1
|
Fan J, Fan F, He J, Sun Y. Agaricus blazei Murill extract FA-2-b-β inhibits gastric cancer cell proliferation through the mechanisms of cell-cycle blocking and apoptosis by the mitochondrial pathway. Asian J Surg 2024; 47:1560-1561. [PMID: 38097495 DOI: 10.1016/j.asjsur.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024] Open
Affiliation(s)
- Junshun Fan
- The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Fuyan Fan
- The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jin He
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yanqing Sun
- The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Yang G, Song Z, Wang R, Sun Y. Apoptotic effect of selenium mushroom extract from Qinba on multiple myeloma cells. Histol Histopathol 2023; 38:1069-1077. [PMID: 36562285 DOI: 10.14670/hh-18-571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Qinba selenium mushroom is a mushroom belonging to the Basidiomycetes family, which is believed to have anti- oxidant, anti-tumoral and anti-mutagenic activities. However, the efficacy of Qinba selenium mushroom against multiple myeloma has not been confirmed. The present study aimed to investigate the apoptotic effect of FA-2-b-β, the selenium mushroom extract from Qinba on multiple myeloma (MM) cells. The MM RPMI-8226 cells were treated with FA-2-b-β at different concentrations and time points. MM RPMI-8226 cell proliferation and apoptosis were detected by the Cell Counting Kit-8 (CCK-8) assay and Annexin V/propidium iodide (PI) assay, RT-QPCR and western blotting analyses were performed to determine the proteins and pathways involved. The results of the present study demonstrated that FA-2-b-β has high anti-proliferative activities and strong pro-apoptotic effects on MM RPMI-8226 cells, and its pharmacological effects on proliferation changes occurred in a dose- and time-dependent manner. In addition, we found that FA-2-b-β was able to induce cell apoptosis and promote cell cycle arrest at G0/G1 phase. In summary, the results illustrate the involvement of FA-2-b-β in mediating G0/G1 cell cycle arrest and apoptosis in MM RPMI-8226 cells, which suggested that FA-2-b-β might have therapeutic potential against multiple myeloma as an effective compound, and may provide useful information for the development of a novel therapeutic target in this area.
Collapse
Affiliation(s)
- Ge Yang
- Department of Hematology, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China
| | - Ze Song
- Imaging Teaching and Research Section, Medical College of HEXI University, Zhangye, Gansu, PR China
| | - Rongli Wang
- Department of Hematology, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China
| | - Yanqin Sun
- Clinical Lab, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China.
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
3
|
Aly AA, Mohammed MK, Maraei RW, Abdalla AE, Abouel-Yazeed AM. Improving the nutritional quality and bio-ingredients of stored white mushrooms using gamma irradiation and essential oils fumigation. RADIOCHIM ACTA 2023. [DOI: 10.1515/ract-2022-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Mushrooms are highly perishable in nature and deteriorate within a few days after harvesting due to their high respiration rate and delicate epidermal structure. Consequently, the shelf-life of freshly harvested mushroom is limited to 1–3 days at ambient condition. Hence, the current investigation was carried out to study γ-irradiation effects (1.5 and 2.0 kGy) and essential oils (EOs) fumigation including geranium (60 and 80 μL/L) and lemongrass (40 and 60 μL/L) on nutritional quality (Vitamins C and D2) as well as bio-ingredients such as total soluble proteins, phenolic and flavonoids contents, antioxidant activity were determined as an origin of potential natural antioxidant plus the profile of phenols and flavonoids identified by HPLC. As well as activities of some enzymes (PPO, SOD, PAL, and APX) of Agaricus bisporus mushroom at 4 °C during storage time for twelve days. The findings showed that there was a reduction in the contents of Vit. C and vitamin D2 in all mushroom samples during storage, where the essential oil treatment especially 60 μL/L of geranium and 40 μL/L of lemongrass gave the least decrease (3.42 and 3.28 mg/100 g FW, respectively) of ascorbic acid content compared to the other treatments while the irradiated samples (1.5, and 2.0 kGy) gave the lowest decrease of vitamin D2 (106.30 and 114.40 mg/kg DW, respectively) at the end of storage time. The content of the bio-ingredients content was affected by the storage periods, and the samples treated with oil fumigation gave the best content and the same trend happened with the antioxidant activity. The enzymes activity increased by the storage period, especially after 4 days of storage, and then the activity decreased after that. Quantification of phenolic and flavonoid compounds affected by storage periods in all treatments and the EO-treated mushrooms gave the best amount of them. Thus, samples of mushrooms treated with oil fumigation especially 60 μL/L of geranium and 40 μL/L of lemongrass can successfully increase the nutritional value plus maintain the value of the mushrooms during storage time.
Collapse
Affiliation(s)
- Amina A. Aly
- Natural Products Department , National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Marwa K. Mohammed
- Natural Products Department , National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Rabab W. Maraei
- Natural Products Department , National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Ahmed E. Abdalla
- Food Science Department, Faculty of Agriculture (Saba Basha) , Alexandria University , Alexandria , Egypt
| | - Ayman M. Abouel-Yazeed
- Food Science Department, Faculty of Agriculture (Saba Basha) , Alexandria University , Alexandria , Egypt
| |
Collapse
|
4
|
Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, Arslan-Acaroz D, Demirbas H, Hajrulai-Musliu Z, Istanbullugil FR, Soleimanzadeh A, Morozov D, Zhu K, Herman V, Ayad A, Athanassiou C, Ince S. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel) 2022; 14:6203. [PMID: 36551687 PMCID: PMC9777303 DOI: 10.3390/cancers14246203] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the major deadly diseases globally. The alarming rise in the mortality rate due to this disease attracks attention towards discovering potent anticancer agents to overcome its mortality rate. The discovery of novel and effective anticancer agents from natural sources has been the main point of interest in pharmaceutical research because of attractive natural therapeutic agents with an immense chemical diversity in species of animals, plants, and microorganisms. More than 60% of contemporary anticancer drugs, in one form or another, have originated from natural sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical, and ethnopharmacological properties. Plants and their derivatives have played a significant role in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine, irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a number of other plant-derived bioactive compounds are in the clinical development phase against cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such pharmaceutical research studies would yield alternative drug development strategies through natural sources which could be economical, more reliable, and safe to use.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Hayri Demirbas
- Department of Neurology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Zehra Hajrulai-Musliu
- Department of Chemistry, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, North Macedonia
| | - Fatih Ramazan Istanbullugil
- Department of Chemistry and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Dmitry Morozov
- Department of Epizootology and Infectious Diseases, Vitebsk State Academy of Veterinary Medicine, 210026 Vitebsk, Belarus
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Viorel Herman
- Department of Infectious Disease and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Abdelhanine Ayad
- Department of Physical Biology and Chemistry, Faculty of Nature and Life Sciences, Université de Bejaia, Bejaia 06000, Algeria
| | - Christos Athanassiou
- Laboratory of Entomology and Agriculture Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
5
|
Ishara J, Buzera A, Mushagalusa GN, Hammam ARA, Munga J, Karanja P, Kinyuru J. Nutraceutical potential of mushroom bioactive metabolites and their food functionality. J Food Biochem 2021; 46:e14025. [PMID: 34888869 DOI: 10.1111/jfbc.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and inexpensive. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies while discussing the food functionality of mushrooms. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. PRACTICAL APPLICATIONS: Diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity are among the world's largest life-threatening conditions and diseases. Several mushroom bioactive compounds, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been found potential in tackling these diseases through diverse cellular and physiological pathways modulation with no toxicity evidence, suggesting their use as nutraceutical foods in preventing and controlling these life-threatening conditions and diseases.
Collapse
Affiliation(s)
- Jackson Ishara
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Ariel Buzera
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Gustave N Mushagalusa
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo
| | - Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Judith Munga
- Department Food Nutrition and Dietetics, Kenyatta University, Nairobi, Kenya
| | - Paul Karanja
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - John Kinyuru
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
6
|
Castellanos-Reyes K, Villalobos-Carvajal R, Beldarrain-Iznaga T. Fresh Mushroom Preservation Techniques. Foods 2021; 10:2126. [PMID: 34574236 PMCID: PMC8465629 DOI: 10.3390/foods10092126] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
The production and consumption of fresh mushrooms has experienced a significant increase in recent decades. This trend has been driven mainly by their nutritional value and by the presence of bioactive and nutraceutical components that are associated with health benefits, which has led some to consider them a functional food. Mushrooms represent an attractive food for vegetarian and vegan consumers due to their high contents of high-biological-value proteins and vitamin D. However, due to their high respiratory rate, high water content, and lack of a cuticular structure, mushrooms rapidly lose quality and have a short shelf life after harvest, which limits their commercialization in the fresh state. Several traditional preservation methods are used to maintain their quality and extend their shelf life. This article reviews some preservation methods that are commonly used to preserve fresh mushrooms and promising new preservation techniques, highlighting the use of new packaging systems and regulations aimed at the development of more sustainable packaging.
Collapse
Affiliation(s)
- Katy Castellanos-Reyes
- Facultad de Ciencias Tecnológicas, Universidad Nacional de Agricultura, Carretera a Dulce Nombre de Culmí, km 215, Barrio El Espino, Catacamas 16201, Honduras;
- Food Engineering Department, Universidad del Bío-Bío, Av. Andrés Bello 720, P.O. Box 447, Chillán 3780000, Chile;
| | - Ricardo Villalobos-Carvajal
- Food Engineering Department, Universidad del Bío-Bío, Av. Andrés Bello 720, P.O. Box 447, Chillán 3780000, Chile;
| | - Tatiana Beldarrain-Iznaga
- Food Engineering Department, Universidad del Bío-Bío, Av. Andrés Bello 720, P.O. Box 447, Chillán 3780000, Chile;
| |
Collapse
|