1
|
Shukla K, Idanwekhai K, Naradikian M, Ting S, Schoenberger SP, Brunk E. Machine Learning of Three-Dimensional Protein Structures to Predict the Functional Impacts of Genome Variation. J Chem Inf Model 2024; 64:5328-5343. [PMID: 38635316 DOI: 10.1021/acs.jcim.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully reveal rare variants and variants with clear associations with disease-related phenotypes. These studies have had a significant impact on how clinical genetic screens are interpreted and how patients are stratified for treatment. There are few, if any, computational methods for variants comparable to biological activity predictions. To address this gap, we developed a machine learning method that uses protein three-dimensional structures from AlphaFold to predict how a variant will influence changes to a gene's downstream biological pathways. We trained state-of-the-art machine learning classifiers to predict which protein regions will most likely impact transcriptional activities of two proto-oncogenes, nuclear factor erythroid 2 (NFE2L2)-related factor 2 (NRF2) and c-Myc. We have identified classifiers that attain accuracies higher than 80%, which have allowed us to identify a set of key protein regions that lead to significant perturbations in c-Myc or NRF2 transcriptional pathway activities.
Collapse
Affiliation(s)
- Kriti Shukla
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Kelvin Idanwekhai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Martin Naradikian
- La Jolla Institute for Immunology, San Diego, California 92093, United States
| | - Stephanie Ting
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | | | - Elizabeth Brunk
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Integrative Program for Biological and Genome Sciences (IBGS), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
2
|
Liang W, Greven J, Qin K, Fragoulis A, Horst K, Bläsius F, Wruck C, Pufe T, Kobbe P, Hildebrand F, Lichte P. Sulforaphane Exerts Beneficial Immunomodulatory Effects on Liver Tissue via a Nrf2 Pathway-Related Mechanism in a Murine Model of Hemorrhagic Shock and Resuscitation. Front Immunol 2022; 13:822895. [PMID: 35222401 PMCID: PMC8866169 DOI: 10.3389/fimmu.2022.822895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 01/20/2023] Open
Abstract
Our research explores the immunomodulatory effects of sulforaphane (SFN), a well-known nuclear factor erythroid 2-related factor 2 (Nrf2) pathway agonist, on the sterile inflammation of and ischemia-reperfusion injuries to the liver after hemorrhagic shock (HS) followed by resuscitation (R). Male C57/BL6 wild-type and transgenic ARE-luc mice were exposed to mean arterial pressure-controlled HS. Fluid resuscitation was performed after 90 min of HS, and SFN was administrated intraperitoneally after that. The animals were sacrificed at 6 h, 24 h, and 72 h after resuscitation, and their livers were extracted to perform H&E staining and myeloperoxidase (MPO) activity analysis. The Kupffer cells were isolated for cytokines profile measurements and Nrf2 immunofluorescence staining. Further, the ARE-luc mice were used to assess hepatic Nrf2 activity in vivo. We identified that SFN-activated Kupffer cells’ Nrf2 pathway and modulated its cytokines expression, including TNF-α, MCP-1, KC/CXCL1, IL-6, and IL-10. Furthermore, SFN mitigated liver ischemia-reperfusion injury, as evidenced by the downregulation of the Suzuki score and the enhanced hepatic Nrf2 activity. The in vivo SFN treatment decreased neutrophils infiltration, as shown by the decreased MPO levels. Our study shows that SFN can decrease HS/R-induced hepatic ischemia-reperfusion injury and modulate the activity of Kupffer cells via an Nrf2-dependent pathway.
Collapse
Affiliation(s)
- Weiqiang Liang
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.,Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Johannes Greven
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Kang Qin
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Klemens Horst
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Felix Bläsius
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Philipp Lichte
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|