1
|
Shornale Akter M, Uddin MH, Atikur Rahman S, Hossain MA, Ashik MAR, Zaman NN, Faruk O, Hossain MS, Parvin A, Rahman MH. Transcriptomic analysis revealed potential regulatory biomarkers and repurposable drugs for breast cancer treatment. Cancer Rep (Hoboken) 2024; 7:e2009. [PMID: 38717954 PMCID: PMC11078332 DOI: 10.1002/cnr2.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer (BC) is the most widespread cancer worldwide. Over 2 million new cases of BC were identified in 2020 alone. Despite previous studies, the lack of specific biomarkers and signaling pathways implicated in BC impedes the development of potential therapeutic strategies. We employed several RNAseq datasets to extract differentially expressed genes (DEGs) based on the intersection of all datasets, followed by protein-protein interaction network construction. Using the shared DEGs, we also identified significant gene ontology (GO) and KEGG pathways to understand the signaling pathways involved in BC development. A molecular docking simulation was performed to explore potential interactions between proteins and drugs. The intersection of the four datasets resulted in 146 DEGs common, including AURKB, PLK1, TTK, UBE2C, CDCA8, KIF15, and CDC45 that are significant hub-proteins associated with breastcancer development. These genes are crucial in complement activation, mitotic cytokinesis, aging, and cancer development. We identified key microRNAs (i.e., hsa-miR-16-5p, hsa-miR-1-3p, hsa-miR-147a, hsa-miR-195-5p, and hsa-miR-155-5p) that are associated with aggressive tumor behavior and poor clinical outcomes in BC. Notable transcription factors (TFs) were FOXC1, GATA2, FOXL1, ZNF24 and NR2F6. These biomarkers are involved in regulating cancer cell proliferation, invasion, and migration. Finally, molecular docking suggested Hesperidin, 2-amino-isoxazolopyridines, and NMS-P715 as potential lead compounds against BC progression. We believe that these findings will provide important insight into the BC progression as well as potential biomarkers and drug candidates for therapeutic development.
Collapse
Affiliation(s)
- Most Shornale Akter
- Department of Biotechnology and Genetic EngineeringIslamic UniversityKushtiaBangladesh
| | - Md. Helal Uddin
- Department of Biotechnology and Genetic EngineeringIslamic UniversityKushtiaBangladesh
| | - Sheikh Atikur Rahman
- Department of Biotechnology and Genetic EngineeringIslamic UniversityKushtiaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of MicrobiologyPrimeasia UniversityDhakaBangladesh
| | | | - Nurun Nesa Zaman
- Department of Biotechnology and Genetic EngineeringIslamic UniversityKushtiaBangladesh
| | - Omar Faruk
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | | | - Anzana Parvin
- Department of Biotechnology and Genetic EngineeringIslamic UniversityKushtiaBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
- Center for Advanced Bioinformatics and Artificial Intelligence ResearchIslamic UniversityKushtiaBangladesh
| |
Collapse
|
2
|
Xu J, Chen J, Wang D, Li Y, Lian P, Wu X, Yan R. Nafamostat mesylate sensitizes ovarian cancer cells to carboplatin by promoting the ZNF24-mediated inhibition of WNT2B. J Toxicol Sci 2024; 49:467-479. [PMID: 39496384 DOI: 10.2131/jts.49.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Resistance to chemotherapeutic medicines complicates and eventually kills people with ovarian cancer. Nafamostat mesylate (NM) has been used as an adjuvant therapy to enhance chemotherapy sensitivity in several cancers. This study aimed to evaluate the effect of NM on ovarian cancer cells susceptible to carboplatin (CBP) and to determine the underlying mechanism involved. Herein, qRT-PCR, western blot, and IHC were used to analyze mRNA and protein expression. Cell viability and proliferation were measured using the MTT and colony formation assays. Cell migration and invasion were examined using the Transwell assay. Flow cytometry was employed to detect cell apoptosis. The interaction between zinc finger protein 24 (ZNF24) and wingless-type MMTV integration site family member 2b (WNT2B) was validated via the dual-luciferase reporter and Chromatin immunoprecipitation assays. A xenograft nude mouse model was used to assess the effect of NM on CBP sensitivity in vivo. Our results showed that NM intervention inhibited the viability, proliferation, migration, and invasion and facilitated the apoptosis of CBP-resistant ovarian cancer cells. Furthermore, NM sensitized ovarian cancer cells to CBP by upregulating ZNF24. ZNF24 inactivated Wnt/β-catenin signaling by inhibiting the transcription of WNT2B. Additionally, NM enhanced the inhibitory effect of CBP on tumor growth in vivo. Taken together, NM enhanced the CBP sensitivity of ovarian cancer cells by promoting the ZNF24-mediated inactivation of the WNT2B/Wnt/β-catenin axis. These findings suggest a viable treatment approach for improving CBP resistance in ovarian cancer.
Collapse
Affiliation(s)
- Jiehuan Xu
- Changsha Health Vocational College, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| | - Dao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| | - Yaojun Li
- Changsha Health Vocational College, China
| | - Ping Lian
- Changsha Health Vocational College, China
| | - Xiaozhu Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| | - Rong Yan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, China
| |
Collapse
|
3
|
Zhuo Z, Wang Q, Li C, Zhang L, Zhang L, You R, Gong Y, Hua Y, Miao L, Bai J, Zhang C, Feng R, Chen M, Su F, Qu C, Xiao F. IGH rod-like tracer: An AlphaFold2 structural similarity extraction-based predictive biomarker for MRD monitoring in pre-B-ALL. iScience 2023; 26:107107. [PMID: 37408685 PMCID: PMC10319212 DOI: 10.1016/j.isci.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Sequence variation resulting from the evolution of IGH clones and immunophenotypic drift makes it difficult to track abnormal B cells in children with precursor B cell acute lymphoblastic leukemia (pre-B-ALL) by flow cytometry, qPCR, or next-generation sequencing (NGS). The V-(D)-J regions of immunoglobulin and T cell receptor of 47 pre-B-ALL samples were sequenced using the Illumina NovaSeq platform. The IGH rod-like tracer consensus sequence was extracted based on its rod-like alpha-helices structural similarity predicted by AlphaFold2. Additional data from published 203 pre-B-ALL samples were applied for validation. NGS-IGH (+) patients with pre-B-ALL had a poor prognosis. Consistent CDR3-coded protein structures in NGS-IGH (+) samples could be extracted as a potential follow-up marker for pre-B-ALL children during treatment. IGH rod-like tracer from quantitative immune repertoire sequencing may serve as a class of biomarker with significant predictive values for the dynamic monitoring of MRD in pre-B-ALL children.
Collapse
Affiliation(s)
- Zhongling Zhuo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Laboratory Medicine, Peking University People’s Hospital, Beijing, China
| | - Qingchen Wang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chang Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanxin Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran You
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Ying Hua
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Linzi Miao
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiefei Bai
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Chen
- National Cancer Data Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Fei Xiao
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
5
|
Jia D, Li L, Wang P, Feng Q, Pan X, Lin P, Song S, Yang L, Yang J. ZNF24 regulates the progression of KRAS mutant lung adenocarcinoma by promoting SLC7A5 translation. Front Oncol 2022; 12:1043177. [PMID: 36505791 PMCID: PMC9727282 DOI: 10.3389/fonc.2022.1043177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Clinical treatment of RAS mutant cancers is challenging because of the complexity of the Ras signaling pathway. SLC7A5 is a newly discovered downstream gene of the Ras signaling pathway, but the regulatory mechanism is unclear. We aimed to explore the molecular mechanism and role in KRAS mutant lung adenocarcinoma progression. Methods Key gene that regulated SLC7A5 in KRAS mutant lung adenocarcinoma was screened by RNA sequencing and bioinformatics analysis. The effect of this gene on the expression of SLC7A5 was studied by RNAi. The regulatory mechanism between the two genes was investigated by immunofluorescence, CoIP, pulldown and yeast two-hybrid assays. The location of the two genes was determined by inhibiting Ras and the downstream pathways PI3K-AKT and MEK-ERK. By in vivo and in vitro experiments, the effects of the key gene on the biological functions of KRAS mutant lung adenocarcinoma were explored. Results We found a novel gene, ZNF24, which upregulated SLC7A5 protein expression rather than mRNA expression in KRAS mutant lung adenocarcinoma. Endogenous protein interactions occurred between ZNF24 and SLC7A5. Ras inhibition reduced the expression of ZNF24 and SLC7A5. ZNF24 and SLC7A5 are located downstream of the MEK-ERK and PI3K-AKT pathways. In vivo and in vitro functional experiments confirmed that the ZNF24-SLC7A5 signaling axis promoted the proliferation, invasion and migration of KRAS mutant lung adenocarcinoma. Conclusions ZNF24 promoted the growth of KRAS mutant lung adenocarcinoma by upregulating SLC7A5 protein expression, which suggested that ZNF24 is a new biomarker of KRAS mutant tumors and could be a new potential therapeutic target for Ras-driven tumors.
Collapse
Affiliation(s)
- Daqi Jia
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, China,Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Leilei Li
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, China,Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Peng Wang
- Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Qiang Feng
- Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Xinyan Pan
- Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Peng Lin
- Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Shuling Song
- Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Lilin Yang
- Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Julun Yang
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, China,Department of Pathology, 920 Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, China,*Correspondence: Julun Yang,
| |
Collapse
|
6
|
Zhang M, Wu K, Wang M, Bai F, Chen H. CASP9 As a Prognostic Biomarker and Promising Drug Target Plays a Pivotal Role in Inflammatory Breast Cancer. Int J Anal Chem 2022; 2022:1043445. [PMID: 36199443 PMCID: PMC9527435 DOI: 10.1155/2022/1043445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is one of the most rare and aggressive subtypes of primary breast cancer (BC). Our study aimed to explore hub genes related to the pathogenesis of IBC, which could be considered as novel molecular biomarkers for IBC diagnosis and prognosis. Material and Methods. Two datasets from gene expression omnibus database (GEO) were selected. Enrichment analysis and protein-protein interaction (PPI) network for the DEGs were performed. We analyzed the prognostic values of hub genes in the Kaplan-Meier Plotter. Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD) was used to find candidate small molecules capable to reverse the gene status of IBC. Results 157 DEGs were selected in total. We constructed the PPI network with 154 nodes interconnected by 128 interactions. The KEGG pathway analysis indicated that the DEGs were enriched in apoptosis, pathways in cancer and insulin signaling pathway. PTEN, PSMF1, PSMC6, AURKB, FZR1, CASP9, CASP6, CASP8, BAD, AKR7A2, ZNF24, SSX2IP, SIGLEC1, MS4A4A, and VSIG4 were selected as hub genes based on the high degree of connectivity. Six hub genes (PSMC6, AURKB, CASP9, BAD, ZNF24, and SSX2IP) that were significantly associated with the prognosis of breast cancer. The expression of CASP9 protein was associated with prognosis and immune cells infiltration of breast cancer. CASP9- naringenin (NGE) is expected to be the most promising candidate gene-compound interaction for the treatment of IBC. Conclusion Taken together, CASP9 can be used as a prognostic biomarker and a novel therapeutic target in IBC.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Maoli Wang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Pang B, Wang Y, Chang X. A Novel Tumor Suppressor Gene, ZNF24, Inhibits the Development of NSCLC by Inhibiting the WNT Signaling Pathway to Induce Cell Senescence. Front Oncol 2021; 11:664369. [PMID: 34386416 PMCID: PMC8353233 DOI: 10.3389/fonc.2021.664369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Understanding the characteristics of tumor suppressor genes (TSGs) is of great significance for the development of new targeted treatment strategies for non-small cell lung cancer (NSCLC). Therefore, this present article is to explore the underlying molecular mechanism of ZFN24 inhibiting the development of NSCLC. Methods We performed RT-PCR and Western blotting for evaluating associated RNA and protein expression. CCK8, colony forming and sphere-forming assays were used to evaluate the proliferation and stemness of NSCLC cells. NSCLC cell senescence was examined by β-galactosidase staining assay. Luciferase assay was performed to evaluate β-catenin transcriptional activity. The effect of ZNF24 on NSCLC cells in vivo was evaluated by the xenograft tumor experiment. Results Ectopic expression of ZNF24 significantly inhibited cell viability, colony forming ability, and stemness of NSCLC cells. WNT signaling pathway was inhibited by ZNF24 resulting in NSCLC cell senescence. β-catenin transcriptional activity was significantly inhibited by ZNF24 (P < 0.05). Ectopic expression of ZNF24 significantly inhibited xenotransplant tumors growth in vivo (P < 0.05). Conclusion ZNF24 could notably inhibit the development of NSCLC by inhibiting the WNT signaling pathway.
Collapse
Affiliation(s)
- Bo Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyan Chang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Xiong J, Jiang P, Zhong L, Wang Y. The Novel Tumor Suppressor Gene ZNF24 Induces THCA Cells Senescence by Regulating Wnt Signaling Pathway, Resulting in Inhibition of THCA Tumorigenesis and Invasion. Front Oncol 2021; 11:646511. [PMID: 34136386 PMCID: PMC8201406 DOI: 10.3389/fonc.2021.646511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECT Clinically, the effective treatment options available to thyroid cancer (THCA) patients are very limited. Elucidating the features of tumor suppressor genes (TSGs) and the corresponding signal transduction cascade may provide clues for the development of new strategies for targeted therapy of THCA. Therefore, this paper aims to explore the mechanism of ZNF24 underlying promoting THCA cell senescence at molecular level. METHODS We performed RT-PCR and Western Blotting for evaluating associated RNA and protein expression. CCK8, colony forming, wound healing and Transwell chamber assays were conducted to examine THCA cell proliferation, invasion and migration. β-galactosidase staining assay was performed to detect THCA cells senescence. The size and volume of xenotransplanted tumors in nude mice are calculated to asses ZNF24 effect in vivo. RESULTS Ectopic expression of ZNF24 significantly inhibited the cell viability, colony forming, migration and invasion abilities of THCA cell lines (K1/GLAG-66i and BCPAPi) (P < 0.05). ZNF24 induced BCPAPi cells senescence through regulating Wnt signaling pathway. ZNF24 inhibited Wnt signaling pathway activition by competitively binding β-catenin from LEF1/TCF1-β-catenin complex. In nude mice, both Ectopic expression of ZNF24 and 2,4-Da (the strong β-catenin/Tcf-4 inhibitor) treatment significantly decreased both the size and weight of xenotransplanted tumors when compared with control mice (P < 0.05). CONCLUSION Results obtained in vivo and in vitro reveal the role of ZNF24 in significantly suppressing THCA tumorigenesis and invasion by regulating Wnt signaling pathway.
Collapse
Affiliation(s)
- Juan Xiong
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China
| | - Panpan Jiang
- School of Life and Marine Sciences, Shenzhen University, Shenzhen, China
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen, China
| | - Li Zhong
- School of Life and Marine Sciences, Shenzhen University, Shenzhen, China
| | - Youling Wang
- School of Life and Marine Sciences, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Li H, Li Y, Tian D, Zhang J, Duan S. miR-940 is a new biomarker with tumor diagnostic and prognostic value. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:53-66. [PMID: 34168918 PMCID: PMC8192490 DOI: 10.1016/j.omtn.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-940 is a microRNA located on chromosome 16p13.3, which has varying degrees of expression imbalance in many diseases. It binds to the 3′ untranslated region (UTR) and affects the transcription or post-transcriptional regulation of target protein-coding genes. For a diversity of cellular processes, including cell proliferation, migration, invasion, apoptosis, epithelial-to-mesenchymal transition (EMT), cell cycle, and osteogenic differentiation, miR-940 can affect them not only by regulating protein-coding genes but also long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in pathways. Intriguingly, miR-940 participates in four pathways that affect cancer development, including the Wnt/β-catenin pathway, mitogen-activated protein kinase (MAPK) pathway, PD-1 pathway, and phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Importantly, the expression of miR-940 is intimately correlated with the diagnosis and prognosis of tumor patients, as well as to the efficacy of tumor chemotherapy drugs. In conclusion, our main purpose is to outline the expression of miR-940 in various diseases and the molecular biological and cytological functions of target genes in order to reveal its potential diagnostic and prognostic value as well as its predictive value of drug efficacy.
Collapse
Affiliation(s)
- Hongxiang Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongmei Tian
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaqian Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|