboratorio de Biología Molecular, Subproceso de Anatomía Patológica, Hospital de Especialidades Eugenio Espejo, Quito 170403, Ecuador;
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, and Basque Center for Biophysics CSIC-UPV/EHU, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Alejandro Pazos
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Cristian R. Munteanu
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador;
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170125, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador;
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de Las Américas, Quito 170125, Ecuador
- Correspondence: (A.C.-A.); (E.T.)
| |
Collapse
|
48
|
Zhang G, Li Y, Xu J, Xiong Z. Advances in the role of miRNAs in the occurrence and development of osteosarcoma. Open Med (Wars) 2020; 15:1003-1011. [PMID: 33336056 PMCID: PMC7718646 DOI: 10.1515/med-2020-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the skeletal system in the clinic. It mainly occurs in adolescent patients and the pathogenesis of the disease is very complicated. The distant metastasis may occur in the early stage, and the prognosis is poor. MicroRNAs (miRNAs) are non-coding RNAs of about 18–25 nt in length that are involved in post-transcriptional regulation of genes. miRNAs can regulate target gene expression by promoting the degradation of target mRNAs or inhibiting the translation process, thereby the proliferation of OS cells can be inhibited and the apoptosis can be promoted; in this way, miRNAs can affect the metabolism of OS cells and can also participate in the occurrence, invasion, metastasis, and recurrence of OS. Some miRNAs have already been found to be closely related to the prognosis of patients with OS. Unlike other reviews, this review summarizes the miRNA molecules closely related to the development, diagnosis, prognosis, and treatment of OS in recent years. The expression and influence of miRNA molecule on OS were discussed in detail, and the related research progress was summarized to provide a new research direction for early diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Guanyu Zhang
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yiran Li
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China
| |
Collapse
|
49
|
Kushlinskii NE, Fridman MV, Braga EA. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 2020; 54:684-707. [DOI: 10.1134/s0026893320050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2025]
|
50
|
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P, Rutkowski P. Molecular Biology of Osteosarcoma. Cancers (Basel) 2020; 12:E2130. [PMID: 32751922 PMCID: PMC7463657 DOI: 10.3390/cancers12082130] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or Diamond-Blackfan anemia. TP53 is the most frequently altered gene in osteosarcoma. Among other genes mutated in more than 10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by activating MEK-ERK pathways. Several genomic studies showed frequent alterations in the RB gene in pediatric OS patients. Osteosarcoma driver mutations have been reported in NOTCH1, FOS, NF2, WIF1, BRCA2, APC, PTCH1 and PRKAR1A genes. Some miRNAs such as miR-21, -34a, -143, -148a, -195a, -199a-3p and -382 regulate the pathogenic activity of MAPK and PI3K/Akt-signaling pathways in osteosarcoma. CD133+ osteosarcoma cells have been shown to exhibit stem-like gene expression and can be tumor-initiating cells and play a role in metastasis and development of drug resistance. Although currently osteosarcoma treatment is based on adriamycin chemoregimens and surgery, there are several potential targeted therapies in development. First of all, activity and safety of cabozantinib in osteosarcoma were studied, as well as sorafenib and pazopanib. Finally, novel bifunctional molecules, of potential imaging and osteosarcoma targeting applications may be used in the future.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wiktoria Firlej
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Pawel Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| |
Collapse
|