1
|
Sun L, Sun J, Li C, Wu K, Gu Z, Guo L, Zhou Y, Han B, Chang J. STAT3-specific nanocarrier for shRNA/drug dual delivery and tumor synergistic therapy. Bioact Mater 2024; 41:137-157. [PMID: 39131627 PMCID: PMC11314445 DOI: 10.1016/j.bioactmat.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major disease with high incidence, low survival rate and prone to develop drug resistance to chemotherapy. The mechanism of secondary drug resistance in NSCLC chemotherapy is very complex, and studies have shown that the abnormal activation of STAT3 (Signal Transducer and Activator of Transcription 3) plays an important role in it. In this study, the pGPU6/GFP/Neo STAT3-shRNA recombinant plasmid was constructed with STAT3 as the precise target. By modifying hydrophilic and hydrophobic blocks onto chitosan, a multifunctional vitamin E succinate-chitosan-polyethylene glycol monomethyl ether histidine (VES-CTS-mPEG-His) micelles were synthesized. The micelles could encapsulate hydrophobic drug doxorubicin through self-assembly, and load the recombinant pGPU6/GFP/Neo STAT3-shRNA (pDNA) through positive and negative charges to form dual-loaded nanoparticles DOX/VCPH/pDNA. The co-delivery and synergistic effect of DOX and pDNA could up-regulate the expression of PTEN (Phosphatase and Tensin Homolog), down-regulate the expression of CD31, and induce apoptosis of tumor cells. The results of precision targeted therapy showed that DOX/VCPH/pDNA could significantly down-regulate the expression level of STAT3 protein, further enhancing the efficacy of chemotherapy. Through this study, precision personalized treatment of NSCLC could be effectively achieved, reversing its resistance to chemotherapy drugs, and providing new strategies for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Le Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| |
Collapse
|
2
|
Shahraz A, Penney M, Candido J, Opoku‐Ansah G, Neubauer M, Eyles J, Ojo O, Liu N, Luheshi NM, Phipps A, Vishwanathan K. A mechanistic PK/PD model of AZD0171 (anti-LIF) to support Phase II dose selection. CPT Pharmacometrics Syst Pharmacol 2024; 13:1670-1681. [PMID: 39041713 PMCID: PMC11494920 DOI: 10.1002/psp4.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
AZD0171 (INN: Falbikitug) is being developed as a humanized monoclonal antibody (mAb), immunoglobulin G subclass 1 (IgG1), which binds specifically to the immunosuppressive human cytokine leukemia inhibitory factor (LIF) and inhibits downstream signaling by blocking recruitment of glycoprotein 130 (gp130) to the LIF receptor (LIFR) subunit (gp190) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and is intended to treat adult participants with advanced solid tumors. LIF is a pleiotropic cytokine (and a member of the IL-6 family of cytokines) involved in many physiological and pathological processes and is highly expressed in a subset of solid tumors, including non-small cell lung cancer (NSCLC), colon, ovarian, prostate, and pancreatic cancer. The aim of this work was to develop a mechanistic PK/PD model to investigate the effect of AZD0171 on tumor LIF levels, predict the level of downstream signaling complex (LIF:LIFR:gp130) inhibition, and examine the dose-response relationship to support dose selection for a Phase II clinical study. Modeling results show that tumor LIF is inhibited in a dose-dependent manner with >90% inhibition for 95% of patients at the Phase II clinical dose of 1500 mg Q2W.
Collapse
Affiliation(s)
- Azar Shahraz
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaWalthamMassachusettsUSA
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZenecaCambridgeUK
| | | | | | | | - Jim Eyles
- Oncology R&D, AstraZenecaCambridgeUK
| | | | | | | | - Alex Phipps
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Karthick Vishwanathan
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaWalthamMassachusettsUSA
| |
Collapse
|
3
|
Chen L, Xiang T, Xing J, Lu X, Wei S, Wang H, Li J, Yu W. Circular RNA circEZH2 Promotes Lung Adenocarcinoma Progression by Regulating microRNA-495-3p/Tumor Protein D52 Axis and Activating Nuclear Factor-Kappa B Pathway. Int J Gen Med 2024; 17:4419-4433. [PMID: 39359616 PMCID: PMC11446202 DOI: 10.2147/ijgm.s473202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Background It has been increasingly recognized that circular RNAs (circRNAs) act as a pivotal factor in the onset and progression of human malignancies. Yet, the specific activities and mechanistic roles of these RNAs in the context of lung adenocarcinoma (LUAD) are not fully understood. Methods Microarray analysis identified a novel LUAD-associated circular RNA, termed hsa_circ_0006357 (also referred to as circEZH2). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized for the analysis of circEZH2 expression in tissues and cell lines. The characteristics of circEZH2 were verified by RNase R treatment and fluorescence in situ hybridization (FISH) assays. The functions of circEZH2 were detected by Cell Counting Kit-8 (CCK-8), colony formation, wound healing, and Transwell assays. The molecular mechanism of circEZH2 was clarified through bioinformatics analysis as well as RNA pulldown, dual-luciferase reporter, RT-qPCR, and immunoblotting assays. The role of circEZH2 in vivo was investigated using a xenograft model. Results This investigation revealed that circEZH2 expression was elevated in LUAD cell lines and tumor samples. This elevation was associated with enhanced cell proliferation, migratory capacity, epithelial-mesenchymal transition (EMT), and invasion in vitro. Conversely, silencing of circEZH2 in vivo resulted in a notable decrease in LUAD tumorigenesis, whereas its overexpression led to the opposite effects. Mechanistically, circEZH2 appeared to act as a sponge for miR-495-3p, facilitating the upregulation of tumor protein D52 (TPD52) and triggering the nuclear factor kappa B (NF-κB) signaling pathway, thus contributing to the progression of LUAD. Conclusion These findings indicate that circEZH2 may function as a competitive endogenous RNA (ceRNA), driving the progression of LUAD by manipulating the miR-495-3p/TPD52 axis and activating the NF-κB pathway.
Collapse
Affiliation(s)
- Liping Chen
- Department of Central Laboratory, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Tongwei Xiang
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Jing Xing
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Xinan Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Shan Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Jipeng Li
- Department of Central Laboratory, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
4
|
Shen J, Wu W, Zhang X, Xie X, Shen W, Wang Q. Cancer-associated fibroblasts promote the malignant development of lung cancer through the FOXO1 protein/LIF signaling. Int J Biol Macromol 2024; 276:133987. [PMID: 39032875 DOI: 10.1016/j.ijbiomac.2024.133987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This paper aims to investigate the current situation of cancer related fibroblasts promoting malignant development of cancer through FOXO1 protein/LIF signal, and explore the strategy of cancer treatment. Recent studies have shown that the expression of the protein forkhead box O1 (FOXO1) is increased in CAFsCAFs (Cancer-associated fibroblasts). This led researchers to investigate whether FOXO1 is involved in the role of CAFs in lung cancer. The results of the study revealed that FOXO1 is indeed upregulated in CAFs, and it positively regulates the transcription of another protein called LIF. Notably, LIF is also upregulated in both CAFs and lung cancer cells. These changes in protein expression were associated with the overexpression of FOXO1 in CAFs. Conversely, silencing FOXO1 in CAFs suppressed their effects on cancer cells and transplanted tumors. The study revealed that the downregulation of LIFR in cancer cells abolished the impact of CAFs overexpressing FOXO1 on cancer cell behavior. This suggests that the FOXO1/LIF signaling pathway is involved in mediating the malignant development of lung cancer induced by CAFs.
Collapse
Affiliation(s)
- Jiannan Shen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wei Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Xiaodong Xie
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wenrong Shen
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Qianghu Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Chen L, Wang L, Shao Y, Guo X, Li Y, Guo J, Tan F, Shen H, Hu Y, Huang L, Lu Y, Fan Y. Identification and genetic validation of leukemia inhibitory factor super-enhancers in acute respiratory distress syndrome and lung cancer. Cell Biochem Funct 2024; 42:e4031. [PMID: 38760985 DOI: 10.1002/cbf.4031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 05/20/2024]
Abstract
Super-enhancers play prominent roles in driving robust pathological gene expression, but they are hidden in human genome at noncoding regions, making them difficult to explore. Leukemia inhibitory factor (LIF) is a multifunctional cytokine crucially involved in acute respiratory distress syndrome (ARDS) and lung cancer progression. However, the mechanisms governing LIF regulation in disease contexts remain largely unexplored. In this study, we observed elevated levels of LIF in the bronchoalveolar lavage fluid (BALF) of patients with sepsis-related ARDS compared to those with nonsepsis-related ARDS. Furthermore, both basal and LPS-induced LIF expression were under the control of super-enhancers. Through analysis of H3K27Ac ChIP-seq data, we pinpointed three potential super-enhancers (LIF-SE1, LIF-SE2, and LIF-SE3) located proximal to the LIF gene in cells. Notably, genetic deletion of any of these three super-enhancers using CRISPR-Cas9 technology led to a significant reduction in LIF expression. Moreover, in cells lacking these super-enhancers, both cell growth and invasion capabilities were substantially impaired. Our findings highlight the critical role of three specific super-enhancers in regulating LIF expression and offer new insights into the transcriptional regulation of LIF in ARDS and lung cancer.
Collapse
Affiliation(s)
- Liuting Chen
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Lu Wang
- The Intensive Care Unit, Affiliated Hospital of Nantong University, Nantong, China
| | - Yeling Shao
- The Intensive Care Unit, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaohong Guo
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Yanli Li
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinjing Guo
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Fangzheng Tan
- Shanghai Chongming Center for Disease Control and Prevention, Shanghai, China
| | - Haoliang Shen
- The Intensive Care Unit, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunhong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Lili Huang
- The Intensive Care Unit, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
6
|
Xiang T, Chen L, Wang H, Yu T, Li T, Li J, Yu W. The Circular RNA circFOXK2 Enhances the Tumorigenesis of Non-Small Cell Lung Cancer Through the miR-149-3p/IL-6 Axis. Biochem Genet 2024; 62:95-111. [PMID: 37256441 DOI: 10.1007/s10528-023-10394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Circular RNAs (circRNAs) are the non-coding types of RNAs and are thoughts to be linked with human cancer progression. circFOXK2 is believed to be associated with cancers, however, the molecular mechanisms of circFOXK2 in non-small cell lung cancer (NSCLC) are still unclear. Here we firstly reported that circFOXK2 enhances the tumorigenesis of NSCLC through the miR-149-3p/IL-6 axis. The expression of circFOXK2, microRNA-149-3p (miR-149-3p) and IL-6 were assessed by qRT-PCR and western blot. Transwell, colony formation, wound healing, and CCK-8 assays were used to elucidate NSCLC cells' proliferation, migration, and invasion. MiR-149-3p interaction with circFOXK2 was confirmed by dual-luciferase reporter gene assay (DLRGA). Furthermore, the biological effect of circFOXK2 on NSCLC progression was detected by tumor xenograft assay. CircFOXK2 were upregulated in NSCLC tissues and cells, miR-149-3p were downregulated in NSCLC tissues and cells. In addition, circFOXK2 stimulated NSCLC cell proliferation, migration and invasion in vitro. Mechanical analysis indicated that circFOXK2 modulated IL-6 via miR-149-3p sponging. Furthermore, circFOXK2 overexpression promoted tumor growth in vivo. Overall, this research verified that circFOXK2 enhances the tumorigenesis of NSCLC through the miR-149-3p/IL-6 axis.
Collapse
Affiliation(s)
- Tongwei Xiang
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Liping Chen
- Department of Central Laboratory, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Tao Yu
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Tang Li
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Jipeng Li
- Department of Central Laboratory, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
7
|
Rath B, Stickler S, Hochmair MJ, Hamilton G. Expression of cytokines in pleural effusions and corresponding cell lines of small cell lung cancer. Transl Lung Cancer Res 2024; 13:5-15. [PMID: 38405004 PMCID: PMC10891412 DOI: 10.21037/tlcr-23-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Background Small cell lung cancer (SCLC) is a neuroendocrine aggressive tumor with a dismal prognosis due to the lack of curative therapeutic modalities. Approximately 11% of these patients show a malignant pleural effusion (MPE) that increase in frequency with progression of the disease. In MPE, fluid accumulates due to leaky vessels and mesothelial surfaces as well as impaired removal of fluid due to impaired drainage. Methods For this investigation, three SCLC MPE samples and supernatants of the corresponding isolated cell lines were analyzed for the content of 105 cytokines, chemokines, and growth factors. Overexpressed pathways including these cytokines were identified using Reactome analysis tools. Results A large range of cytokines, including vascular endothelial growth factor A (VEGFA), were found to be expressed in the MPEs and conditioned media of the corresponding cell line. These mediators are involved in pathways such as interleukin (IL) signaling, growth factor stimulation, modulation of cell adhesion molecules and proliferative cell signaling. Cytokine expression by the corresponding SCLC cell lines revealed the specific contributions of the tumor cells and included high expression of VEGFA, tumor-promoting factors and mediators exerting immunosuppressive and protumor effects. MPEs used here showed marked stimulation of the proliferation of four permanent SCLC cell lines. Conclusions MPEs comprise a large number of cytokines with mixed activities on tumor cells and the invading SCLC cells release a number of protumor mediators and induce an immunosuppressive pleural environment.
Collapse
Affiliation(s)
- Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J. Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Leung JH, Ng B, Lim WW. Interleukin-11: A Potential Biomarker and Molecular Therapeutic Target in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11142257. [PMID: 35883698 PMCID: PMC9318853 DOI: 10.3390/cells11142257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer and is a fast progressive disease when left untreated. Identification of potential biomarkers in NSCLC is an ongoing area of research that aims to detect, diagnose, and prognosticate patients early to optimize treatment. We review the role of interleukin-11 (IL11), a stromal-cell derived pleiotropic cytokine with profibrotic and cellular remodeling properties, as a potential biomarker in NSCLC. This review identifies the need for biomarkers in NSCLC, the potential sources of IL11, and summarizes the available information leveraging upon published literature, publicly available datasets, and online tools. We identify accumulating evidence suggesting IL11 to be a potential biomarker in NSCLC patients. Further in-depth studies into the pathophysiological effects of IL11 on stromal-tumor interaction in NSCLC are warranted and current available literature highlights the potential value of IL11 detection as a diagnostic and prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Jason Hongting Leung
- Department of Cardiothoracic Surgery, National Heart Center Singapore, Singapore 169609, Singapore
- Correspondence:
| | - Benjamin Ng
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore; (B.N.); (W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169609, Singapore
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore; (B.N.); (W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169609, Singapore
| |
Collapse
|
9
|
Parakh S, Ernst M, Poh AR. Multicellular Effects of STAT3 in Non-small Cell Lung Cancer: Mechanistic Insights and Therapeutic Opportunities. Cancers (Basel) 2021; 13:6228. [PMID: 34944848 PMCID: PMC8699548 DOI: 10.3390/cancers13246228] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, The Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC 3084, Australia;
- Tumor Targeting Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Matthias Ernst
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ashleigh R. Poh
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| |
Collapse
|