1
|
Han Y, Maimaiti N, Sun Y, Yao J. Knockout of KDM3A in MDA-MB-231 breast cancer cells inhibits tumor malignancy and promotes apoptosis. J Mol Histol 2024; 55:139-148. [PMID: 38165573 PMCID: PMC10830655 DOI: 10.1007/s10735-023-10178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/03/2023] [Indexed: 01/04/2024]
Abstract
The histone lysine demethylase 3 A (KDM3A) is vital for the regulation of cancer physiology and pathophysiology. The purpose of this study was to investigate the effect of KDM3A expression with triple-negative breast cancer (TNBC) invasion and metastasis. In our results, knockout of KDM3A in TNBC MDA-MB-231 cells promoted apoptosis and inhibited the proliferation, invasion and metastasis of MDA-MB-231 cells. In addition, we found that in vivo experiments indicated that the growth, invasion and metastasis of metastatic neoplasms were significantly inhibited by knockout of KDM3A in a TNBC metastasis model. These findings suggest that KDM3A may be a potential therapeutic target for the treatment and prevention of TNBC, providing a critical theoretical basis for the effective prevention or treatment of breast cancer disease.
Collapse
Affiliation(s)
- Yuanxing Han
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Nueryemu Maimaiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Yue Sun
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Juan Yao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
- Imaging Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
2
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
3
|
Sample RA, Nogueira MF, Mitra RD, Puram SV. Epigenetic regulation of hybrid epithelial-mesenchymal cell states in cancer. Oncogene 2023; 42:2237-2248. [PMID: 37344626 PMCID: PMC10578205 DOI: 10.1038/s41388-023-02749-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which cells lose their epithelial characteristics and gain mesenchymal phenotypes. In cancer, EMT is thought to drive tumor invasion and metastasis. Recent efforts to understand EMT biology have uncovered that cells undergoing EMT attain a spectrum of intermediate "hybrid E/M" states, which exist along an epithelial-mesenchymal continuum. Here, we summarize recent studies characterizing the epigenetic drivers of hybrid E/M states. We focus on the histone-modification writers, erasers, and readers that assist or oppose the canonical hybrid E/M transcription factors that modulate hybrid E/M state transitions. We also examine the role of chromatin remodelers and DNA methylation in hybrid E/M states. Finally, we highlight the challenges of targeting hybrid E/M pharmacologically, and we propose future directions that might reveal the specific and targetable mechanisms by which hybrid E/M drives metastasis in patients.
Collapse
Affiliation(s)
- Reilly A Sample
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Marina F Nogueira
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Sidharth V Puram
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Yang L, Zhang Q, Yang Q. KDM3A promotes oral squamous cell carcinoma cell proliferation and invasion via H3K9me2 demethylation-activated DCLK1. Genes Genomics 2022; 44:1333-1342. [PMID: 36094735 DOI: 10.1007/s13258-022-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a frequently-diagnosed malignancy with high potential for proliferation and invasion. Histone methylation is known as a crucial mechanism that regulates pathological processes in various cancers, including OSCC. OBJECTIVE This study sought to delve into the molecular mechanism of lysine demethylase 3 A (KDM3A) in OSCC cell proliferation and invasion. METHODS Expression levels of KDM3A, lysin-9 of di-methylated histone H3 (H3K9me2), and doublecortin-like kinase 1 (DCLK1) in cells were determined by reverse-transcription quantitative polymerase chain reaction or Western blot analysis. Cell proliferation and invasion were evaluated by cell counting kit-8, colony formation, and Transwell assays. The enrichment of KDM3A and H3K9me2 on the DCLK1 promoter was determined by chromatin immunoprecipitation assay. The functional rescue experiment was performed with DCLK1 overexpression vector and si-KDM3A in CAL-27 and SCC-9 cells. RESULTS KDM3A was elevated in OSCC cells. KDM3A knockdown suppressed OSCC proliferation and invasion, along with increased H3K9me2 level in OSCC cells. KDM3A and H3K9me2 were enriched on the DCLK1 promoter and inhibiting H3K9me2 improved DCLK1 expression levels. DCLK1 overexpression neutralized the inhibition of KDM3A knockdown on OSCC proliferation and invasion. CONCLUSIONS KDM3A facilitated OSCC proliferation and invasion by eliminating H3K9me2 to upregulate DCLK1 expression levels.
Collapse
Affiliation(s)
- Lei Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China.
| | - Qiqiong Zhang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| | - Qiuye Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| |
Collapse
|
5
|
Li ZF, Meng DD, Liu YY, Bi FG, Tian K, Xu JZ, Sun JG, Gu CX, Li Y. Hypoxia inducible factor-3α promotes osteosarcoma progression by activating KDM3A-mediated demethylation of SOX9. Chem Biol Interact 2022; 351:109759. [PMID: 34826399 DOI: 10.1016/j.cbi.2021.109759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia/oxygen-sensing signally is closely associated with many tumor progressions, including osteosarcoma (OS). Previous research principally focused on the function of hypoxia-inducible factor (HIF)-1α and HIF-2α as the major hypoxia-associated transcription factors in OS, however, the role of HIF-3α has not been investigated. Our study found that HIF-3α was upregulated in OS tissues and cell lines. HIF-3α overexpression facilitated cell proliferation and invasion, and inhibited apoptosis, whereas HIF-3α knockdown showed the opposite results. Chromatin immunoprecipitation analysis revealed that lysine demethylase 3A (KDM3A) expression was transcriptionally activated by HIF-3α under hypoxia, and KDM3A occupied the SRY-box transcription factor 9 (SOX9) gene promoter region through H3 lysine 9 dimethylation (H3K9me2). Additionally, rescue results revealed that KDM3A or SOX9 overexpression reversed the effects of HIF-3α silence on cell functions. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway inhibitor cucurbitacin I suppressed the promotive effects of HIF-3α overexpression on cell proliferation, invasion and TAK2/STAT3 pathway. Finally, OS cell line MG-63 transfected with HIF-3α short hairpin RNA (HIF-3α shRNA) were subcutaneously injected into nude mice, and the results found that HIF-3α knockdown significantly inhibited the xenograft tumor growth of OS in vivo. In conclusion, this study reveals that HIF-3α promotes OS progression in vitro and in vivo by activating KDM3A-mediated SOX9 promoter demethylation, which may provide a potential therapeutic mechanism for OS.
Collapse
Affiliation(s)
- Zhi-Fu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| | - Dong-Dong Meng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yong-Yi Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Fang-Gang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Ke Tian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Jian-Zhong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Jian-Guang Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Chen-Xi Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| |
Collapse
|
6
|
Hu S, Cao P, Kong K, Han P, Deng Y, Li F, Zhao B. MicroRNA-449a delays lung cancer development through inhibiting KDM3A/HIF-1α axis. J Transl Med 2021; 19:224. [PMID: 34044859 PMCID: PMC8157436 DOI: 10.1186/s12967-021-02881-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Background It has been established that microRNA (miR)-449a is anti-tumorigenic in cancers, including lung cancer. Therefore, this study further explored miR-449a-mediated mechanism in lung cancer, mainly focusing on lysine demethylase 3A/hypoxia-induced factor-1α (KDM3A/HIF-1α) axis. Methods miR-449a, KDM3A and HIF-1α levels in lung cancer tissues and cell lines (A549, H1299 and H460) were measured. Loss- and gain-of-function assays were performed and then cell proliferation, cell cycle, apoptosis, invasion and migration were traced. The relationship between KDM3A, miR-449a and HIF-1α was verified. Tumor growth in vivo was also monitored. Results Both lung cancer tissues and cells exhibited reduced miR-449a and raised KDM3A and HIF-1α levels. miR-449a interacted with KDM3A; HIF-1α could bind with KDM3A. Up-regulating miR-449a hindered while suppressing miR-449a induced lung cancer development via mediating HIF-1α. Elevating KDM3A promoted cellular aggression while down-regulating KDM3A had the opposite effects. Up-regulating KDM3A or HIF-1α negated up-regulated miR-449a-induced effects on cellular growth in lung cancer. Restoring miR-449a impaired tumorigenesis in vivo in lung cancer. Conclusion It is eventually concluded that miR-449a delays lung cancer development through suppressing KDM3A/HIF-1α axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02881-8.
Collapse
Affiliation(s)
- Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|