1
|
Rakshit T, Pal S. Extracellular Vesicles for Drug Delivery and Theranostics In Vivo. JACS AU 2024; 4:318-327. [PMID: 38425894 PMCID: PMC10900499 DOI: 10.1021/jacsau.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanopouches generated by all cells and are abundant in various body fluids. Depending on the parent and recipient cells, EVs exchange diverse constituents including nucleic acids, proteins, carbohydrates, and metabolites. Morphologically, EVs suffer from low zeta potentials and short circulation times, but they also offer low intrinsic immunogenicity and inherent stability. Some crucial factors for the effective clinical application of EVs include controlling immune system clearance, achieving the large-scale production of EVs with efficient quality control, and determining the dominant mechanism of the in vivo action of EVs. In this Perspective, we shed light on how these intriguing nano-objects are utilized in cellular imaging and drug delivery for disease therapeutics. We also discuss potential strategies for overcoming the associated limitations.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Delhi-NCR 201314, India
| | - Suchetan Pal
- Department
of Chemistry, Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg 491001, India
| |
Collapse
|
2
|
Oluwayiose OA, Houle E, Whitcomb BW, Suvorov A, Rahil T, Sites CK, Krawetz SA, Visconti P, Pilsner JR. Altered non-coding RNA profiles of seminal plasma extracellular vesicles of men with poor semen quality undergoing in vitro fertilization treatment. Andrology 2023; 11:677-686. [PMID: 36111950 PMCID: PMC10017372 DOI: 10.1111/andr.13295] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Currently, the precise mechanisms that underline male infertility are still unclear. Accumulating data implicate non-coding RNA cargo of seminal plasma extracellular vesicles due to their association with poor semen quality and higher expression levels relative to vesicle-free seminal plasma. METHOD We assessed sperm-free seminal plasma extracellular vesicle non-coding RNA profiles from 91 semen samples collected from male participants of couples seeking infertility treatment. Men were classified into two groups (poor, n = 32; normal, n = 59) based on World Health Organization semen cutoffs. Small RNA sequencing reads were mapped to standard biotype-specific transcriptomes in the order micro RNA > transfer RNA > piwi-interacting RNA > ribosomal RNA > ribosomal RNA > circular RNA > long non-coding RNA using STAR. Differential expression of normalized non-coding RNA read counts between the two groups was conducted by EdgeR (Fold change ≥1.5 and (false discovery rate [FDR] < 0.05). RESULT Small RNA sequencing identified a wide variety of seminal plasma extracellular vesicle non-coding RNA biotypes including micro RNA, ribosomal RNAs, piwi-interacting RNAs, transfer RNA, long non-coding RNAs as well as circular RNAs, and fragments associated with pseudogenes, and nonsense-mediated decay. The expression levels of 57 seminal plasma extracellular vesicle non-coding RNAs (micro RNA: 6, piwi-interacting RNA: 4, ribosomal RNA: 6, circular RNA: 34, and long non-coding RNA: 7) were altered in men with poor semen quality relative to normal semen parameters, many (60%) of which were circular RNA species. Ontology analysis of differentially expressed micro RNAs and circular RNAs showed enrichment in functional terms related to cellular communication and early development. CONCLUSION This is the first study to generate comprehensive seminal plasma extracellular vesicle non-coding RNA profiles in a clinical setting and to determine the differences between men with normal and abnormal semen parameters. Thus, our study suggests that seminal plasma extracellular vesicle non-coding RNAs may represent novel biomarkers of male reproductive phenotypes.
Collapse
Affiliation(s)
- Oladele A. Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Brian W. Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA, USA
| | - Tayyab Rahil
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, UMass Chan--Baystate, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Cynthia K. Sites
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, UMass Chan--Baystate, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Stephen A. Krawetz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State School of Medicine
| | - Pablo Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N. Pleasant St, Amherst, MA 01003
| | - J. Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Yang J, Yang C, Li P. circ-IARS depletion inhibits the progression of non-small-cell lung cancer by circ-IARS/miR-1252-5p/HDGF ceRNA pathway. Open Med (Wars) 2023; 18:20220613. [PMID: 36694627 PMCID: PMC9835196 DOI: 10.1515/med-2022-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023] Open
Abstract
This study aims to explore the role and mechanism of circ-IARS in non-small-cell lung cancer (NSCLC) progression. Expression of circ-IARS, microRNA (miR)-1252-5p, and hepatoma-derived growth factor (HDGF) was measured by real-time quantitative PCR and western blotting. The interactions among circ-IARS, miR-1252-5p, and HDGF were determined by dual-luciferase reporter assay and RNA immunoprecipitation. Cell behaviors were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, scratch wound assay, and transwell assay, and validated in in vivo xenograft model. Exosomes were isolated using commercial kit, and the expression and functions of exosomal circ-IARS (exo-circ-IARS) were analyzed as described above. Results showed that the expression of circ-IARS was upregulated in NSCLC cells, NSCLC tissues, and serum exosomes from NSCLC patients. circ-IARS exhaustion antagonized cell proliferation, cell cycle progression, migration, and invasion and promoted apoptosis in NSCLC. Molecularly, circ-IARS could sponge miR-1252-5p to modulate the expression of the downstream gene HDGF. In addition, miR-1252-5p downregulation attenuated circ-IARS exhaustion-mediated effects in H1299 and A549 cells. MiR-1252-5p mimic-induced effects were relieved by increasing HDGF expression in H1299 and A549 cells. Exo-circ-IARS promoted H460 cell proliferation, migration, and invasion and inhibited cell apoptosis. Silencing circ-IARS retarded tumor growth of NSCLC cells in vivo. Thus, circ-IARS, secreted by exosomes, was a novel oncogene in NSCLC and regulated the malignant development of NSCLC cells via circ-IARS/miR-1252-5p/HDGF competing endogenous RNA regulatory axis.
Collapse
Affiliation(s)
- Jinhua Yang
- Department of Thoracic and Cardiovascular Surgery, Zigong First People’s Hospital, No. 178, Tongda South Street, Ziliujing District, Zigong, Sichuan, China
| | - Chunping Yang
- Department of Thoracic and Cardiovascular Surgery, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Ping Li
- Department of Thoracic and Cardiovascular Surgery, Zigong First People’s Hospital, Zigong, Sichuan, China
| |
Collapse
|
4
|
Hussen BM, Mohamadtahr S, Abdullah SR, Hidayat HJ, Rasul MF, Hama Faraj GS, Ghafouri-Fard S, Taheri M, Khayamzadeh M, Jamali E. Exosomal circular RNAs: New player in breast cancer progression and therapeutic targets. Front Genet 2023; 14:1126944. [PMID: 36926585 PMCID: PMC10011470 DOI: 10.3389/fgene.2023.1126944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Breast cancer is the most prevalent type of malignancy among women. Exosomes are extracellular vesicles of cell membrane origin that are released via exocytosis. Their cargo contains lipids, proteins, DNA, and different forms of RNA, including circular RNAs. Circular RNAs are new class of non-coding RNAs with a closed-loop shape involved in several types of cancer, including breast cancer. Exosomes contained a lot of circRNAs which are called exosomal circRNAs. By interfering with several biological pathways, exosomal circRNAs can have either a proliferative or suppressive role in cancer. The involvement of exosomal circRNAs in breast cancer has been studied with consideration to tumor development and progression as well as its effects on therapeutic resistance. However, its exact mechanism is still unclear, and there have not been available clinical implications of exo-circRNAs in breast cancer. Here, we highlight the role of exosomal circRNAs in breast cancer progression and to highlight the most recent development and potential of circRNAas therapeutic targets and diagnostics for breast cancer.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaimany, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khayamzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Academy of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wang D, Zhang W, Zhang C, Wang L, Chen H, Xu J. Exosomal non-coding RNAs have a significant effect on tumor metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:16-35. [PMID: 35784014 PMCID: PMC9207556 DOI: 10.1016/j.omtn.2022.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Exosomes are produced by the majority of eukaryotic cells and are capable of transporting a variety of substances, including non-coding RNAs, between cells. Metastasis is a significant cause of death from cancer. Numerous studies have established an important role for exosomal non-coding RNAs in tumor metastasis. Exosomal non-coding RNAs from a variety of cells have been shown to affect tumor metastasis via several mechanisms. Exosomes transmit non-coding RNAs between tumor cells, fibroblasts, endothelial cells, and immune cells within the tumor microenvironment. Exosomal non-coding RNAs also have an effect on epithelial-mesenchymal transition, angiogenesis, and lymphangiogenesis. Exosomes derived from tumor cells have the ability to transport non-coding RNAs to distant organs, thereby facilitating the formation of the metastatic niche. Due to their role in tumor metastasis, exosomal non-coding RNAs have the potential to serve as diagnostic or prognostic markers as well as therapeutic targets for tumors. The purpose of this paper is to review and discuss the mechanisms of exosomal non-coding RNAs, their role in tumor metastasis, and their clinical utility, aiming to establish new directions for tumor metastasis, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Di Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wei Zhang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chunxi Zhang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Liwei Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Heng Chen
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Nanshan District, Shenzhen 518060, P.R. China
| | - Jianbin Xu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
6
|
Ghazimoradi MH, Babashah S. The role of CircRNA/miRNA/mRNA axis in breast cancer drug resistance. Front Oncol 2022; 12:966083. [PMID: 36132137 PMCID: PMC9484461 DOI: 10.3389/fonc.2022.966083] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance is one of the major obstacles in the treatment of cancers. This undesirable feature increases the mortality rate of cancers, including breast cancer. Circular RNA (CircRNA)/microRNA (miRNA)/messenger RNA (mRNA) is one of the important axes with major roles in the promotion and resistance of breast cancer. This heterogeneous pathway includes mRNA of oncogenes and tumor suppressors, which are controlled by miRNAs and CircRNAs. Unfortunately, this network could be easily deregulated, resulting in drug resistance and tumor development. Therefore, understanding these dysregulations may thus help to identify effective therapeutic targets. On this basis, we try to review the latest findings in the field, which could help us to better comprehend this significant axis in breast cancer.
Collapse
|
7
|
Zokaei E, Darbeheshti F, Rezaei N. Prospect of exosomal circular RNAs in breast Cancer: presents and future. Mol Biol Rep 2022; 49:6997-7011. [PMID: 35534582 DOI: 10.1007/s11033-022-07472-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Implementing precision oncology for breast cancer (BC) is a critical method for improving patient outcomes, which relies on the use of reliable biomarkers to be effective and safe. exosomes represent a potential alternative for the diagnosis and therapy of BC, As a "liquid biopsy" and a novel source for biomarkers. Exosomes are nanoscale phospholipid bilayer vesicles released by most cells that contain a large payload of various RNA species that can alter recipient cell activity. Circular RNAs (circRNAs) were recently revealed as a looping subclass of competing endogenous noncoding RNAs (ceRNAs) capable of microRNA sponging to regulate gene expression. They provide critical regulatory functions in carcinogenesis, proliferation, invasion, metastasis, and treatment resistance, as well as cancer prognostic. However, there is still a major gap in our understanding of the role of circRNA in the advancement of BC. CircRNAs are abundant in exosomes, according to various studies, and exosomal circRNAs (exo-circRNAs) play a significant role in cancer biology. Exo-circRNAs can be picked up by nearby or distant cells, affecting many features of the target cells' pathophysiological states, thus boosting cell communication and tumor spread. In this review, we have briefly summarized the major properties and functions of exosomes. Then, we have focused on exo-circRNAs, discussing their potential roles in both driving and inhibiting BC, as well as for cancer diagnosis, prognosis, and monitoring.
Collapse
Affiliation(s)
- Elham Zokaei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Darbeheshti
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Kang Y, You J, Gan Y, Chen Q, Huang C, Chen F, Xu X, Chen L. Serum and Serum Exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as Diagnostic Biomarkers for Lung Adenocarcinoma. Front Oncol 2022; 12:912246. [PMID: 35747792 PMCID: PMC9209657 DOI: 10.3389/fonc.2022.912246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundCircular RNAs (circRNAs) play an important role in tumorigenesis and several circulating circRNA signatures are closely associated with tumor diagnosis. However, the expression and clinical significance of the two forms of circulating circRNAs, serum and serum exosomal, in patients with lung adenocarcinoma (LUAD), have not been characterized.MethodsThree differentially expressed exosomal circRNAs, hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896, were selected based on previous exosomal circRNA sequencing data analyses of LUAD patients. The expression of these circRNAs in serum and serum-derived exosomes of LUAD patients was assessed using quantitative real-time PCR (qRT-PCR), and correlations between circRNA expression and clinicopathological characteristics were analyzed. The reliability of serum and serum exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 to diagnose LUAD was evaluated using receiver operating characteristic (ROC) analysis.ResultsExpression of serum and serum exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 were significantly higher in LUAD patients than in healthy donors, and significantly lower after surgery. These three serum exosomal circRNAs were also associated with a higher cancer stage. Exosomal hsa_circ_0001492 expression was positively correlated with carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) levels. An association between the expression of the three serum circRNAs and clinical characteristics was not observed. In addition, the three serum exosomal circRNAs had higher diagnostic sensitivity and specificity than the serum circRNAs, and the area under the curve (AUC) of all three serum exosomal circRNAs was >0.75. The combination of exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 had better diagnostic sensitivity and specificity than that of a single marker, with an AUC value of 0.805.ConclusionsThe serum and serum exosomal circRNAs, hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896, were upregulated in LUAD patients. Serum exosomal circRNAs may serve as more effective biomarkers than serum circRNAs for LUAD diagnosis and may further aid the detection of this disease.
Collapse
Affiliation(s)
- Yanli Kang
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yuhan Gan
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chen Huang
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Xunyu Xu
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| |
Collapse
|
9
|
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. MEMBRANES 2022; 12:membranes12060550. [PMID: 35736256 PMCID: PMC9230693 DOI: 10.3390/membranes12060550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell–cell communication as novel DDSs, especially small EVs.
Collapse
|
10
|
The emerging landscape of exosomal CircRNAs in solid cancers and hematological malignancies. Biomark Res 2022; 10:28. [PMID: 35505392 PMCID: PMC9066734 DOI: 10.1186/s40364-022-00375-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of recently discovered noncoding RNA. They exert their biological functions by competitively binding to microRNAs (miRNAs) as miRNA sponges, promoting gene transcription and participating in the regulation of selective splicing, interacting with proteins and being translated into proteins. Exosomes are derived from intracavitary vesicles (ILVs), which are formed by the inward budding of multivesicular bodies (MVBs), and exosome release plays a pivotal role in intercellular communication. Accumulating evidence indicates that circRNAs in exosomes are associated with solid tumor invasion and metastasis. Additionally, emerging studies in the last 1 ~ 2 years have revealed that exosomal circRNA also have effect on hematological malignancies. In this review, we outline the properties and biological functions of circRNAs and exosomes. In particular, we summarize in detail the mechanism and roles of exosomal circRNAs and highlight their application as novel biomarkers in malignant tumors.
Collapse
|
11
|
Ono K, Niwa M, Suzuki H, Kobayashi NB, Yoshida T, Sawada M. Signal Sequence-Dependent Orientation of Signal Peptide Fragments to Exosomes. Int J Mol Sci 2022; 23:ijms23063137. [PMID: 35328557 PMCID: PMC8950404 DOI: 10.3390/ijms23063137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Signal peptides (SPs) not only mediate targeting to the endoplasmic reticulum (ER) but also play important roles as biomarkers and substances with physiological activity in extracellular fluids including blood. SPs are thought to be degraded intracellularly, making it unclear how they are transported from the ER to the extracellular fluid. In a recent study, we showed that a C-terminal fragment of the SP of a type I membrane protein, amyloid precursor protein (APP), was secreted into the extracellular fluid via exosomes using transformed HEK293 cells expressing APP SP flanking a reporter protein. In the present study, we demonstrate that a N-terminal fragment of the SP from a type II membrane protein, human placental secreted alkaline phosphatase (SEAP), is contained in exosomes and secreted into the extracellular fluid using HEK-Blue hTLR3 cells, which express both a human toll-like receptor 3 gene and an inducible SEAP reporter gene. When HEK-Blue hTLR3 cells were stimulated with a TLR3 ligand, a N-terminal fragment of SEAP SP in exosomes was increased in parallel with SEAP secretion in a concentration-dependent manner. These results indicated that SP fragments are exosomal components. In addition, migrating SP fragments were determined by characteristics of the signal–anchor sequence of membrane proteins. Furthermore, we found that SP fragments could bind to calmodulin (CALM), which is a cytosolic protein and also a component of exosomes, suggesting its involvement in the transportation of SP fragments from the endoplasmic reticulum to exosomes.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan; (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
- Correspondence: ; Tel.: +81-52-789-5002; Fax: +81-52-789-3994
| | - Mikio Niwa
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan; (M.N.); (N.B.K.); (T.Y.)
| | - Hiromi Suzuki
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan; (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Nahoko Bailey Kobayashi
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan; (M.N.); (N.B.K.); (T.Y.)
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan; (M.N.); (N.B.K.); (T.Y.)
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan; (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
12
|
Yu L, Xie J, Liu X, Yu Y, Wang S. Plasma Exosomal CircNEK9 Accelerates the Progression of Gastric Cancer via miR-409-3p/MAP7 Axis. Dig Dis Sci 2021; 66:4274-4289. [PMID: 33449227 DOI: 10.1007/s10620-020-06816-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Exosome-mediated transfer of circular RNAs (circRNAs) is related to gastric cancer (GC) development. CircRNA NIMA-related kinase 9 (circNEK9; hsa_circ_0032683) was reported to be up-regulated in GC. AIMS The biological role of circNEK9 and its underlying mechanisms in GC progression were explored. METHODS The levels of RNAs and proteins were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot assay. Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, and flow cytometry. Wound healing assay and transwell assays were conducted to analyze cell motility. Intermolecular interaction was verified by dual-luciferase reporter assay and RNA pull-down assay. Animal experiments were used to evaluate the role of circNEK9 in the growth of xenograft tumors in vivo. RESULTS CircNEK9 was up-regulated in GC tissues and cell lines. CircNEK9 interference suppressed the proliferation and motility of GC cells. CircNEK9 silencing enhanced microRNA-409-3p (miR-409-3p) level through direct interaction. CircNEK9 silencing-mediated influences on the proliferation and metastasis of GC cells were partly overturned by the interference of miR-409-3p. MiR-409-3p directly interacted with microtubule-associated protein 7 (MAP7) messenger RNA (mRNA). MiR-409-3p-induced effects in GC cells were largely counteracted by the overexpression of MAP7. CircNEK9 silencing blocked GC tumor growth in vivo. Exosome-mediated transfer of circNEK9 promoted the motility of recipient GC cells. CONCLUSIONS CircNEK9 accelerated the proliferation, migration, and invasion of GC cells through targeting miR-409-3p/MAP7 axis. Plasma exosomal circNEK9 promoted the migration and invasion of recipient GC cells.
Collapse
Affiliation(s)
- Li Yu
- Department of Health Medicine, Second Medical Center of Chinese PLA General Hospital, No.28, Fuxing Road, Beijing, 100853, China
| | - Jie Xie
- Department of Health Medicine, Second Medical Center of Chinese PLA General Hospital, No.28, Fuxing Road, Beijing, 100853, China
| | - Xiaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Yu
- Department of Health Medicine, Second Medical Center of Chinese PLA General Hospital, No.28, Fuxing Road, Beijing, 100853, China
| | - Siping Wang
- Department of Health Medicine, Second Medical Center of Chinese PLA General Hospital, No.28, Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
13
|
Lin H, Yu J, Gu X, Ge S, Fan X. Novel insights into exosomal circular RNAs: Redefining intercellular communication in cancer biology. Clin Transl Med 2021; 11:e636. [PMID: 34898043 PMCID: PMC8666583 DOI: 10.1002/ctm2.636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes, a special type of membrane-bound extracellular vesicle regarded as an ideal carrier for intercellular messages, play an essential role in intercellular communication both locally and systematically. Recent studies have reported that circular RNAs (circRNAs), members of the noncoding RNA family, are abundant and stable in exosomes. As an essential mediator of intercellular communication within cancer cells or between cancer cells and noncancerous cells, exosomal circRNAs participate in multiple aspects of cancer. In this review, we summarize the biogenesis, properties and functions of exosomal circRNAs. In particular, we describe their intercellular transfer in the tumour microenvironment and associate their biological functions with different phenotypes of cancer. Finally, we discuss potential clinical applications in the future.
Collapse
Affiliation(s)
- Huimin Lin
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghai20025P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai20025P. R. China
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghai20025P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai20025P. R. China
| | - Xiang Gu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghai20025P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai20025P. R. China
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghai20025P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai20025P. R. China
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghai20025P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai20025P. R. China
| |
Collapse
|
14
|
Exosomal transfer of circ_0006174 contributes to the chemoresistance of doxorubicin in colorectal cancer by depending on the miR-1205/CCND2 axis. J Physiol Biochem 2021; 78:39-50. [PMID: 34792792 DOI: 10.1007/s13105-021-00831-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Exosomes are the mediators of intercellular signal transduction, and they have been involved in the carcinogenesis and chemoresistance of tumor cells. Herein, we intended to investigate whether circular RNA (circRNA) circ_0006174 can regulate chemoresistance of doxorubicin (DOX) in colorectal cancer via exosomes. Forty-one pairs of normal and CRC (DOX sensitive, n = 16; DOX resistant, n = 25) samples were collected. The resistant cell lines (LoVo/DOX and HCT116/DOX) were constructed by exposure of parental cell lines (LoVo and HCT116) to DOX. The detection of circ_0006174, microRNA-1205 (miR-1205), and cyclin D2 (CCND2) was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8(CCK-8) was applied for determining the half of inhibitory concentration (IC50) of DOX and cell proliferation. The migration and invasion capacities were analyzed via transwell assay. Exosomes were extracted using ultracentrifugation. Protein levels were determined using western blot. Dual-luciferase reporter assay was used for affirming target interaction. In vivo experiment was performed by establishing xenograft models in mice. Circ_0006174 level was upregulated in DOX-resistant CRC tissues and cells. The downregulation of circ_0006174 inhibited DOX resistance, cell proliferation, migration, and invasion in DOX-resistant CRC cells. Interestingly, the abundant circ_0006174 was enriched in exosomes derived from DOX-resistant CRC cells. Furthermore, circ_0006174 could enhance DOX resistance via the exosomal intercellular transfer. Moreover, we validated the target relation of circ_0006174/miR-1205 or miR-1205/CCND2. The effect of exosomal circ_0006174 on DOX resistance was achieved by upregulating the miR-1205-mediated CCND2. In vivo, knockdown of circ_0006174 also enhanced tumor sensitivity to DOX by targeting miR-1205/CCND2 axis. Altogether, these findings unraveled that circ_0006174-enriched exosomes elevated DOX chemoresistance in CRC by the miR-1205/CCND2 axis. The exosomal circ_0006174 can be used as an available biomarker for the diagnosis of chemoresistance in CRC.
Collapse
|
15
|
Yi Y, Wu M, Zeng H, Hu W, Zhao C, Xiong M, Lv W, Deng P, Zhang Q, Wu Y. Tumor-Derived Exosomal Non-Coding RNAs: The Emerging Mechanisms and Potential Clinical Applications in Breast Cancer. Front Oncol 2021; 11:738945. [PMID: 34707990 PMCID: PMC8544822 DOI: 10.3389/fonc.2021.738945] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and is ranking the leading cause of cancer-related death among women worldwide. At present, BC is still an intricate challenge confronted with high invasion, metastasis, drug resistance, and recurrence rate. Exosomes are membrane-enclosed extracellular vesicles with the lipid bilayer and recently have been confirmed as significant mediators of tumor cells to communicate with surrounding cells in the tumor microenvironment. As very important orchestrators, non-coding RNAs (ncRNAs) are aberrantly expressed and participate in regulating gene expression in multiple human cancers, while the most reported ncRNAs within exosomes in BC are microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Notably, ncRNAs containing exosomes are novel frontiers to shape malignant behaviors in recipient BC cells such as angiogenesis, immunoregulation, proliferation, and migration. It means that tumor-derived ncRNAs-containing exosomes are pluripotent carriers with intriguing and elaborate roles in BC progression via complex mechanisms. The ncRNAs in exosomes are usually excavated based on specific de-regulated expression verified by RNA sequencing, bioinformatic analyses, and PCR experiments. Here, this article will elucidate the recent existing research on the functions and mechanisms of tumor-derived exosomal miRNA, lncRNA, circRNA in BC, especially in BC cell proliferation, metastasis, immunoregulation, and drug resistance. Moreover, these tumor-derived exosomal ncRNAs that existed in blood samples are proved to be excellent diagnostic biomarkers for improving diagnosis and prognosis. The in-depth understanding of tumor-derived exosomal ncRNAs in BC will provide further insights for elucidating the BC oncogenesis and progress and exploring novel therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Deng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Vakhshiteh F, Hassani S, Momenifar N, Pakdaman F. Exosomal circRNAs: new players in colorectal cancer. Cancer Cell Int 2021; 21:483. [PMID: 34521402 PMCID: PMC8439089 DOI: 10.1186/s12935-021-02112-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant cancer types, characterized by elevated mortality rate and treatment resistance. Despite the progress achieved in the explanation of the molecular basis of the disease as well as introducing potential biomarkers in the clinical practice, further investigation is essential to identify innovative molecules that contribute to colorectal carcinogenesis. Circular RNAs (circRNAs) are a novel and unexplored RNA type, associated with various human pathological conditions. Recently, circRNAs have been identified to be enriched and stable in exosomes and can exert their functions when exosomes reach neighboring or distant cells. Increasing evidence indicates that these so called exosomal circRNAs (exo-circRNAs) act as signaling molecules to regulate cancer proliferation, metastasis, and sensitivity to radio- and chemotherapy. This review aims to discuss the latest progress in exo-circRNAs studies in CRC with an emphasis on their potential as promising diagnostic molecular markers and therapeutic targets.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical, Sciences, Tehran, Iran.
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Momenifar
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Fatemeh Pakdaman
- Department of Genetics, Faculty of Science, University of Shahrekord, Shahrekord, Iran
| |
Collapse
|
17
|
Zang R, Qiu X, Song Y, Wang Y. Exosomes Mediated Transfer of Circ_0000337 Contributes to Cisplatin (CDDP) Resistance of Esophageal Cancer by Regulating JAK2 via miR-377-3p. Front Cell Dev Biol 2021; 9:673237. [PMID: 34307356 PMCID: PMC8297519 DOI: 10.3389/fcell.2021.673237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Chemoresistance remains a major obstacle to the treatment of esophageal cancer patients. Exosome-mediated transfer of circular RNAs (circRNAs) has been reported to be related to drug resistance in esophageal cancer. This study is designed to explore the role and mechanism of exosomal circ_0000337 on CDDP resistance in esophageal cancer. Methods: Cell viability, proliferation, colony number, apoptosis, migration, and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, and transwell assays. Circ_0000337, microRNA-377 (miR-377-3p), and Janus kinase 2 (JAK2) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Exosomes were isolated and detected by differential centrifugation and a transmission electron microscope. Protein levels of CD9, CD63, and JAK2 were tested by Western blot assay. The binding relationship between miR-377-3p and circ_0000337 or JAK2 was predicted by circinteractome or Starbase and then verified by dual-luciferase reporter assay and RNA pull-down assay. The biological role of exosomal circ_0000337 and CDDP on esophageal cancer cell growth was examined by the xenograft tumor model in vivo. Results: Circ_0000337 and JAK2 were highly expressed, and miR-377-3p was decreased in CDDP-resistant esophageal cancer tissues and cells. Moreover, circ_0000337-containing exosomes secreted by CDDP-resistant esophageal cancer cells could promote CDDP resistance, cell growth, and metastasis in CDDP-sensitive esophageal cancer cells in vitro. The mechanical analysis discovered that circ_0000337 functioned as a sponge of miR-377-3p to regulate JAK2 expression. Exosomal circ_0000337 increased the drug resistance of esophageal cancer in vivo. Conclusion: Exosomal circ_0000337 accelerated CDDP resistance of esophageal cancer cells partly by regulating the miR-377-3p/JAK2 axis, hinting a promising therapeutic target for the esophageal cancer treatment.
Collapse
Affiliation(s)
- Rukun Zang
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaowen Qiu
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Oncology, Binzhou Medical College, Binzhou, China
| | - Yipeng Song
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yang Wang
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
18
|
Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:164. [PMID: 33975615 PMCID: PMC8111743 DOI: 10.1186/s13046-021-01942-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
Background Temozolomide (TMZ) resistance limits its application in glioma. Exosome can carry circular RNAs (circRNAs) to regulate drug resistance via sponging microRNAs (miRNAs). miRNAs can control mRNA expression by regulate the interaction with 3’UTR and methylation. Nanog homeobox (NANOG) is an important biomarker for TMZ resistance. Hitherto, it is unknown about the role of exosomal hsa_circ_0072083 (circ_0072083) in TMZ resistance in glioma, and whether it is associated with NANOG via regulating miRNA sponge and methylation. Methods TMZ-resistant (n = 36) and sensitive (n = 33) patients were recruited. The sensitive cells and constructed resistant cells were cultured and exposed to TMZ. circ_0072083, miR-1252-5p, AlkB homolog H5 (ALKBH5) and NANOG levels were examined via quantitative reverse transcription polymerase chain reaction and western blot. The half maximal inhibitory concentration (IC50) of TMZ, cell proliferation, apoptosis, migration and invasion were analyzed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing and transwell assays. The in vivo function was assessed using xenograft model. The N6-methyladenosine (m6A) level was analyzed via methylated RNA immunoprecipitation (MeRIP). Target relationship was investigated via dual-luciferase reporter assay and RNA immunoprecipitation. Warburg effect was investigated via lactate production, glucose uptake and key enzymes expression. Exosome was isolated and confirmed via transmission electron microscopy and specific protein expression. Results circ_0072083 expression was increased in TMZ-resistant glioma tissues and cells. circ_0072083 knockdown restrained the resistance of resistant cells via decreasing IC50 of TMZ, proliferation, migration, invasion and xenograft tumor growth and increasing apoptosis. circ_0072083 silence reduced NANOG expression via blocking ALKBH5-mediated demethylation. circ_0072083 could regulate NANOG and ALKBH5 via targeting miR-1252-5p to control TMZ resistance. Warburg effect promoted the release of exosomal circ_0072083 in resistant cells. Exosomal circ_0072083 from resistant cells increased the resistance of sensitive cells to TMZ in vitro and xenograft model. Exosomal circ_0072083 level was enhanced in resistant patients, and it had a diagnostic value and indicated a lower overall survival in glioma. Conclusion Exosomal circ_0072083 promoted TMZ resistance via increasing NANOG via regulating miR-1252-5p-mediated degradation and demethylation in glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01942-6.
Collapse
|
19
|
Qiu Y, Li P, Zhang Z, Wu M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front Oncol 2021; 11:664904. [PMID: 33987099 PMCID: PMC8111219 DOI: 10.3389/fonc.2021.664904] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are natural nanoscale bilayer phospholipid vesicles that can be secreted by almost all types of cells and are detected in almost all types of body fluids. Exosomes are effective mediators of cell–cell signaling communication because of their ability to carry and transfer a variety of bioactive molecules, including non-coding RNAs. Non-coding RNAs have also been found to exert strong effects on a variety of biological processes, including tumorigenesis. Many researchers have established that exosomes encapsulate bioactive non-coding RNAs that alter the biological phenotype of specific target cells in an autocrine or a paracrine manner. However, the mechanism by which the producer cells package non-coding RNAs into exosomes is not well understood. This review focuses on the current research on exosomal non-coding RNAs, including the biogenesis of exosomes, the possible mechanism of sorting non-coding RNAs, their biological functions, and their potential for clinical application in the future.
Collapse
Affiliation(s)
- Yi Qiu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China National Health Commission Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Zuping Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
20
|
Zhang Z, Mugisha A, Fransisca S, Liu Q, Xie P, Hu Z. Emerging Role of Exosomes in Retinal Diseases. Front Cell Dev Biol 2021; 9:643680. [PMID: 33869195 PMCID: PMC8049503 DOI: 10.3389/fcell.2021.643680] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal diseases, the leading causes of vison loss and blindness, are associated with complicated pathogeneses such as angiogenesis, inflammation, immune regulation, fibrous proliferation, and neurodegeneration. The retina is a complex tissue, where the various resident cell types communicate between themselves and with cells from the blood and immune systems. Exosomes, which are bilayer membrane vesicles with diameters of 30–150 nm, carry a variety of proteins, lipids, and nucleic acids, and participate in cell-to-cell communication. Recently, the roles of exosomes in pathophysiological process and their therapeutic potential have been emerging. Here, we critically review the roles of exosomes as possible intracellular mediators and discuss the possibility of using exosomes as therapeutic agents in retinal diseases.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aime Mugisha
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silvia Fransisca
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Geng X, Zhang Y, Zeng Z, Zhu Z, Wang H, Yu W, Li Q. Molecular Characteristics, Prognostic Value, and Immune Characteristics of m 6A Regulators Identified in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:629718. [PMID: 33816266 PMCID: PMC8014089 DOI: 10.3389/fonc.2021.629718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
N6-methyladenosine (m6A) plays crucial roles in a diverse range of physiological and pathological processes, and it is believed that it tremendously promotes neoplasia and progression. However, knowledge of the molecular characteristics of m6A modification, its prognostic value, and the infiltration of immune cell populations in head and neck squamous cell carcinoma (HNSCC) is still insufficient. Therefore, a pan-cancer genomic analysis was systematically performed here by examining m6A regulators at the molecular level within 33 multiple cancer types, and the correlations between the expression of m6A molecules were researched using datasets from The Cancer Genome Atlas (TCGA). Based on the above analysis, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is upregulated in HNSCC and may serve as an independent prognostic factor of overall survival, thus showing potential as a prognostic biomarker in HNSCC. Genetic alteration analyses elucidated the reasons for the abnormal upregulation of IGF2BP2 in HNSCC. As a result, IGF2BP2 was selected for further univariate and multivariate analyses. The functions of the related genes were annotated through gene set enrichment analysis, and the activation states of multiple biological pathways were shown by gene set variation analysis. We found that LRRC59 and STIP1 may act as IGF2BP2-associated genes to have a regulatory function in the m6A modification. In addition, we found that the status of immune cell infiltration was correlated with the level of IGF2BP2 gene expression. Our results provide supplementation at the molecular level for epigenetic regulation in HNSCC and insight into effective immunotherapy targets and strategies.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.,School of Clinical Medicine, Hebei University, Baoding, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.,School of Clinical Medicine, Hebei University, Baoding, China
| | - Zhongrui Zhu
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.,School of Clinical Medicine, Hebei University, Baoding, China
| | - Wentao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China.,Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
22
|
Geng X, Zhang Y, Li Q, Xi W, Yu W, Shi L, Lin X, Sun S, Wang H. Screening and functional prediction of differentially expressed circular RNAs in human glioma of different grades. Aging (Albany NY) 2020; 13:1989-2014. [PMID: 33323543 PMCID: PMC7880344 DOI: 10.18632/aging.202192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) have a critical regulatory function in human glioma. However, novel circRNAs related to different pathological grades of glioma and their crucial potential function are worth screening and prediction. CircRNA expression profiling was performed for 6 paired high- and low-grade glioma tissues and 5 adjacent normal brain tissues through next-generation sequencing. Quantitative real-time PCR (qRT-PCR) was conducted to validate circRNA expression. Bioinformatics analysis was performed, and circRNA-miRNA-mRNA networks were constructed. The expression and survival data of miRNAs and target genes were examined by GEPIA, Chinese Glioma Genome Atlas (CGGA), ONCOMINE, and cBioPortal databases. The RNA binding proteins (RBPs), open reading frames (ORFs) and N6-methyladenosine (m6A) modifications of the identified circRNAs were also predicted. Through multilevel research screening, 4 circRNAs (hsa_circ_0000915, hsa_circ_0127664, hsa_circ_0008362, and hsa_circ_0001467) were associated with glioma of different pathological grades and could be preferred candidates for subsequent functional analysis. Therefore, circRNAs are associated with the different pathological grades of glioma and reveal their potential critical regulatory function. CircRNAs might provide vital molecular biomarkers and potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| | - Yuhao Zhang
- School of Clinical Medicine, Hebei University, Baoding 071000, PR China.,Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China
| | - Wang Xi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Wentao Yu
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China
| | - Liang Shi
- Endoscope Room, Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061001, PR China
| | - Xiaomeng Lin
- Departments of Breast Surgery, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China.,School of Clinical Medicine, Hebei University, Baoding 071000, PR China
| |
Collapse
|
23
|
Rajappa A, Banerjee S, Sharma V, Khandelia P. Circular RNAs: Emerging Role in Cancer Diagnostics and Therapeutics. Front Mol Biosci 2020; 7:577938. [PMID: 33195421 PMCID: PMC7655967 DOI: 10.3389/fmolb.2020.577938] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are rapidly coming to the fore as major regulators of gene expression and cellular functions. They elicit their influence via a plethora of diverse molecular mechanisms. It is not surprising that aberrant circRNA expression is common in cancers and they have been implicated in multiple aspects of cancer pathophysiology such as apoptosis, invasion, migration, and proliferation. We summarize the emerging role of circRNAs as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
| | | | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, India
| |
Collapse
|
24
|
Yang H, Zhang H, Yang Y, Wang X, Deng T, Liu R, Ning T, Bai M, Li H, Zhu K, Li J, Fan Q, Ying G, Ba Y. Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis. Theranostics 2020; 10:8211-8226. [PMID: 32724467 PMCID: PMC7381736 DOI: 10.7150/thno.44419] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is one of the important properties of solid tumor. However, oxygen supply within tumors is generally heterogeneous according to the distance from the nearest blood vessel. The discrepancy of metastatic potential exists between hypoxic cancer cells and relatively normoxic cancer cells. But the molecular mechanism remains poorly understood. Methods: Differential expression of circRNAs in plasma exosomes of CRC patients and normal subjects was performed by screening. Exosomes were isolated by ultra-centrifugation and RNA expressions were determined by RT-qPCR. The migratory capacity of cells was performed by high intension imaging, wound healing assay and transwell chamber migration assay. Results: Circ-133 is enriched in the plasma exosomes of CRC patients and increased with the disease progression. Exosomal circ-133 derived from hypoxic cells delivered into normoxic cells and promoted cancer metastasis by acting on miR-133a/GEF-H1/RhoA axis. Meanwhile, animal experiments revealed that knockdown of circ-133 can inhibit tumor metastasis. Circ-133 is expected to be a new biomarker for monitoring tumor progression and might be a novel therapeutic target. Conclusions: Hypoxia-derived exosomal circ-133 transported into normaxic cancer cells and promoted cell migration via miR-133a/GEF-H1/RhoA axis. This study reveals a potential mechanism for that the intra-tumor heterogeneity of oxygen promote cancer progression.
Collapse
Affiliation(s)
- Haiou Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuchong Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xinyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kegan Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jialu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, China
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|