1
|
Wang X, Li F, Cheng J, Hou N, Pu Z, Zhang H, Chen Y, Huang C. MicroRNA-17 Family Targets RUNX3 to Increase Proliferation and Migration of Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 2023; 33:71-84. [PMID: 37017671 DOI: 10.1615/critreveukaryotgeneexpr.v33.i3.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one common cancer in the world. Previous studies have shown that miR-17 family members are elevated in most tumors and promote tumor progression. However, there is no comprehensive analysis of the expression and functional mechanism of the microRNA-17 (miR-17) family in HCC. The aim of this study is to comprehensively analyze the function of the miR-17 family in HCC and the molecular mechanism of its role. Bioinfoimatics analysis of the miR-17 family expression profile and its relationship to clinical significance using The Cancer Genome Atlas (TCGA) database, and this result was confirmed using quantitative real-time polymerase chain reaction. miR-17 family members were tested for functional effects through transfection of miRNA precursors and inhibitors, and monitoring cell viability and migration by cell count and wound healing assays. In addition, we using dual-luciferase assay and Western blot demonstrated the targeting relationship between the miRNA-17 family and RUNX3. These members of miR-17 family were highly expressed in HCC tissues, and the overexpression of the miR-17 family promoted the proliferation and migration of SMMC-7721 cells, whereas treatment with anti-miR17 inhibitors caused the opposite effects. Notably, we also found that inhibitors anti-each member of miR-17 can suppress the expression of the entire family member. In addition, they can bind to the 3' untranslated region of RUNX3 to regulate its expression at the translational level. Our results proved that miR-17 family has oncogenic characteristics, overexpression every member of the family contributed to HCC cell proliferation and migration by reducing the translation of RUNX3.
Collapse
Affiliation(s)
- Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Zhiying Pu
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710021, Shaanxi, China
| | - Hua Zhang
- First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Huang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
2
|
Nazarnezhad MA, Barazesh M, Kavousipour S, Mohammadi S, Eftekhar E, Jalili S. The Computational Analysis of Single Nucleotide Associated with MicroRNA Affecting Hepatitis B Infection. Microrna 2022; 11:139-162. [PMID: 35579134 DOI: 10.2174/2211536611666220509103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have a pivotal role in Hepatitis B Virus (HBV) infection and its complications by targeting the cellular transcription factors required for gene expression or directly binding to HBV transcripts. Single Nucleotide Polymorphisms (SNPs) in miRNA genes affect their expression and the regulation of target genes, clinical course, diagnosis, and therapeutic interventions of HBV infection. METHODS Computational assessment and cataloging of miRNA gene polymorphisms targeting mRNA transcripts straightly or indirectly through the regulation of hepatitis B infection by annotating the functional impact of SNPs on mRNA-miRNA and miRNA-RBS (miRNA binding sites) interaction were screened by applying various universally available datasets such as the miRNA SNP3.0 software. RESULTS 2987 SNPs were detected in 139 miRNAs affecting hepatitis B infection. Among them, 313 SNPs were predicted to have a significant role in the progression of hepatitis B infection. The computational analysis also revealed that 45 out of the 313 SNPs were located in the seed region and were more important than others. Has-miR-139-3p had the largest number of SNPs in the seed region (n=6). On the other hand, proteoglycans in cancer, adherens junction, lysine degradation, NFkappa B signaling cascade, ECM-receptor binding, viral carcinogenesis, fatty acid metabolism, TGF-beta signaling pathway, p53 signaling pathway, immune evasion related pathways, and fatty acid biosynthesis were the most important pathways affected by these 139 miRNAs. CONCLUSION The results revealed 45 SNPs in the seed region of 25 miRNAs as the catalog in miRNA genes that regulated the hepatitis B infection. The results also showed the most important pathways regulated by these miRNAs that can be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Mirza Ali Nazarnezhad
- Infectious and Tropical Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Wang R, Chopra N, Nho K, Maloney B, Obukhov AG, Nelson PT, Counts SE, Lahiri DK. Human microRNA (miR-20b-5p) modulates Alzheimer's disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer's biomarkers. Mol Psychiatry 2022; 27:1256-1273. [PMID: 35087196 PMCID: PMC9054681 DOI: 10.1038/s41380-021-01351-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-β peptide (Aβ) contributes to the etiology and progression of the disease. Aβ is derived from the amyloid-β precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aβ regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aβ1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aβ, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nipun Chopra
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- DePauw University, Greencastle, IN, 46135, USA
| | - Kwangsik Nho
- Radiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander G Obukhov
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Kentucky Alzheimer's Disease Research Center, Lexington, KY, 40536, USA
| | - Scott E Counts
- Departments of Translational Neuroscience & Family Medicine, Michigan State University, Grand Rapids, and Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Peng Y, Qin Y, Zhang X, Deng S, Yuan Y, Feng X, Chen W, Hu F, Gao Y, He J, Cheng Y, Wei Y, Fan X, Ashktorab H, Smoot D, Li S, Meltzer SJ, Zhuang S, Tang N, Jin Z. MiRNA-20b/SUFU/Wnt axis accelerates gastric cancer cell proliferation, migration and EMT. Heliyon 2021; 7:e06695. [PMID: 33912703 PMCID: PMC8065298 DOI: 10.1016/j.heliyon.2021.e06695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/17/2020] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Previous research has found that miRNA-20b is highly expressed in gastric cancer (GC), however, its function and underlying mechanism are not clear. Wnt signaling pathway, implicated in tumorigeneisis, is activated in more than 30% of GC. We would like to characterize the biological behavior of miRNA-20b in terms of modulating Wnt/β-catenin signaling and EMT. We showed that miRNA-20b inhibitors suppressed Topflash/Fopflash dependent luciferase activity and the β-catenin nuclear translocation, resulting in inhibition of Wnt pathway activity and EMT. SUFU, negatively regulating Wnt and Hedgehog signaling pathway, was proved to be targeted by miRNA-20b. Moreover, additional knockdown of SUFU alleviated the inhibitory effect on Wnt pathway activity, EMT, cell proliferation/migration and colony formation caused by miRNA-20b inhibition. In summary, miRNA-20b is an oncogenic miRNA and promoted cell proliferation, migration and EMT in GC partially by activating Wnt pathway via targeting SUFU.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China,Corresponding author.
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China,Department of Pathology, Guangdong Province Key Laboratory of Molecular Oncologic Pathology, China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yuan Yuan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wangchun Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Fan Hu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yuli Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Jieqiong He
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yulan Cheng
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, 518000, China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Song Li
- Shenzhen Science & Technology Development Exchange Center, Shenzhen Science and Technology Building, Shenzhen, Guangdong, 518055, China
| | - Stephen J. Meltzer
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Shutong Zhuang
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China,Corresponding author.
| |
Collapse
|
5
|
Li S, Zhu Y, Li R, Huang J, You K, Yuan Y, Zhuang S. LncRNA Lnc-APUE is Repressed by HNF4 α and Promotes G1/S Phase Transition and Tumor Growth by Regulating MiR-20b/E2F1 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003094. [PMID: 33854885 PMCID: PMC8025008 DOI: 10.1002/advs.202003094] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Indexed: 06/07/2023]
Abstract
Many long noncoding RNAs (lncRNAs) have been annotated, but their functions remain unknown. The authors found a novel lnc-APUE (lncRNA accelerating proliferation by upregulating E2F1) that is upregulated in different cancer types, including hepatocellular carcinoma (HCC), and high lnc-APUE level is associated with short recurrence-free survival (RFS) of HCC patients. Gain- and loss-of-function analyses showed that lnc-APUE accelerated G1/S transition and tumor cell growth in vitro and allows hepatoma xenografts to grow faster in vivo. Mechanistically, lnc-APUE binds to miR-20b and relieves its repression on E2F1 expression, resulting in increased E2F1 level and accelerated G1/S phase transition and cell proliferation. Consistently, lnc-APUE level is positively associated with the expression of E2F1 and its downstream target genes in HCC tissues. Further investigations disclose that hepatocyte nuclear factor 4 alpha (HNF4α) binds to the lnc-APUE promoter, represses lnc-APUE transcription, then diminishes E2F1 expression and cell proliferation. HNF4α expression is reduced in HCC tissues and low HNF4α level is correlated with high lnc-APUE expression. Collectively, a HNF4α/lnc-APUE/miR-20b/E2F1 axis in which HNF4α represses lnc-APUE expression and keeps E2F1 at a low level is identified. In tumor cells, HNF4α downregulation leads to lnc-APUE upregulation, which prevents the inhibition of miR-20b on E2F1 expression and thereby promotes cell cycle progression and tumor growth.
Collapse
Affiliation(s)
- Song‐Yang Li
- MOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510275China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510275China
| | - Ruo‐Nan Li
- MOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510275China
| | - Jia‐Hui Huang
- MOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510275China
| | - Kai You
- MOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510275China
| | - Yun‐Fei Yuan
- Department of Hepatobilliary OncologyCancer CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Shi‐Mei Zhuang
- MOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
6
|
Cheng Z, Dai Y, Huang W, Zhong Q, Zhu P, Zhang W, Wu Z, Lin Q, Zhu H, Cui L, Qian T, Deng C, Fu L, Liu Y, Zeng T. Prognostic Value of MicroRNA-20b in Acute Myeloid Leukemia. Front Oncol 2021; 10:553344. [PMID: 33680910 PMCID: PMC7930740 DOI: 10.3389/fonc.2020.553344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease that requires fine-grained risk stratification for the best prognosis of patients. As a class of small non-coding RNAs with important biological functions, microRNAs play a crucial role in the pathogenesis of AML. To assess the prognostic impact of miR-20b on AML in the presence of other clinical and molecular factors, we screened 90 AML patients receiving chemotherapy only and 74 also undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. In the chemotherapy-only group, high miR-20b expression subgroup had shorter event-free survival (EFS) and overall survival (OS, both P < 0.001); whereas, there were no significant differences in EFS and OS between high and low expression subgroups in the allo-HSCT group. Then we divided all patients into high and low expression groups based on median miR-20b expression level. In the high expression group, patients treated with allo-HSCT had longer EFS and OS than those with chemotherapy alone (both P < 0.01); however, there were no significant differences in EFS and OS between different treatment subgroups in the low expression group. Further analysis showed that miR-20b was negatively correlated with genes in “ribosome,” “myeloid leukocyte mediated immunity,” and “DNA replication” signaling pathways. ORAI2, the gene with the strongest correlation with miR-20b, also had significant prognostic value in patients undergoing chemotherapy but not in the allo-HSCT group. In conclusion, our findings suggest that high miR-20b expression is a poor prognostic indicator for AML, but allo-HSCT may override its prognostic impact.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Dai
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingfu Zhong
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Wu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Lin
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huoyan Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Cao Y, Lv W, Ding W, Li J. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/Akt/GSK‑3β/β‑catenin signaling pathway by downregulating miR‑25‑3p. Int J Mol Med 2020; 46:97-106. [PMID: 32319540 PMCID: PMC7255470 DOI: 10.3892/ijmm.2020.4577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022] Open
Abstract
Sevoflurane (Sevo) is one of the most frequently used volatile anesthetic agents in surgical oncology and has various effects on tumors, including inhibiting tumor growth, recurrence, and metastases; however, the molecular mechanisms are unknown. This study tried to investigate the influence of Sevo on hepatocellular carcinoma (HCC) cells and its possible mechanisms of action. The present study found that Sevo suppressed both the proliferative and invasive capabilities of both HCCLM3 and Huh7 cells in a dose-dependent manner. Moreover, 53 differentially expressed microRNAs (miRNAs/miRs) in HCC cells that resulted from Sevo were screened out using miRNA microarray assay. In particular, miR-25-3p displayed a significant decrease in response to Sevo treatment. Further studies showed that Sevo's inhibitory actions on HCC cells were attenuated by overexpression of miR-25-3p but enhanced by its inhibitor. Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN), a tumor suppressor gene, was directly targeted by miR-25-3p and its expression was upregulated by Sevo. In addition, Sevo suppressed the expression of phosphorylated-protein kinase B (p-Akt) (S473), glycogen synthase kinase (GSK) 3β (p-GSK3β) (S9), β-catenin, c-Myc and matrix metalloproteinase 9; whereas these inhibitory effects were reversed by miR-25-3p overexpression. More importantly, Sevo's tumor-suppressive effects were enhanced by LY294002 (a PI3-kinase inhibitor) but weakened by insulin growth factor-1 (an agonist of the Akt signaling pathway). These data suggest that Sevo's antitumor effects on HCC could be explained, in part, by Sevo inhibiting the miR-25-3p/PTEN/Akt/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wenfei Lv
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wan Ding
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| | - Jun Li
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| |
Collapse
|
8
|
miR-192-5p suppresses the progression of lung cancer bone metastasis by targeting TRIM44. Sci Rep 2019; 9:19619. [PMID: 31873114 PMCID: PMC6928221 DOI: 10.1038/s41598-019-56018-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with 50–70% of patients suffering from bone metastasis. Accumulating evidence has demonstrated that miRNAs are involved in cell proliferation, migration, and invasion in malignancy, such as lung cancer bone metastasis. In the present study, we demonstrated that reduced miR-192-5p and increased TRIM44 levels were associated with the proliferation, migration and invasion of lung cancer. Furthermore, the potential functions of miR-192-5p were explored in A549 and NCI-H1299 cells. We found that miR-192-5p upregulation suppressed tumour behaviours in lung cancer cells. To further investigate whether miR-192-5p is associated with TRIM44, we used TargetScan software to predict the binding site between miR-192-5p and TRIM44. Luciferase activity assays were performed to verify this prediction. In addition, the significant role of miR-192-5p in negatively regulating TRIM44 expression was manifested by our research group. our results suggest that miR-192-5p inhibited the proliferation, migration and invasion of lung cancer through TRIM44.
Collapse
|
9
|
Zhao X, Song Q, Miao G, Zhu X. MicroRNA-3651 promotes the growth and invasion of hepatocellular carcinoma cells by targeting PTEN. Onco Targets Ther 2019; 12:7045-7054. [PMID: 31695418 PMCID: PMC6718252 DOI: 10.2147/ott.s213705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/15/2019] [Indexed: 11/28/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in human worldwide. Evidence indicated that upregulation of microRNA-3651 (miR-3651) was observed in human HCC tissues. In this study, we explored the mechanisms by which miR-3651 regulated the proliferation, apoptosis and invasion of HCC. Methods The levels of miR-3651 in human HCC tissues were detected using qRT-PCR assay. In addition, transwell invasion and Western blot assay were conducted to detect cell invasion and apoptosis, respectively. Meanwhile, the dual-luciferase reporter assay was used to explore the interaction of miR-3651 and phosphate and tension homology deleted on chromsome ten (PTEN) in HCC. Results The levels of miR-3651 were upregulated in HCC tissues in comparison with the matched normal tissues. Overexpression of miR-3651 significantly promoted the proliferation and invasion of Huh-7 cells. In contrast, inhibition of miR-3651 markedly inhibited the proliferation and invasion of Huh-7 cells via promoting apoptosis. Moreover, downregulation of miR-3651 markedly inhibited tumor growth in vivo. Furthermore, bioinformatics analysis and luciferase reporter assay identified that PTEN was the directly binding target of miR-3651 in Huh-7 cells. Meanwhile, overexpression of miR-3651 obviously decreased the level of PTEN, and increased the expressions of p-p85 and p-Akt in Huh-7 cells. Conclusion These results indicated that miR-3651 might act as a potential oncogene in HCC by targeting PTEN. Therefore, miR-3651 might be a novel therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Xinyang Zhao
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Qilong Song
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Ge Miao
- Department of Outpatient Guidance, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xinfeng Zhu
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|