1
|
Khoroshkin M, Buyan A, Dodel M, Navickas A, Yu J, Trejo F, Doty A, Baratam R, Zhou S, Lee SB, Joshi T, Garcia K, Choi B, Miglani S, Subramanyam V, Modi H, Carpenter C, Markett D, Corces MR, Mardakheh FK, Kulakovskiy IV, Goodarzi H. Systematic identification of post-transcriptional regulatory modules. Nat Commun 2024; 15:7872. [PMID: 39251607 PMCID: PMC11385195 DOI: 10.1038/s41467-024-52215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
In our cells, a limited number of RNA binding proteins (RBPs) are responsible for all aspects of RNA metabolism across the entire transcriptome. To accomplish this, RBPs form regulatory units that act on specific target regulons. However, the landscape of RBP combinatorial interactions remains poorly explored. Here, we perform a systematic annotation of RBP combinatorial interactions via multimodal data integration. We build a large-scale map of RBP protein neighborhoods by generating in vivo proximity-dependent biotinylation datasets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell readout to capture transcriptomic changes upon RBP knockdowns. By combining these physical and functional interaction readouts, along with the atlas of RBP mRNA targets from eCLIP assays, we generate an integrated map of functional RBP interactions. We then use this map to match RBPs to their context-specific functions and validate the predicted functions biochemically for four RBPs. This study provides a detailed map of RBP interactions and deconvolves them into distinct regulatory modules with annotated functions and target regulons. This multimodal and integrative framework provides a principled approach for studying post-transcriptional regulatory processes and enriches our understanding of their underlying mechanisms.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrey Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, Inserm, Orsay, France
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fathima Trejo
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Anthony Doty
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Rithvik Baratam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sean B Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tanvi Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Li Z, Zhao W, Wang M, Hussain MZ, Mahjabeen I. Role of microRNAs deregulation in initiation of rheumatoid arthritis: A retrospective observational study. Medicine (Baltimore) 2024; 103:e36595. [PMID: 38241560 PMCID: PMC10798721 DOI: 10.1097/md.0000000000036595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a joint disorder and is considered an important public health concern nowadays. So, identifying novel biomarkers and treatment modalities is urgently needed to improve the health standard of RA patients. Factors involved in RA pathogenesis are genetic/epigenetic modification, environment, and lifestyle. In the case of epigenetic modification, the expression deregulation of microRNAs and the role of histone deacetylase (HDAC) in RA is an important aspect that needs to be addressed. The present study is designed to evaluate the expression pattern of microRNAs related to the HDAC family. Five microRNAs, miR-92a-3p, miR-455-3p, miR-222, miR-140, and miR-146a related to the HDAC family were selected for the present study. Real-time polymerase chain reaction was used to estimate the level of expression of the above-mentioned microRNAs in 150 patients of RA versus 150 controls. Oxidative stress level and histone deacetylation status were measured using the enzyme-linked immunosorbent assay. Statistical analysis showed significant downregulation (P < .0001) of selected microRNAs in RA patients versus controls. Significantly raised level of HDAC (P < .0001) and 8-hydroxy-2'-deoxyguanosine (P < .0001) was observed in patients versus controls. A good diagnostic potential of selected microRNAs in RA was shown by the receiver operating curve analysis. The current study showed a significant role of deregulated expression of the above-mentioned microRNAs in RA initiation and can act as an excellent diagnostic marker for this disease.
Collapse
Affiliation(s)
- Zengxin Li
- Department of Bone Surgery, Department of Orthopaedic Surgery Ⅱ, Affiliated Hospital of Beihua University, Jilin, China
| | - Wen Zhao
- Department of Orthopaedics, The first Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province, China
| | - Mengchang Wang
- Department of Rehabilitation Medicine, Traditional Chinese Medical Hospital of HuZhou, Huzhou, Zhejiang, China
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
3
|
Liu J, Zhang F, Wang J, Wang Y. MicroRNA‑mediated regulation in lung adenocarcinoma: Signaling pathways and potential therapeutic implications (Review). Oncol Rep 2023; 50:211. [PMID: 37859595 PMCID: PMC10603552 DOI: 10.3892/or.2023.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) poses a significant global health burden owing to its high incidence rate and unfavorable prognosis, driven by frequent recurrence and drug resistance. Understanding the biological mechanisms underlying LUAD is imperative to developing advanced therapeutic strategies. Recent research has highlighted the role of dysregulated microRNAs (miRNAs) in LUAD progression through diverse signaling pathways, including the Wnt and AKT pathways. Of particular interest is the novel pathological mechanism involving the interaction between competing endogenous RNAs (ceRNAs) and miRNAs. This review critically analyzed the impact of aberrant miRNA expression on LUAD development, shedding light on the associated signaling pathways. It also highlighted the emerging significance of ceRNA‑miRNA interactions in LUAD pathogenesis. Elucidating the intricate regulatory networks involving miRNAs and ceRNAs presents a promising avenue for the development of potential therapeutic interventions and diagnostic biomarkers in LUAD. Further research in this area is essential to advance precision medicine approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
- Department of Rehabilitation Medicine, Huludao Central Hospital, Huludao, Liaoning 125000, P.R. China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
4
|
Wang N, Yao C, Luo C, Liu S, Wu L, Hu W, Zhang Q, Rong Y, Yuan C, Wang F. Integrated plasma and exosome long noncoding RNA profiling is promising for diagnosing non-small cell lung cancer. Clin Chem Lab Med 2023; 61:2216-2228. [PMID: 37387637 DOI: 10.1515/cclm-2023-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVES Non-small cell lung cancer (NSCLC) accounts for more than 80 % of all lung cancers, and its 5-year survival rate can be greatly improved by early diagnosis. However, early diagnosis remains elusive because of the lack of effective biomarkers. In this study, we aimed to develop an effective diagnostic model for NSCLC based on a combination of circulating biomarkers. METHODS Tissue-deregulated long noncoding RNAs (lncRNAs) in NSCLC were identified in datasets retrieved from the Gene Expression Omnibus (GEO, n=727) and The Cancer Genome Atlas (TCGA, n=1,135) databases, and their differential expression was verified in paired local plasma and exosome samples from NSCLC patients. Subsequently, LASSO regression was used to screen for biomarkers in a large clinical population, and a logistic regression model was used to establish a multi-marker diagnostic model. The area under the receiver operating characteristic (ROC) curve (AUC), calibration plots, decision curve analysis (DCA), clinical impact curves, and integrated discrimination improvement (IDI) were used to evaluate the efficiency of the diagnostic model. RESULTS Three lncRNAs-PGM5-AS1, SFTA1P, and CTA-384D8.35 were consistently expressed in online tissue datasets, plasma, and exosomes from local patients. LASSO regression identified nine variables (Plasma CTA-384D8.35, Plasma PGM5-AS1, Exosome CTA-384D8.35, Exosome PGM5-AS1, Exosome SFTA1P, Log10CEA, Log10CA125, SCC, and NSE) in clinical samples that were eventually included in the multi-marker diagnostic model. Logistic regression analysis revealed that Plasma CTA-384D8.35, exosome SFTA1P, Log10CEA, Exosome CTA-384D8.35, SCC, and NSE were independent risk factors for NSCLC (p<0.01), and their results were visualized using a nomogram to obtain personalized prediction outcomes. The constructed diagnostic model demonstrated good NSCLC prediction ability in both the training and validation sets (AUC=0.97). CONCLUSIONS In summary, the constructed circulating lncRNA-based diagnostic model has good NSCLC prediction ability in clinical samples and provides a potential diagnostic tool for NSCLC.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Cong Yao
- Health Care Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Changliang Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, P.R. China
| | - Shaoping Liu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Long Wu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, P.R. China
| |
Collapse
|
5
|
Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, Ong HT, Chiou SH, Choo KB. Circular RNA ZNF800 (hsa_circ_0082096) regulates cancer stem cell properties and tumor growth in colorectal cancer. BMC Cancer 2023; 23:1088. [PMID: 37950151 PMCID: PMC10636831 DOI: 10.1186/s12885-023-11571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines. METHODS Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo. RESULTS CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth. CONCLUSIONS CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.
Collapse
Affiliation(s)
- Vimalan Rengganaten
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Postgraduate Program, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Malaysia
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, 11221, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Hooi Tin Ong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
| | - Kong Bung Choo
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
6
|
Murphy C, Gornés Pons G, Keogh A, Ryan L, McCarra L, Jose CM, Kesar S, Nicholson S, Fitzmaurice GJ, Ryan R, Young V, Cuffe S, Finn SP, Gray SG. An Analysis of JADE2 in Non-Small Cell Lung Cancer (NSCLC). Biomedicines 2023; 11:2576. [PMID: 37761019 PMCID: PMC10526426 DOI: 10.3390/biomedicines11092576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 09/29/2023] Open
Abstract
The JADE family comprises three members encoded by individual genes and roles for these proteins have been identified in chromatin remodeling, cell cycle progression, cell regeneration and the DNA damage response. JADE family members, and in particular JADE2 have not been studied in any great detail in cancer. Using a series of standard biological and bioinformatics approaches we investigated JADE2 expression in surgically resected non-small cell lung cancer (NSCLC) for both mRNA and protein to examine for correlations between JADE2 expression and overall survival. Additional correlations were identified using bioinformatic analyses on multiple online datasets. Our analysis demonstrates that JADE2 expression is significantly altered in NSCLC. High expression of JADE2 is associated with a better 5-year overall survival. Links between JADE2 mRNA expression and a number of mutated genes were identified, and associations between JADE2 expression and tumor mutational burden and immune cell infiltration were explored. Potential new drugs that can target JADE2 were identified. The results of this biomarker-driven study suggest that JADE2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Ciara Murphy
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
| | - Glòria Gornés Pons
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Faculty of Biology, University of Barcelona, 08025 Barcelona, Spain
| | - Anna Keogh
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Lorraine McCarra
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Chris Maria Jose
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Shagun Kesar
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Gerard J. Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Sinead Cuffe
- HOPE Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Clinical Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Biological Sciences, Technological University Dublin, D07 XT95 Dublin, Ireland
| |
Collapse
|
7
|
Liu J, Li Y, Liu T, Shi Y, Wang Y, Wu J, Qi Y. Novel Biomarker Panel of Let-7d-5p and MiR-140-5p Can Distinguish Latent Tuberculosis Infection from Active Tuberculosis Patients. Infect Drug Resist 2023; 16:3847-3859. [PMID: 37346367 PMCID: PMC10281287 DOI: 10.2147/idr.s412116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) survives inside a human host for a long time in the form of latent tuberculosis infection (LTBI). Latent infection of tuberculosis has the opportunity of developing into active tuberculosis (ATB), which has greatly endangered human health. The existing diagnostic methods cannot effectively distinguish LTBI from ATB. Therefore, more effective diagnostic biomarkers and methods are urgently needed. Methods Here, we screened the GEO data set, conducted joint differential analysis and target gene enrichment analysis, after filtering the disease-related database, we screened the differential miRNA related to TB. The qPCR was used to verify the miRNAs in 84 serum samples. Different combinations of biomarkers were evaluated by logistic regression to obtain a biomarker panel with good performance for diagnosing LTBI. Results A panel with two miRNAs (hsa-let-7d-5p, hsa-miR-140-5p) was established to differentiate LTBI from ATB. Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) are 0.930 (sensitivity = 100%, specificity = 88.5%) and 0.923 (sensitivity = 100%, specificity = 92.3%) with the biomarker panel for the training set and test set respectively. Conclusion The findings indicated that the logistic regression model built by let-7d-5p and miR-140-5p has the ability to distinguish LTBI from active TB patients.
Collapse
Affiliation(s)
- Jiaxing Liu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, People’s Republic of China
| | - Ye Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Ting Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yuru Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Jing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yingjie Qi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| |
Collapse
|
8
|
Liang W, Hu C, Zhu Q, Cheng X, Gao S, Liu Z, Wang H, Li P, Gao Y, Qian R. Exploring the relationship between abnormally high expression of NUP205 and the clinicopathological characteristics, immune microenvironment, and prognostic value of lower-grade glioma. Front Oncol 2023; 13:1007198. [PMID: 37284202 PMCID: PMC10240054 DOI: 10.3389/fonc.2023.1007198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/29/2023] [Indexed: 06/08/2023] Open
Abstract
Nuclear pore complex (NPC) is a major transport pivot for nucleocytoplasmic molecule exchange. Nucleoporin 205 (NUP205)-a main component of NPC-plays a key regulatory role in tumor cell proliferation; however, few reports document its effect on the pathological progression of lower-grade glioma (LGG). Therefore, we conducted an integrated analysis using 906 samples from multiple public databases to explore the effects of NUP205 on the prognosis, clinicopathological characteristics, regulatory mechanism, and tumor immune microenvironment (TIME) formation in LGG. First, multiple methods consistently showed that the mRNA and protein expression levels of NUP205 were higher in LGG tumor tissue than in normal brain tissue. This increased expression was mainly noted in the higher WHO Grade, IDH-wild type, and 1p19q non-codeleted type. Second, various survival analysis methods showed that the highly expressed NUP205 was an independent risk indicator that led to reduced survival time of patients with LGG. Third, GSEA analysis showed that NUP205 regulated the pathological progress of LGG via the cell cycle, notch signaling pathway, and aminoacyl-tRNA biosynthesis. Ultimately, immune correlation analysis suggested that high NUP205 expression was positively correlated with the infiltration of multiple immune cells, particularly M2 macrophages, and was positively correlated with eight immune checkpoints, particularly PD-L1. Collectively, this study documented the pathogenicity of NUP205 in LGG for the first time, expanding our understanding of its molecular function. Furthermore, this study highlighted the potential value of NUP205 as a target of anti-LGG immunotherapy.
Collapse
Affiliation(s)
- Wenjia Liang
- People’s Hospital of Henan University, Henan Provincial People’s Hospital, Microbiome Laboratory, Zhengzhou, Henan, China
| | - Chenchen Hu
- Intensive Care Unit, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingyun Zhu
- People’s Hospital of Henan University, Henan Provincial People’s Hospital, Microbiome Laboratory, Zhengzhou, Henan, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Hongbo Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People’s Hospital, People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
10
|
Song S, Li N, Bai L, Gai P, Li F. Photo-Assisted Robust Anti-Interference Self-Powered Biosensing of MicroRNA Based on Pt-S Bonds and the Inorganic-Organic Hybridization Strategy. Anal Chem 2022; 94:1654-1660. [PMID: 35025211 DOI: 10.1021/acs.analchem.1c04135] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photo-assisted biofuel cell-based self-powered biosensors (PBFC-SPBs) possess the advantages of no need for external power supply, ease of sensing design, and simple instruments. In this work, a robust anti-interference PBFC-SPB for microRNA detection was constructed based on the Pt-S bond and the inorganic-organic hybridization strategy. The organic semiconductor [6,6]-phenyl-C61-butyric acid methylester@anthraquinone (PCBM@anthraquinone) served as an efficient light-harvesting material, and gold nanoparticle@Pt (AuNP@Pt) nanomaterials were immobilized on the surface via electrostatic adsorption for the binding of DNA. Notably, compared to Au-S bonds for DNA immobilization, the Pt-S bond exhibited better anti-interference ability. Ingeniously, cadmium sulfide quantum dots (CdS QDs) were close to the PCBM@anthraquinone substrate electrode to form sensitization structures, which was beneficial to enhance the photocurrent signal. Combining with the laccase-mimicking activity Cu2+/carbon nanotubes (Cu2+/CNTs) cathode, the PBFC-SPB for microRNA detection was achieved. Once the target existed, the identical sequence complementary microRNA would make DNA2/CdS dissociate and break away from the electrode, leading to a low signal. The linear detection range was 10 fM-100 pM, with the limit of determination of 2.4 fM (3S/N). The as-proposed strategy not only paves a new way for the design of photoelectrochemical biosensing but also opens a door for the construction of robust anti-interference bioassay for microRNA detection.
Collapse
Affiliation(s)
- Shichao Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Lipeng Bai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
11
|
Mahajan M, Sitasawad S. miR-140-5p Attenuates Hypoxia-Induced Breast Cancer Progression by Targeting Nrf2/HO-1 Axis in a Keap1-Independent Mechanism. Cells 2021; 11:12. [PMID: 35011574 PMCID: PMC8750786 DOI: 10.3390/cells11010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Hypoxia and oxidative stress significantly contribute to breast cancer (BC) progression. Although hypoxia-inducible factor 1α (Hif-1α) is considered a key effector of the cellular response to hypoxia, nuclear factor erythroid 2-related factor 2 (Nrf2), a master antioxidant transcription factor, is a crucial factor essential for Hif-1α-mediated hypoxic responses. Hence, targeting Nrf2 could provide new treatment strategies for cancer therapy. miRNAs are potential regulators of hypoxia-responsive genes. In a quest to identify novel hypoxia-regulated miRNAs involved in the regulation of Nrf2, we found that miR-140-5p significantly affects the expression of Nrf2 under hypoxia. In our study, miR-140-5p expression is downregulated in BC cells under hypoxic conditions. We have identified Nrf2 as a direct target of miR-140-5p, as confirmed by the luciferase assay. Knockdown of miR-140-5p under normoxic conditions significantly enhanced Nrf2/HO-1 signaling and tumor growth, angiogenesis, migration, and invasion in BC. In contrast, overexpression of miR-140-5p under hypoxic conditions revealed opposite results. Further silencing Nrf2 expression mimicked the miR-140-5p-induced anti-tumor effects. Consistent with the knockdown of miR-140-5p in vitro, mice injected with miR-140-5p-KD cells exhibited dramatically reduced miR-140-5p levels, increased Nrf2 levels, and increased tumor growth. In contrast, tumor growth is potently suppressed in mice injected with miR-140-5p-OE cells. Collectively, the above results demonstrate the importance of the Nrf2/HO-1 axis in cancer progression and, thus, targeting Nrf2 by miR-140-5p could be a better strategy for the treatment of Nrf2-driven breast cancer progression.
Collapse
Affiliation(s)
| | - Sandhya Sitasawad
- Redox Biology Laboratory, National Centre for Cell Science (NCCS), Pune 411007, India; or
| |
Collapse
|
12
|
Yu Q, Chen S, Tang H, Yang H, Zhang J, Shi X, Li J, Guo W, Zhang S. miR‑140‑5p alleviates mouse liver ischemia/reperfusion injury by targeting CAPN1. Mol Med Rep 2021; 24:675. [PMID: 34296301 PMCID: PMC8335737 DOI: 10.3892/mmr.2021.12314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Ischemia/reperfusion (I/R)‑induced liver injury remains a primary concern in liver transplantation and hepatectomy. Previous studies have indicated that microRNAs (miRs) are involved in multiple pathophysiological processes, including liver I/R. miR‑140‑5p reportedly inhibits inflammatory responses and apoptosis in several diseases; however, the role of miR‑140‑5p in liver I/R remains unknown. The present study aimed to investigate the potential role and mechanism of miR‑140‑5p on liver I/R injury. Mouse liver I/R and mouse AML12 cell hypoxia/reoxygenation (H/R) models were established. miR‑140‑5p mimics, inhibitor or agonists were used to overexpress or inhibit miR‑140‑5p in vitro and in vivo. Reverse transcription‑quantitative polymerase chain reaction was used to detect miR‑140‑5p expression. Liver and cell injury were evaluated using several biochemical assays. The association between miR‑140‑5p and calpain‑1 (CAPN1) was confirmed using a dual‑luciferase reporter assay. The results revealed that miR‑140‑5p expression was decreased in the mouse model of liver I/R injury and AML12 cells subjected to H/R, while overexpressed miR‑140‑5p reduced liver injury in vivo and cell injury in vitro. In addition, CAPN1 was determined to be a target of miR‑140‑5p; overexpressed CAPN1 abrogated the effect of miR‑140‑5p on H/R‑induced cell injury. The present study indicated that miR‑140‑5p protected against liver I/R by targeting CAPN1, which may provide a novel therapeutic target for liver I/R injury.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Sanyang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Han Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Chen H, Liu X, Wu Y, Wu X, Wen X, Lu Y, Zhao X. Apoptosis in HUVECs induced by microRNA-616-3p via X-linked inhibitor of apoptosis protein targeting. Exp Ther Med 2021; 21:661. [PMID: 33968191 PMCID: PMC8097190 DOI: 10.3892/etm.2021.10093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis causes stroke and coronary heart disease and is associated with a high mortality rate worldwide. However, the pathogenesis of atherosclerosis remains unclear. Endothelial cell apoptosis is one of the early changes observed in atherosclerosis. Previous studies have found that microRNA (miR)-616-3p may be involved in the development of atherosclerosis, but the specific mechanism is not clear. The present study aimed to investigate whether miR-616-3p is involved in endothelial cell apoptosis and its underlying mechanism. The present study demonstrated that compared with normal HUVECs, HUVECs treated with oxidized low-density lipoprotein expressed higher miR-616-3p and lower X-linked inhibitor of apoptosis protein (XIAP) levels. In the present study, HUVECs were transfected with miR-616-3p mimic and Cell Counting Kit-8 (CCK-8), flow cytometry and TUNEL staining assays demonstrated that compared with miR-616-3p mimic control, the miR-616-3p mimic promoted HUVEC apoptosis. In addition, using StarBase 3.0 for bioinformatics analysis it was predicted that miR-616-3p may bind to the 3'untranslated region (UTR) of XIAP mRNA. The present study performed the CCK-8, flow cytometry, TUNEL staining and dual-luciferase reporter assays and demonstrated that miR-616-3p binds to the 3'UTR of the XIAP mRNA and inhibits its expression and that this further promotes apoptosis in HUVECs. In addition, western blotting demonstrated that compared with miR-616-3p mimic control, the miR-616-3p mimic increases the level of cleaved caspase-3 in HUVECs. In summary, the present study demonstrated that miR-616-3p can directly inhibit the expression of XIAP mRNA by targeting its 3'UTR which promoted apoptosis in HUVECs. miR-616-3p and XIAP may be used as therapeutic targets of atherosclerosis in the future.
Collapse
Affiliation(s)
- Hua Chen
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010000, P.R. China
| | - Xi Liu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yun Wu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010000, P.R. China
| | - Xiayin Wu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010000, P.R. China
| | - Xiaoli Wen
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yanan Lu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010000, P.R. China
| | - Xingsheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010000, P.R. China
| |
Collapse
|