1
|
Li M, Li J, Zhang S, Zhou L, Zhu Y, Li S, Li Q, Wang J, Song R. Progress in the study of autophagy-related proteins affecting resistance to chemotherapeutic drugs in leukemia. Front Cell Dev Biol 2024; 12:1394140. [PMID: 38887520 PMCID: PMC11180896 DOI: 10.3389/fcell.2024.1394140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Leukemia is a life-threatening malignant tumor of the hematopoietic system. Currently, the main treatment modalities are chemotherapy and hematopoietic stem cell transplantation. However, increased drug resistance due to decreased sensitivity of leukemia cells to chemotherapeutic drugs presents a major challenge in current treatments. Autophagy-associated proteins involved in autophagy initiation have now been shown to be involved in the development of various types of leukemia cells and are associated with drug resistance. Therefore, this review will explore the roles of autophagy-related proteins involved in four key autophagic processes: induction of autophagy and phagophore formation, phagophore extension, and autophagosome formation, on the development of various types of leukemias as well as drug resistance. Autophagy may become a promising therapeutic target for treating leukemia.
Collapse
Affiliation(s)
- Meng Li
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiming Zhang
- Clinical College, Xiamen Medical University, Xiamen, Fujian, China
| | - Linghan Zhou
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Yuanyuan Zhu
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Shen Li
- Rehabilitation Department, Henan Institute of Massage, Luoyang, Henan, China
| | - Qiong Li
- Nursing Department, Xinxiang Medical University, Xinxiang, China
| | - Junjie Wang
- Plastic Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Ruipeng Song
- Endocrinology Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
2
|
Gao Y, Wu Z, Chen Y, Shang G, Zeng Y, Gao Y. A global bibliometric and visualized analysis of the links between the autophagy and acute myeloid leukemia. Front Pharmacol 2024; 14:1291195. [PMID: 38322702 PMCID: PMC10844427 DOI: 10.3389/fphar.2023.1291195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024] Open
Abstract
Background and objectives: Autophagy is a cellular process where damaged organelles or unwanted proteins are packaged into a double-membrane structure and transported to lysosomes for degradation. Autophagy plays a regulatory role in various hematologic malignancies, including acute myeloid leukemia (AML). However, there are few bibliometric studies on the role of autophagy in AML. The purpose of this study is to clarify the role of autophagy in acute myeloid leukemia through bibliometric analysis. Methods: The literature on autophagy and AML research from 2003 to 2023 was searched in Web of Science Core Collection, and bibliometric tools such as VOSviewer 1.6.18, Cite Space (6.1.R3), RStudio (R package bibliometrix), and Scimago Graphica were used to understand the current status and hotspots of autophagy and AML research. The study conducted an analysis of various dimensions including the quantity of publications, countries, institutions, journals, authors, co-references, keywords, and to predict future development trends in this field by drawing relevant visualization maps. Results: A total of 343 articles were obtained, published in 169 journals, written by 2,323 authors from 295 institutions in 43 countries. The journals with the most publications were Blood and Oncotarget. China had the most publications, and Chongqing Medical University and Sun Yat-sen University had the most publications. The author with the highest number of publications was Tschan, Mario P. The main types of research included clinical research, in vitro experiments, in vivo experiments, public database information, and reviews, and the forms of therapeutic effects mainly focused on genetic regulation, traditional Chinese medicine combination, autophagy inhibitors, and drug targets. The research hotspots of autophagy and AML in the past 17 years have focused on genetic regulation, autophagy inhibition, and targeted drugs. Chemotherapy resistance and mitochondrial autophagy will be the forefront of research. Conclusion: The gradual increase in the literature on autophagy and AML research and the decline after 2022 could be a result of authors focusing more on the type of research and the quality of the literature. The current research hotspots are mainly genetic regulation, autophagy inhibition, and autophagy-related targeted drugs. In future, autophagy will remain the focus of the AML field, with research trends likely to focus more on AML chemotherapy resistance and mitochondrial autophagy.
Collapse
Affiliation(s)
- Yao Gao
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhenhui Wu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yingfan Chen
- Department of Traditional Chinese Medicine, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Guangbin Shang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yingjian Zeng
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yue Gao
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Gao P, Wu B, Ding Y, Yin B, Gu H. circEXOC5 promotes acute lung injury through the PTBP1/Skp2/Runx2 axis to activate autophagy. Life Sci Alliance 2023; 6:e202201468. [PMID: 36302650 PMCID: PMC9614700 DOI: 10.26508/lsa.202201468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 01/17/2023] Open
Abstract
To understand the pathogenesis of acute lung injury (ALI), we focused on circEXOC5, a significantly up-regulated circular RNA in ALI. Using the in vivo cecal ligation and puncture (CLP)-induced ALI mouse model and in vitro LPS-challenged mouse pulmonary microvascular endothelial cell (MPVEC) model, we examined the impacts of knockdown circEXOC5 on lung injury, inflammation, and autophagy. The regulation between circEXOC5, polypyrimidine tract-binding protein 1 (PTBP1), S-phase kinase-associated protein 2 (Skp2), and Runt-related transcription factor 2 (Runx2) was investigated by combining RNA immunoprecipitation, qRT-PCR, mRNA stability, and ubiquitination assays. The significance of PTBP1 in circEXOC5-induced ALI phenotypes was examined both in vitro and in vivo. circEXOC5 was up-regulated and associated with increased inflammation and activated autophagy in cecal ligation and puncture-induced ALI lung tissues and LPS-challenged MPVECs. Through the interaction with PTBP1, circEXOC5 accelerated Skp2 mRNA decay, an E3 ubiquitin ligase for Runx2, and therefore increased Runx2 expression. Functionally, overexpressing PTBP1 reversed shcircEXOC5-inhibited ALI, inflammation, or autophagy. The signaling cascade circEXOC5/PTBP1/Skp2/Runx2, by essentially regulating inflammation and autophagy in MPVECs, aggravates sepsis-induced ALI.
Collapse
Affiliation(s)
- Pei Gao
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beirong Wu
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Ding
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingru Yin
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoxiang Gu
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Bednarczyk M, Kociszewska K, Grosicka O, Grosicki S. The role of autophagy in acute myeloid leukemia development. Expert Rev Anticancer Ther 2023; 23:5-18. [PMID: 36563329 DOI: 10.1080/14737140.2023.2161518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autophagy is a highly conservative self-degradative process. It aims at elimination-impaired proteins and cellular organelles. Previous research confirmed the autophagy role in cancer pathogenesis. AREAS COVERED This article discusses the role of autophagy in the development of AML. Autophagy seems to be a 'double-sword' mechanism, hence, either its suppression or induction could promote neoplasm growth. This mechanism could also be the aim of the 'molecular targeted therapy.' Chemo- and radiotherapy induce cellular stress in neoplasm cells with subsequent autophagy suppression. Simultaneously, it is claimed that the autophagy suppression increases chemosensitivity 'in neoplastic cells. Some agents, like bortezomib, in turn could promote autophagy process, e.g. in AML (acute myeloid leukemia). However, currently there are not many studies focusing on the role of autophagy in patients suffering for AML. In this review, we summarize the research done so far on the role of autophagy in the development of AML. EXPERT OPINION The analysis of autophagy genes expression profiling in AML could be a relevant factor in the diagnostic process and treatment 'individualization.' Autophagy modulation seems to be a relevant target in the oncological therapy - it could limit disease progression and increase the effectiveness of treatment.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Karolina Kociszewska
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Sebastian Grosicki
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Celebi D, Taghizadehghalehjoughi A, Baser S, Genc S, Yilmaz A, Yeni Y, Yesilyurt F, Yildirim S, Bolat I, Kordali S, Yilmaz F, Hacimuftuoglu A, Celebi O, Margina D, Nitulescu GM, Spandidos DA, Tsatsakis A. Effects of boric acid and potassium metaborate on cytokine levels and redox stress parameters in a wound model infected with methicillin‑resistant Staphylococcus aureus. Mol Med Rep 2022; 26:294. [PMID: 35920188 PMCID: PMC9366158 DOI: 10.3892/mmr.2022.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are usually found in hospital settings and, frequently, in patients with open wounds. One of the most critical virulence factors affecting the severity and recurrence of infections is the biofilm; increasing antibiotic resistance due to biofilm formation has led to the search for alternative compounds to antibiotics. The present study aimed to use boric acid and potassium metaborate against MRSA infection in a fibroblast wound model. For this purpose, a two-part experiment was designed: First, MRSA strains were used for the test, and both boric acid and potassium metaborate were prepared in microdilution. In the second step, an MRSA wound model was prepared using a fibroblast culture, and treatments with boric acid and potassium metaborate were applied for 24 h. For the evaluation of the effects of treatment, cell viability assay (MTT assay), analysis of redox stress parameters, including total oxidant status and total antioxidant capacity analyses, lactate dehydrogenase analysis and immunohistochemical staining were performed. In addition, IL-1β and IL-10 gene expression levels were assayed. According to the results, potassium metaborate was more effective and exhibited a lower toxicity to fibroblast cells compared to boric acid; moreover, potassium metaborate decreased the level of prooxidant species and increased the antioxidant status more effectively than boric acid. The IL-1β level in the bacteria group was high; however, boric acid and potassium metaborate significantly decreased the expression levels of inflammatory markers, exhibiting the potential to improve the resolution of the lesion. On the whole, the findings of the present study suggest that boric acid and potassium metaborate may be effective on the tested microorganisms.
Collapse
Affiliation(s)
- Demet Celebi
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | | | - Sumeyye Baser
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Sidika Genc
- Department of Medical Pharmacology, Faculty of Medicine, Seyh Edebali University, 11000 Bilecik, Turkey
| | - Aysegul Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Saban Kordali
- Department of Plant Protection, Fethiye Faculty of Agriculture, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Ferah Yilmaz
- Department of Plant Protection, Fethiye Faculty of Agriculture, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Ozgur Celebi
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Denisa Margina
- Department of Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Department of Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
7
|
Fogli S, Galimberti S, Gori V, Del Re M, Danesi R. Pharmacology differences among proteasome inhibitors: Implications for their use in clinical practice. Pharmacol Res 2021; 167:105537. [PMID: 33684510 DOI: 10.1016/j.phrs.2021.105537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
Preclinical and clinical investigation on proteasome as a druggable target in cancer has led to the development of proteasome inhibitors (PIs) with different pharmacodynamic and pharmacokinetic properties. For example, carfilzomib has a better safety profile and a lower risk of clinically relevant drug-drug interactions than bortezomib, whereas ixazomib can be orally administered on a weekly basis due to a very long elimination half-life and high systemic exposure. The purpose of this review article is to elucidate the quantitative and qualitative differences in potency, selectivity, pharmacokinetics, safety and drug-drug interactions of clinically validated PIs to provide useful information for their clinical use in real life setting.
Collapse
Affiliation(s)
- Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Veronica Gori
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|