1
|
Williams MD, Morgan JS, Bullock MT, Poovey CE, Wisniewski ME, Francisco JT, Barajas-Nunez JA, Hijazi AM, Theobald D, Sriramula S, Mansfield KD, Holland NA, Tulis DA. pH-sensing GPR68 inhibits vascular smooth muscle cell proliferation through Rap1A. Am J Physiol Heart Circ Physiol 2024; 327:H1210-H1229. [PMID: 39269448 PMCID: PMC11560072 DOI: 10.1152/ajpheart.00413.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Phenotypic transformation of vascular smooth muscle (VSM) from a contractile state to a synthetic, proliferative state is a hallmark of cardiovascular disease (CVD). In CVD, diseased tissue often becomes acidic from altered cellular metabolism secondary to compromised blood flow, yet the contribution of local acid/base imbalance to the disease process has been historically overlooked. In this study, we examined the regulatory impact of the pH-sensing G protein-coupled receptor GPR68 on vascular smooth muscle (VSM) proliferation in vivo and in vitro in wild-type (WT) and GPR68 knockout (KO) male and female mice. Arterial injury reduced GPR68 expression in WT vessels and exaggerated medial wall remodeling in GPR68 KO vessels. In vitro, KO VSM cells showed increased cell-cycle progression and proliferation compared with WT VSM cells, and GPR68-inducing acidic exposure reduced proliferation in WT cells. mRNA and protein expression analyses revealed increased Rap1A in KO cells compared with WT cells, and RNA silencing of Rap1A reduced KO VSM cell proliferation. In sum, these findings support a growth-inhibitory capacity of pH-sensing GPR68 and suggest a mechanistic role for the small GTPase Rap1A in GPR68-mediated VSM growth control. These results shed light on GPR68 and its effector Rap1A as potential targets to combat pathological phenotypic switching and proliferation in VSM.NEW & NOTEWORTHY Extracellular acidosis remains an understudied feature of many pathologies. We examined a potential regulatory role for pH-sensing GPR68 in vascular smooth muscle (VSM) growth in the context of CVD. With in vivo and in vitro growth models with GPR68-deficient mice and GPR68 induction strategies, novel findings revealed capacity of GPR68 to attenuate growth through the small GTPase Rap1A. These observations highlight GPR68 and its effector Rap1A as possible therapeutic targets to combat pathological VSM growth.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hydrogen-Ion Concentration
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- rap1 GTP-Binding Proteins/metabolism
- rap1 GTP-Binding Proteins/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Madison D Williams
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael T Bullock
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Cere E Poovey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael E Wisniewski
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jerry A Barajas-Nunez
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Amira M Hijazi
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Kyle D Mansfield
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
2
|
Gonye EC, Dagli AV, Kumar NN, Clements RT, Xu W, Bayliss DA. Expression of endogenous epitope-tagged GPR4 in the mouse brain. eNeuro 2024; 11:ENEURO.0002-24.2024. [PMID: 38408869 DOI: 10.1523/eneuro.0002-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor implicated in many peripheral and central physiological processes. GPR4 expression has previously been assessed only via detection of the cognate transcript or indirectly, by use of fluorescent reporters. In this work, CRISPR/Cas9 knock-in technology was used to encode a hemagglutinin (HA) epitope tag within the endogenous locus of Gpr4 and visualize GPR4-HA in the mouse central nervous system using a specific, well characterized HA antibody; GPR4 expression was further verified by complementary Gpr4 mRNA detection. HA immunoreactivity was found in a limited set of brain regions, including in the retrotrapezoid nucleus (RTN), serotonergic raphe nuclei, medial habenula, lateral septum, and several thalamic nuclei. GPR4 expression was not restricted to cells of a specific neurochemical identity as it was observed in excitatory, inhibitory, and aminergic neuronal cell groups. HA immunoreactivity was not detected in brain vascular endothelium, despite clear expression of Gpr4 mRNA in endothelial cells. In the RTN, GPR4 expression was detected at the soma and in proximal dendrites along blood vessels and the ventral surface of the brainstem; HA immunoreactivity was not detected in RTN projections to two known target regions. This localization of GPR4 protein in mouse brain neurons corroborates putative sites of expression where its function has been previously implicated (e.g., CO2-regulated breathing by RTN), and provides a guide for where GPR4 could contribute to other CO2/H+ modulated brain functions. Finally, GPR4-HA animals provide a useful reagent for further study of GPR4 in other physiological processes outside of the brain.Significance Statement GPR4 is a proton-sensing G-protein coupled receptor whose expression is necessary for a number of diverse physiological processes including acid-base sensing in the kidney, immune function, and cancer progression. In the brain, GPR4 has been implicated in the hypercapnic ventilatory response mediated by brainstem neurons. While knockout studies in animals have clearly demonstrated its necessity for normal physiology, descriptions of GPR4 expression have been limited due to a lack of specific antibodies for use in mouse models. In this paper, we implemented a CRISPR/Cas9 knock-in approach to incorporate the coding sequence for a small epitope tag into the locus of GPR4. Using these mice, we were able to describe GPR4 protein expression directly for the first time.
Collapse
Affiliation(s)
- Elizabeth C Gonye
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Alexandra V Dagli
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Natasha N Kumar
- University of New South Wales Sydney, School of Biomedical Sciences, New South Wales, Australia
| | - Rachel T Clements
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Wenhao Xu
- University of Virginia, Genetically Engineered Mouse Model Core, Charlottesville, VA, USA
| | - Douglas A Bayliss
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| |
Collapse
|
3
|
Li X, Li Y, Wang Y, Liu F, Liu Y, Liang J, Zhan R, Wu Y, Ren H, Zhang X, Liu J. Sinensetin suppresses angiogenesis in liver cancer by targeting the VEGF/VEGFR2/AKT signaling pathway. Exp Ther Med 2022; 23:360. [PMID: 35493423 PMCID: PMC9019764 DOI: 10.3892/etm.2022.11287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Sinensetin (SIN) is a polymethoxy flavone primarily present in citrus fruits. This compound has demonstrated anticancer activity. However, the underlying mechanism of its action has not been fully understood. The present study investigated the impact of SIN on angiogenesis in a liver cancer model. In a murine xenograft tumor model, SIN inhibited the growth of HepG2/C3A human liver hepatoma cell-derived tumors and reduced the expression levels of platelet/endothelial cell adhesion molecule-1 and VEGF. In HepG2/C3A cells, SIN repressed VEGF expression by downregulating hypoxia-inducible factor expression. In cultured human umbilical vein endothelial cells, SIN increased apoptosis and repressed migration and tube formation. In addition, SIN decreased the phosphorylation of VEGFR2 and inhibited the AKT signaling pathway. Molecular docking demonstrated that the VEGFR2 core domain effectively combined with SIN at various important residues. Collectively, these data suggested that SIN inhibited liver cancer angiogenesis by regulating VEGF/VEGFR2/AKT signaling.
Collapse
Affiliation(s)
- Xiaο Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Yan Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yanjun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Jiangjiu Liang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Rucai Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Yue Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - He Ren
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Xiuyuan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Ju Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| |
Collapse
|
4
|
Li L, Zhong L, Tang C, Gan L, Mo T, Na J, He J, Huang Y. CD105: tumor diagnosis, prognostic marker and future tumor therapeutic target. Clin Transl Oncol 2022; 24:1447-1458. [PMID: 35165838 DOI: 10.1007/s12094-022-02792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the diseases with the highest morbidity and mortality rates worldwide, and its therapeutic options are inadequate. The endothelial glycoprotein, also known as CD105, is a type I transmembrane glycoprotein located on the surface of the cell membranes and it is one of the transforming growth factor-β (TGF-β) receptor complexes. It regulates the responses associated with binding to transforming growth factor β1 egg (Activin-A), bone morphogenetic protein 2 (BMP-2), and bone morphogenetic protein 7 (BMP-7). Additionally, it is involved in the regulation of angiogenesis. This glycoprotein is indispensable in the treatment of tumor angiogenesis, and it also plays a leading role in tumor angiogenesis therapy. Therefore, CD105 is considered to be a novel therapeutic target. In this study, we explored the significance of CD105 in the diagnosis, treatment and prognosis of various tumors, and provided evidence for the effect and mechanism of CD105 on tumors.
Collapse
Affiliation(s)
- Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Jeng KS, Sheen IS, Lin SS, Leu CM, Chang CF. The Role of Endoglin in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063208. [PMID: 33809908 PMCID: PMC8004096 DOI: 10.3390/ijms22063208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Endoglin (CD105) is a type-1 integral transmembrane glycoprotein and coreceptor for transforming growth factor-β (TGF-β) ligands. The endoglin/TGF-β signaling pathway regulates hemostasis, cell proliferation/migration, extracellular matrix (ECM) synthesis and angiogenesis. Angiogenesis contributes to early progression, invasion, postoperative recurrence, and metastasis in hepatocellular carcinoma (HCC), one of the most widespread malignancies globally. Endoglin is overexpressed in newly formed HCC microvessels. It increases microvessel density in cirrhotic and regenerative HCC nodules. In addition, circulating endoglin is present in HCC patients, suggesting potential for use as a diagnostic or prognostic factor. HCC angiogenesis is dynamic and endoglin expression varies by stage. TRC105 (carotuximab) is an antibody against endoglin, and three of its clinical trials were related to liver diseases. A partial response was achieved when combining TRC105 with sorafenib. Although antiangiogenic therapy still carries some risks, combination therapy with endoglin inhibitors or other targeted therapies holds promise.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - I-Shyan Sheen
- Department of Hepatogastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taoyuan city 33305, Taiwan;
| | - Shu-Sheng Lin
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei city 11221, Taiwan;
| | - Chiung-Fang Chang
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
- Correspondence: ; Tel.: +886-2-7728-4564
| |
Collapse
|
6
|
GPR4 signaling is essential for the promotion of acid-mediated angiogenic capacity of endothelial progenitor cells by activating STAT3/VEGFA pathway in patients with coronary artery disease. Stem Cell Res Ther 2021; 12:149. [PMID: 33632325 PMCID: PMC7905863 DOI: 10.1186/s13287-021-02221-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Patients with coronary artery disease (CAD) are characterized by a decline in vascular regeneration, which is related to the dysfunction of endothelial progenitor cells (EPCs). G-protein-coupled receptor 4 (GPR4) is a proton-sensing G-protein-coupled receptor (GPCR) that contributes to neovascularization in acidic microenvironments. However, the role of GPR4 in regulating the angiogenic capacity of EPCs from CAD patients in response to acidity generated in ischemic tissue remains completely unclear. METHODS The angiogenic capacity of EPCs collected from CAD patients and healthy subjects was evaluated in different pH environments. The GPR4 function of regulating EPC-mediated angiogenesis was analyzed both in vitro and in vivo. The downstream mechanisms were further investigated by genetic overexpression and inhibition. RESULTS Acidic environment prestimulation significantly enhanced the angiogenic capacity of EPCs from the non-CAD group both in vivo and in vitro, while the same treatment yielded the opposite result in the CAD group. Among the four canonical proton-sensing GPCRs, GPR4 displays the highest expression in EPCs. The expression of GRP4 was markedly lower in EPCs from CAD patients than in EPCs from non-CAD individuals independent of acid stimulation. The siRNA-mediated knockdown of GPR4 with subsequent decreased phosphorylation of STAT3 mimicked the impaired function of EPCs from CAD patients at pH 6.4 but not at pH 7.4. Elevating GPR4 expression restored the neovessel formation mediated by EPCs from CAD patients in an acidic environment by activating STAT3/VEGFA signaling. Moreover, the beneficial impact of GPR4 upregulation on EPC-mediated angiogenic capacity was abrogated by blockade of the STAT3/VEGFA signaling pathway. CONCLUSIONS Our present study demonstrated for the first time that loss of GPR4 is responsible for the decline in proton sensing and angiogenic capacity of EPCs from CAD patients. Augmentation of GPR4 expression promotes the neovessel formation of EPCs by activating STAT3/VEGF signaling. This finding implicates GPR4 as a potential therapeutic target for CAD characterized by impaired neovascularization in ischemic tissues.
Collapse
|
7
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|