1
|
Islam ME, Debnath KC, Moniruzzaman R, Okuyama K, Islam S, Dongre HN. Biological implications of decoding the extracellular matrix of vulva cancer. Oncol Rep 2025; 53:19. [PMID: 39670289 DOI: 10.3892/or.2024.8852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/15/2024] [Indexed: 12/14/2024] Open
Abstract
The present review aimed to elucidate the roles of extracellular matrix (ECM) components in the progression of vulvar squamous cell carcinoma (VSCC) and explore potential therapeutic avenues for this type of malignancy. This exploration holds promise for identifying precise molecular targets within the ECM milieu, thus facilitating the development of innovative therapeutic modalities tailored to disrupt these interactions and ultimately improve patient outcomes in VSCC. The dysregulated ECM serves as a potent driver of SCC tumor progression, orchestrating key processes such as angiogenesis, inflammation and stromal cell behavior. Yet, the exploration of ECM role in VSCC is still in its early stages. Recent research highlights the critical role of ECM organization and expression within the tumor microenvironment (TME) in influencing key aspects of VSCC, including tumor staging, grading, metastasis, invasion and patient survival. Cancer‑associated fibroblasts play a pivotal role in this dynamic by engaging in reciprocal interactions with VSCC cells, leading to significant ECM alterations and creating an immune‑suppressive TME. This hinders antitumor immunity and fosters therapeutic resistance in VSCC treatment. The dysregulated ECM in VSCC drives tumor progression, metastasis and affects patient survival. Targeting ECM, along with emerging therapies such as immune checkpoint blockade, offers promise for improved VSCC treatment outcomes.
Collapse
Affiliation(s)
- Mohammad Emranul Islam
- Department of Oral and Maxillofacial Surgery, City Dental College and Hospital, 1229 Dhaka, Bangladesh
| | - Kala Chand Debnath
- Department of Head and Neck Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rohan Moniruzzaman
- Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kohei Okuyama
- Department of Head and Neck Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shajedul Islam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Nitin Dongre
- Center for Cancer Biomarkers and Gade Laboratory for Pathology, Institute of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
2
|
Zhao L, Wang P, Sun L, Ma W, Yu L. SP1/COL1A2/ZEB1 axis promotes TGF-β2-induced lens epithelial cell proliferation, migration, invasion and EMT process. Exp Eye Res 2025; 251:110220. [PMID: 39710101 DOI: 10.1016/j.exer.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/23/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Posterior capsule opacification (PCO) is the most common complication after cataract surgery. In this study, we used transforming growth factor beta-2 (TGF-β2)-induced SRA01/04 cells to mimic PCO cell model and explored the functions and underlying mechanisms of specific protein 1 (SP1) in TGF-β2-induced SRA01/04 cell development. MTT assay and EdU assay were carried out to explore the proliferation of SRA01/04 cells. Transwell assay and wound-healing assay were performed to investigate SRA01/04 cell migration and invasion. Chromatin Immunoprecipitation (ChIP) assay, dual-luciferase reporter assay and Co-immunoprecipitation (Co-IP) assay were used to analyze the relations of SP1, COL1A2 and ZEB1. TGF-β2 treatment led to the promotion of SRA01/04 cell proliferation, migration, invasion and EMT process. COL1A2 level was induced by TGF-β2 treatment and COL1A2 knockdown inhibited TGF-β2-induced SRA01/04 cell proliferation, migration, invasion and EMT. SP1 could activate the transcription of COL1A2. SP1 overexpression promoted TGF-β2-induced SRA01/04 cell injury by regulating COL1A2 expression. Moreover, COL1A2 interacted with ZEB1 and COL1A2 knockdown-mediated effects on the proliferation, migration, invasion and EMT of TGF-β2-induced SRA01/04 cells were abrogated by elevating ZEB1. SP1 regulated COL1A2 and then mediated ZEB1 to affect the proliferation, migration, invasion and EMT of TGF-β2-induced SRA01/04 cells.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Ping Wang
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Lianyi Sun
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Weimei Ma
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Lei Yu
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China.
| |
Collapse
|
3
|
Sharma S, Shamjetsabam ND, Chauhan K, Yashavarddhan M, Gautam P, Prakash P, Choudhary P, Chhabra SS, Acharya R, Kalra SK, Gupta A, Jain S, Ganguly NK, Rana R. Quantitative tissue analysis reveals AK2, COL1A1, and PLG protein signatures: targeted therapeutics for meningioma. Int J Surg 2024; 110:7434-7446. [PMID: 39288025 PMCID: PMC11634153 DOI: 10.1097/js9.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Meningioma is the most prevalent primary intracranial brain tumor and accounts for one-third of all CNS tumors. Meningioma is known to be the most common yet life-threatening brain tumor with a higher recurrence rate. Globally, there is an increase in the healthcare burden due to meningioma and hence in its research. The present clinical approach includes surgical resection, chemotherapy, and radiation therapies to which the malignancy does not seem to respond efficiently. Targeted therapies and molecular markers provide elite patient treatment and care for individuals suffering from meningiomas as compared to conventional measures. Although there is proteomic data on meningioma the knowledge of potential biomarkers differentiating the grades is scarce. To identify the best set of biomarkers, validation of reported markers in large and independent sample cohorts in the future is necessary. METHODS A total of 12 samples, 3 each of control (which made pool 1) meningioma grade I (which made 2 sets: pool 2 and pool 3), and meningioma grade II (which made pool 4) were taken for LC-MS/MS. After this, the expression of three proteins was checked by immunocytochemistry, flow cytometry, and western blotting. RESULTS Protein expression was analyzed using various techniques like mass spectrometry, immunocytochemistry, flow cytometry, and western blotting. Mass spectrometry is the most commonly used standard and reliable technique for identifying and quantifying protein expression. We got three highly upregulated proteins namely AK2, COL1A1, and PLG using this technique. The biomarker potential of these proteins was further checked by ICC, western blotting, and flow cytometry. Three important proteins were found to be upregulated namely, AK2 (Adenylate kinase 2), COL1A1 (collagen 1A1), and PLG (plasminogen). The order of increased protein expression was control < MG grade I < MG grade II according to mass spectrometry and western blotting. In immunocytochemistry, we found that COL1A1 expression increases significantly with grades in comparison to control. Similarly, AK2 and PLG also showed little increase but not as much as COL1A1. In flow cytometry, PLG showed higher upregulation in grades than control. While AK2 and COL1A1 showed little increase in expression in grades than control. All techniques, especially mass spectrometry and western blotting, presented higher expression of these proteins in grades as compared to control. CONCLUSIONS In the quest to find a suitable therapeutic marker, this study incorporates quantitative labeling and detection followed by flow cytometry, immunocytochemistry, and western blotting for early diagnosis and treatment of meningioma. The article further explores the efficacy of some proteins namely AK2, COL1A1, and PLG to be the targeted molecules.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital
| | | | - Kirti Chauhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital
| | | | - Poonam Gautam
- Central Proteomics Facility, ICMR-National Institute of Pathology
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard Deemed to be University
| | - Priyanka Choudhary
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Bathinda, Punjab, India
| | | | - Rajesh Acharya
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi
| | - Samir K. Kalra
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi
| | - Anshul Gupta
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi
| | - Sunila Jain
- Department of Histopathology, Sir Ganga Ram Hospital
| | | | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital
| |
Collapse
|
4
|
Zambrzycki SC, Saberi S, Biggs R, Eskandari N, Delisi D, Taylor H, Mehta AS, Drake RR, Gentile S, Bradshaw AD, Ostrowski M, Angel PM. Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI). Matrix Biol Plus 2024; 24:100161. [PMID: 39435160 PMCID: PMC11492733 DOI: 10.1016/j.mbplus.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
While numerous approaches have been reported towards understanding single cell regulation, there is limited understanding of single cell production of extracellular matrix phenotypes. Collagens are major proteins of the extracellular microenvironment extensively used in basic cell culture, tissue engineering, and biomedical applications. However, identifying compositional regulation of collagen remains challenging. Here, we report the development of In vitro ExtraCellular Matrix Mass Spectrometry Imaging (ivECM-MSI) as a tool to rapidly and simultaneously define collagen subtypes from coatings and basic cell culture applications. The tool uses the mass spectrometry imaging platform with reference libraries to produce visual and numerical data types. The method is highly integrated with basic in vitro strategies as it may be used with conventional cell chambers on minimal numbers of cells and with minimal changes to biological experiments. Applications tested include semi-quantitation of collagen composition in culture coatings, time course collagen deposition, deposition altered by gene knockout, and changes induced by drug treatment. This approach provides new access to proteomic information on how cell types respond to and change the extracellular microenvironment and provides a holistic understanding of both the cell and extracellular response.
Collapse
Affiliation(s)
| | | | - Rachel Biggs
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Najmeh Eskandari
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Davide Delisi
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Harrison Taylor
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Saverio Gentile
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Amy D. Bradshaw
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Michael Ostrowski
- Hollings Cancer Center, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
5
|
Wei L, Wu Y, Cai S, Qin Y, Xing S, Wang Z. Long Non-coding RNA Linc01224 Regulates Hypopharyngeal Squamous Cell Carcinoma Growth Through Interactions with miR-485-5p and IGF2BP3. J Cancer 2023; 14:3009-3022. [PMID: 37859812 PMCID: PMC10583594 DOI: 10.7150/jca.85019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/05/2023] [Indexed: 10/21/2023] Open
Abstract
Increasing evidence illustrates that long non-coding RNAs (lncRNAs) play significant oncogenic roles, including hypopharyngeal squamous cell carcinoma (HSCC). The function and mechanism of long non-coding RNAs (lncRNAs) in hypopharyngeal squamous cell carcinoma (HSCC) have not been fully elucidated. Therefore, this study aimed to investigate the role of a specific lncRNA, linc01224, in regulating the miR-485-5p/IGF2BP3 axis in HSCC. We confirmed the lncRNA expression profiles in 5 pairs of HSCC and normal tissues by lncRNA sequencing. Another 28 HSCC tissues were further validated by quantitative real-time PCR (qRT-PCR). qRT-PCR was also used to detect the expression levels of linc01224, miR-485-5p and IGF2BP3 in HSCC cell lines. Next, functional experiments in vitro and in vivo were applied to determine the effects of linc01224 silencing on tumor proliferation, migration, apoptosis and progression in HSCC. Linc01224 expression was significantly higher in HSCC tissues than in adjacent normal tissues. In addition, HSCC patients with low IGF2BP3 expression had good survival. In vitro assays were mechanistically performed to explore whether linc01224 positively regulates IGF2BP3 expression via its competitive inhibition of miR-485-5p. An in vivo animal model also confirmed that linc01224 could promote the occurrence and development of HSCC. Our study first identified that linc01224 plays an oncogenic role in HSCC. It suggests that linc01224 may act as a prognostic biomarker and potential therapeutic target for HSCC.
Collapse
Affiliation(s)
- Lai Wei
- Department of Otolaryngology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518033, Shenzhen, China
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| | - Yuanhang Wu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, 116000, Dalian, China
| | - Sisi Cai
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| | - Yulan Qin
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| | - Shuangchun Xing
- Department of Otolaryngology, The First Affiliated Hospital of Dalian Medical University, 116000, Dalian, China
| | - Zhiqiang Wang
- Department of Otolaryngology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518033, Shenzhen, China
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, 116000, Dalian, China
| |
Collapse
|
6
|
Ahmadzada T, Vijayan A, Vafaee F, Azimi A, Reid G, Clarke S, Kao S, Grau GE, Hosseini-Beheshti E. Small and Large Extracellular Vesicles Derived from Pleural Mesothelioma Cell Lines Offer Biomarker Potential. Cancers (Basel) 2023; 15:cancers15082364. [PMID: 37190292 DOI: 10.3390/cancers15082364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Pleural mesothelioma, previously known as malignant pleural mesothelioma, is an aggressive and fatal cancer of the pleura, with one of the poorest survival rates. Pleural mesothelioma is in urgent clinical need for biomarkers to aid early diagnosis, improve prognostication, and stratify patients for treatment. Extracellular vesicles (EVs) have great potential as biomarkers; however, there are limited studies to date on their role in pleural mesothelioma. We conducted a comprehensive proteomic analysis on different EV populations derived from five pleural mesothelioma cell lines and an immortalized control cell line. We characterized three subtypes of EVs (10 K, 18 K, and 100 K), and identified a total of 4054 unique proteins. Major differences were found in the cargo between the three EV subtypes. We show that 10 K EVs were enriched in mitochondrial components and metabolic processes, while 18 K and 100 K EVs were enriched in endoplasmic reticulum stress. We found 46 new cancer-associated proteins for pleural mesothelioma, and the presence of mesothelin and PD-L1/PD-L2 enriched in 100 K and 10 K EV, respectively. We demonstrate that different EV populations derived from pleural mesothelioma cells have unique cancer-specific proteomes and carry oncogenic cargo, which could offer a novel means to extract biomarkers of interest for pleural mesothelioma from liquid biopsies.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Abhishek Vijayan
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Stephen Clarke
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Steven Kao
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW 2050, Australia
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Georges E Grau
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
7
|
Mei PY, Xiao H, Guo Q, Meng WY, Wang ML, Huang QF, Liao YD. Identification and validation of DPY30 as a prognostic biomarker and tumor immune microenvironment infiltration characterization in esophageal cancer. Oncol Lett 2022; 25:68. [PMID: 36644145 PMCID: PMC9827447 DOI: 10.3892/ol.2022.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 12/28/2022] Open
Abstract
Esophageal cancer (ESCA) is a lethal malignancy and is associated with the alterations of various genes and epigenetic modifications. The protein dpy-30 homolog (DPY30) is a core member of histone H3K4 methylation catalase and its dysfunction is associated with the occurrence and development of cancer. Therefore, the present study investigated the role of DPY30 in ESCA and evaluated the association between the expression of DPY30, the clinicopathological characteristics of ESCA and the tumor immune microenvironment. It conducted a comprehensive analysis of DPY30 in patients with ESCA using The Cancer Genome Atlas (TCGA) database and clinical tissue microarray specimens of ESCA. Immunohistochemistry was performed to assess the expression levels of DPY30 in tissues. Receiver operating curve analysis, Kaplan-Meier survival analysis and Cox regression analysis were performed to identify the diagnostic and prognostic value of DPY30. Gene Set Enrichment Analysis, protein-protein interaction network and Estimation of Stromal and Immune cells in Malignant Tumor tissues using the Expression data were used to screen DPY30-associated genes and evaluate the immune score of the TCGA samples. The results demonstrated that the expression of mRNA and protein levels of DPY30 were significantly upregulated in tumor tissues compared with normal tissue samples. The expression of DPY30 was closely associated with the poor prognosis of patients with ESCA. The present study also found that DPY30 expression and the pathological characteristics of ESCA were significantly correlated. Additionally, the expression of DPY30 demonstrated a significant positive correlation with various immune cells infiltration. The results suggested that DPY30 might influence tumor immune infiltration. In conclusion, the findings suggested that DPY30 might be a potential prognostic biomarker and an immunotherapeutic target in ESCA.
Collapse
Affiliation(s)
- Pei-Yuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wang-Yang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ming-Liang Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Quan-Fu Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China,Correspondence to: Professor Yong-De Liao or Dr Quan-Fu Huang, Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| | - Yong-De Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China,Correspondence to: Professor Yong-De Liao or Dr Quan-Fu Huang, Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| |
Collapse
|
8
|
Huang P, Li M, Tang Q, Jiang K, Luo Y. Circ_0000523 regulates miR-1184/COL1A1/PI3K/Akt pathway to promote nasopharyngeal carcinoma progression. Apoptosis 2022; 27:751-761. [PMID: 35759163 DOI: 10.1007/s10495-022-01743-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The present study is to investigate the biological functions and mechanisms of circular RNA_0000523 (circ_0000523) in nasopharyngeal carcinoma (NPC). METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to examine the expression levels of circ_0000523 and microRNA-1184 (miR-1184) in NPC tissues and cells. Collagen type 1 alpha 1 chain (COL1A1) expression was assessed by qRT-PCR and immunohistochemistry (IHC) assay. Cell proliferation, cell cycle progression, migration and invasion were examined by cell counting kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU), flow cytometry and Transwell assays. Xenograft nude mouse models were used to investigate the metastatic potential of NPC cells in vivo. The binding relationships between circ_0000523 and miR-1184, and between miR-1184 and COL1A1 were detected by dual-luciferase reporter gene assay. The protein expressions of COL1A1, phosphatidylinositol 3-kinase (p85), phosphorylated (p)-p85, protein kinase B (Akt) and p-Akt were detected through Western blot. The DAVID database was used for the enrichment analysis of the potential targets of miR-1184. RESULTS Circ_0000523 and COL1A1 mRNA expressions were significantly increased in NPC tissues and cell lines. Circ_0000523 overexpression promoted NPC cell proliferation and accelerated cell cycle progression, whereas miR-1184 overexpression reversed these effects; circ_0000523 knockdown suppressed NPC cell proliferation and induced cell cycle arrest, while miR-1184 inhibition counteracted these effects. MiR-1184 was the downstream target of circ_0000523, and COL1A1 was the target gene of miR-1184 and could be positively modulated by circ_0000523. COL1A1 overexpression increased the expression levels of p-p85 and p-Akt, whereas knocking down COL1A1 repressed their expressions. CONCLUSIONS Circ_0000523 facilitates NPC progression through regulating the miR-1184/COL1A1 axis.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road No. 139, 410011, Changsha, Hunan Province, China
| | - Mengmeng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road No. 139, 410011, Changsha, Hunan Province, China.
| | - Qinglai Tang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road No. 139, 410011, Changsha, Hunan Province, China
| | - Kang Jiang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road No. 139, 410011, Changsha, Hunan Province, China
| | - Yuchao Luo
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road No. 139, 410011, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Discovery of Long Non-Coding RNA MALAT1 Amplification in Precancerous Colorectal Lesions. Int J Mol Sci 2022; 23:ijms23147656. [PMID: 35887000 PMCID: PMC9318831 DOI: 10.3390/ijms23147656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
A colorectal adenoma, an aberrantly growing tissue, arises from the intestinal epithelium and is considered as precursor of colorectal cancer (CRC). In this study, we investigated structural and numerical chromosomal aberrations in adenomas, hypothesizing that chromosomal instability (CIN) occurs early in adenomas. We applied array comparative genomic hybridization (aCGH) to fresh frozen colorectal adenomas and their adjacent mucosa from 16 patients who underwent colonoscopy examination. In our study, histologically similar colorectal adenomas showed wide variability in chromosomal instability. Based on the obtained results, we further stratified patients into four distinct groups. The first group showed the gain of MALAT1 and TALAM1, long non-coding RNAs (lncRNAs). The second group involved patients with numerous microdeletions. The third group consisted of patients with a disrupted karyotype. The fourth group of patients did not show any CIN in adenomas. Overall, we identified frequent losses in genes, such as TSC2, COL1A1, NOTCH1, MIR4673, and GNAS, and gene gain containing MALAT1 and TALAM1. Since long non-coding RNA MALAT1 is associated with cancer cell metastasis and migration, its gene amplification represents an important event for adenoma development.
Collapse
|
10
|
Hurník P, Chyra Z, Ševčíková T, Štembírek J, Trtková KS, Gaykalova DA, Buchtová M, Hrubá E. Epigenetic Regulations of Perineural Invasion in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:848557. [PMID: 35571032 PMCID: PMC9091179 DOI: 10.3389/fgene.2022.848557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinomas of the oral cavity and oropharynx belong among the ten most common malignancies in the human population. The prognosis of head and neck squamous cell carcinoma (HNSCC) is determined by the degree of invasiveness of the primary tumor and by the extent of metastatic spread into regional and distant lymph nodes. Moreover, the level of the perineural invasion itself associates with tumor localization, invasion's extent, and the presence of nodal metastases. Here, we summarize the current knowledge about different aspects of epigenetic changes, which can be associated with HNSCC while focusing on perineural invasion (PNI). We review epigenetic modifications of the genes involved in the PNI process in HNSCC from the omics perspective and specific epigenetic modifications in OSCC or other neurotropic cancers associated with perineural invasion. Moreover, we summarize DNA methylation status of tumor-suppressor genes, methylation and demethylation enzymes and histone post-translational modifications associated with PNI. The influence of other epigenetic factors on the HNSCC incidence and perineural invasion such as tobacco, alcohol and oral microbiome is overviewed and HPV infection is discussed as an epigenetic factor associated with OSCC and related perineural invasion. Understanding epigenetic regulations of axon growth that lead to tumorous spread or uncovering the molecular control of axon interaction with cancer tissue can help to discover new therapeutic targets for these tumors.
Collapse
Affiliation(s)
- Pavel Hurník
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czechia
| | - Zuzana Chyra
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Tereza Ševčíková
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Kateřina Smešný Trtková
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and University Hospital Olomouc, Olomouc, Czechia
| | - Daria A. Gaykalova
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland Medical Center, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
11
|
Mohamed AA, Abo-Amer YEE, Aalkhalegy A, Fathalla LA, Elmaghraby MB, Elhoseeny MM, Mostafa SM, El-Abgeegy M, Khattab RA, El-damasy DA, Salah W, Salem AM, Elmashad WM, Elbahnasawy M, Abd-Elsalam S. COL1A1 Gene Expression in Hepatitis B Virus (HBV) Related Hepatocellular Carcinoma (HCC) Egyptian's Patients. THE OPEN BIOMARKERS JOURNAL 2021; 11:108-114. [DOI: 10.2174/1875318302111010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 09/01/2023]
Abstract
Introduction:
Collagens are the most abundant proteins in the human body, accounting for one-third of total proteins. Over the last few years, accumulated evidence have indicated that some collagens are differentially expressed in cancer. The aim of the study was to assess COL1A1 gene expression as a novel marker for the progression of hepatitis B cirrhosis into hepatocellular carcinoma.
Methods:
This cohort study included 348 subjects and was conducted between May 2018 and June 2019. Subjects were divided into 4 groups: group1 included HBV positive hepatocellular carcinoma patients “HCC” (n= 87), group II included HBV positive patients with liver cirrhosis “LC” (n = 87), group III included chronic hepatitis B patients with neither HCC nor cirrhosis “ C-HBV” (n = 87) and group IV consisted of healthy volunteers as controls (n = 87). Fasting venous blood samples (10 ml) were collected from each participant in this study and were used for assessment of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, albumin and alfa-fetoprotein (AFP). Another portion of blood was collected in 2 vacutainer tubes containing EDTA, one for Complete blood count and the other for gene expression of COL1A1.
Results:
The gene expression of collagen was 6.9 ± 8.8 in group 1 (HBV positive hepatocellular carcinoma patients) and this was a significant increase in comparison with the other groups. In group 2 (HBV positive patients with liver cirrhosis), the gene expression (collagen) was 3.7±1.5 and it was significantly increased when compared with group 4 (healthy volunteers).
Conclusion:
COL1A1 gene expression can be used as an indicator of the progression of hepatitis B cirrhosis into hepatocellular carcinoma.
Collapse
|
12
|
Integrated tissue proteome and metabolome reveal key elements and regulatory pathways in cutaneous squamous cell carcinoma. J Proteomics 2021; 247:104320. [PMID: 34237460 DOI: 10.1016/j.jprot.2021.104320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is a widespread malignancy but has a very low long-term survival rate for patients at the metastatic stage. Therefore, it is urgent to identify prognostic biomarkers for CSCC and improve our understanding of disease progression. Here we took advantage of a data-independent acquisition (DIA)-based nano liquid chromatography equipped with an orbitrap mass spectrometry (nLC-MS/MS) and ultraperformance LC coupled to a time-of-flight tandem MS (UPLC-TOF-MS/MS) technique to analyze cancer and corresponding noncancerous tissues from 20 CSCC patients for integrated proteomic and metabolomic analyses. Overall, 6241 tissue proteins were detected, while 136 proteins were significantly expressed in CSCC tissues. Further functional analysis revealed that various biological processes were highly enriched and participated in the pathogenesis of CSCC, especially DNA damage responses. Moreover, 641 named metabolites in total were identified, among which 181 were significantly changed in CSCC tissues. A total of 101 pathways were significantly enriched including apoptosis, autophagy, PI3K-Akt and mTOR signaling pathways. Interestingly, two pathways, protein digestion & absorption and platelet activation were both enriched in proteomic and metabolomic studies involving 5 proteins and 11 metabolites. Accordingly, a four-metabolite panel consisting of arachidonate, glutamine, glutamic acid, and proline (all area under the curve (AUC) values more than 0.9) was developed with a high accuracy (0.971) to distinguish the 20 detected cancer tissues from their noncancerous tissues. Collectively, our work highlighted the key elements and regulatory pathways involved in the pathogenesis of CSCC. More importantly, the present study not only provided potential biomarkers for the early diagnosis of CSCC, but also expanded our knowledge of the physiopathology of the disease. SIGNIFICANCE: CSCC is the second most common human cancer but has few treatment options and few sensitive biomarkers for diagnosis. Here we comprehensively revealed its molecular characteristics by performing integrated tissue proteomic and metabolomic analyses. Significantly distinct profiles and certain enriched pathways including DNA damage responses were identified as associated with CSCC. Moreover, protein digestion & absorption and platelet activation were both enriched in the proteome and metabolome. These identified molecular changes probably play significant roles in CSCC development. Finally, we developed a four-metabolite panel to distinguish CSCC with high accuracy. Overall, our data not only provided potential diagnostic biomarkers, but also extended knowledge on the pathogenesis of CSCC.
Collapse
|
13
|
Messenger RNA biomarkers of Bovine Respiratory Syncytial Virus infection in the whole blood of dairy calves. Sci Rep 2021; 11:9392. [PMID: 33931718 PMCID: PMC8087838 DOI: 10.1038/s41598-021-88878-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine Respiratory Syncytial Virus (BRSV) is a primary viral cause of Bovine Respiratory Disease (BRD) in young calves, which is responsible for substantial morbidity and mortality. Infection with BRSV induces global gene expression changes in respiratory tissues. If these changes are observed in tissues which are more accessible in live animals, such as whole blood, they may be used as biomarkers for diagnosis of the disease. Therefore, the objective of the current study was to elucidate the whole blood transcriptomic response of dairy calves to an experimental challenge with BRSV. Calves (Holstein–Friesian) were either administered BRSV inoculate (103.5 TCID50/ml × 15 ml) (n = 12) or sterile phosphate buffered saline (n = 6). Clinical signs were scored daily and whole blood was collected in Tempus RNA tubes immediately prior to euthanasia, at day 7 post-challenge. RNA was extracted from blood and sequenced (150 bp paired-end). The sequence reads were aligned to the bovine reference genome (UMD3.1) and EdgeR was subsequently employed for differential gene expression analysis. Multidimensional scaling showed that samples from BRSV challenged and control calves segregated based on whole blood gene expression changes, despite the BRSV challenged calves only displaying mild clinical symptoms of the disease. There were 281 differentially expressed (DE) genes (p < 0.05, FDR < 0.1, fold change > 2) between the BRSV challenged and control calves. The top enriched KEGG pathways and gene ontology terms were associated with viral infection and included “Influenza A”, “defense response to virus”, “regulation of viral life cycle” and “innate immune response”. Highly DE genes involved in these pathways may be beneficial for the diagnosis of subclinical BRD from blood samples.
Collapse
|
14
|
Li D, Yin Y, He M, Wang J. Identification of Potential Biomarkers Associated with Prognosis in Gastric Cancer via Bioinformatics Analysis. Med Sci Monit 2021; 27:e929104. [PMID: 33582701 PMCID: PMC7890748 DOI: 10.12659/msm.929104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide. We aimed to identify differentially expressed genes (DEGs) and their potential mechanisms associated with the prognosis of GC patients. Material/Methods This study was based on gene profiling information for 37 paired samples of GC and adjacent normal tissues from the GSE118916, GSE79973, and GSE19826 datasets in the Gene Expression Omnibus database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to investigate the biological role of the DEGs. The protein–protein interaction (PPI) network was constructed by Cytoscape, and the Kaplan-Meier plotter was used for prognostic analysis. Results We identified 119 DEGs, including 21 upregulated and 98 downregulated genes, in GC. The 21 upregulated genes were mainly enriched in extracellular matrix-receptor interaction, focal adhesion, and transforming growth factor-β signaling, while the 98 downregulated genes were significantly associated with gastric acid secretion, retinol metabolism, and metabolism of xenobiotics by cytochrome P450. Thirty hub DEGs were obtained for further analysis. Twenty-five of the 30 hub DEGs were significantly associated with the prognosis of GC, and 21 of the 25 hub DEGs showed consistent expression trends within the 3 profile datasets. KEGG reanalysis of these 21 hub DEGs showed that COL1A1, COL1A2, COL2A1, COL11A1, THBS2, and SPP1 were mainly enriched in the extracellular matrix-receptor interaction pathways. Conclusions We identified 6 genes that were significantly related to the prognosis of GC patients. These genes and pathways could serve as potential prognostic markers and be used to develop treatments for GC patients.
Collapse
Affiliation(s)
- Dong Li
- Cancer institute, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Yi Yin
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Muqun He
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Jianfeng Wang
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| |
Collapse
|