1
|
Kim HM, Joo K, Kim M, Park YJ, Han JW, Kim KW, Lee S, Woo SJ. Genome-wide association study of subfoveal choroidal thickness in a longitudinal cohort of older adults. Sci Rep 2024; 14:23545. [PMID: 39384883 PMCID: PMC11464807 DOI: 10.1038/s41598-024-73094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
To identify genetic influences on subfoveal choroidal thickness of older adults using a genome-wide association study (GWAS). We recruited 300 participants from the population-based Korean Longitudinal Study on Health and Aging (KLoSHA) and Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD) cohort studies and 500 participants from the Bundang age-related macular degeneration (AMD) cohort study dataset. We conducted a GWAS on older adult populations in the KLoSHA and KLOSCAD cohorts. Single nucleotide polymorphisms (SNPs) associated with choroidal thickness were identified with P values < 1.0 × 10-4 in both the right and left eyes, followed by validation using the Bundang AMD cohort dataset. This association was further confirmed by a functional in vitro study using human umbilical vein endothelial cells (HUVECs). The ages of the cohort participants in the discovery and validation datasets were 73.5 ± 3.3 and 71.3 ± 7.9 years, respectively. In the discovery dataset, three SNPs (rs1916762, rs7587019, and rs13320098) were significantly associated with choroidal thickness in both eyes. This association was confirmed for rs1916762 (genotypes GG, GA, and AA) and rs7587019 (genotypes GG, GA, and AA), but not for rs13320098. The mean choroidal thickness decreased by 56.7 μm (AA, 73.8%) and 31.1 μm (GA, 85.6%) compared with that of the GG genotype of rs1916762, and by 55.4 μm (AA, 74.2%) and 28.2 μm (GA, 86.7%) compared with that of the GG genotype of rs7587019. The SNPs rs1916762 and rs7587019 were located close to the FAM124B gene near its cis-regulatory region. Moreover, FAM124B was highly expressed in vascular endothelial cells. In vitro HUVEC experiments showed that the inhibition of FAM124B was associated with decreased vascular endothelial proliferation, suggesting a potential mechanism of choroidal thinning. FAM124B was identified as a susceptibility gene affecting subfoveal choroidal thickness in older adults. This gene may be involved in mechanisms underlying retinal diseases associated with altered choroidal thickness, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Hyeong Min Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
| | - Minji Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
| | - Young Joo Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Carvalho Silva R, Martini P, Hohoff C, Mattevi S, Bortolomasi M, Abate M, Menesello V, Gennarelli M, Baune BT, Minelli A. Unraveling epigenomic signatures and effectiveness of electroconvulsive therapy in treatment-resistant depression patients: a prospective longitudinal study. Clin Epigenetics 2024; 16:93. [PMID: 39020437 PMCID: PMC11256624 DOI: 10.1186/s13148-024-01704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) benefits patients with treatment-resistant depression (TRD), but the underlying biological processes are unclear. We conducted an epigenome-wide association study in 32 TRD patients undergoing ECT to depict ECT-associated methylation changes. Illness severity and ECT outcomes were assessed with the Montgomery-Åsberg Depression Rating Scale at baseline (T0) and 1 month after its end (T1). Methylation was profiled at T0 and T1 with the Illumina Infinium Methylation EPIC BeadChip array. RESULTS Longitudinal T0-T1 analyses showed 3 differentially methylated probes (DMPs) with nominal p values ≤ 10-5, with 2 annotated in the genes CYB5B and PVRL4. Including covariates, we found 4 DMPs for symptoms variation, annotated in FAM20C, EPB41, OTUB1 and ADARB1, and 3 DMPs for response status, with 2 annotated in IQCE and FAM20C. Regional analysis revealed 54 differentially methylated regions (DMRs) with nominal p value area ≤ 0.05, with 9 presenting adjusted p-value area ≤ 0.10, annotated in MCF2L, SLC25A24, RUNX3, MIR637, FOXK2, FAM180B, POU6F1, ALS2CL and CCRL2. Considering covariates, we found 21 DMRs for symptoms variation and 26 DMRs for response (nominal p value area ≤ 0.05), with 4 presenting adjusted p-value area ≤ 0.10 for response, annotated in SNORD34, NLRP6, GALNT2 and SFT2D3. None remained significant after false discovery rate correction. Notably, ADARB1 variants are associated with suicide attempt in patients with psychiatric disorders, and SLC25A24 relates to conduct disorder. Several DMPs and DMRs are annotated in genes associated with inflammatory/immune processes. Longitudinal analyses on females (n = 22) revealed statistically significant DMRs (adjusted p value area ≤ 0.05) and trend-significant DMRs (adjusted p value area ≤ 0.07) for symptoms variation and response status, annotated in genes related to psychiatric disorders (ZFP57, POLD4, TRIM10, GAS7, ADORA2A, TOLLIP), trauma exposure (RIPOR2) and inflammatory/immune responses (LAT, DLX4, POLD4, FAM30A, H19). Pathway analysis on females revealed enrichment for transcriptional activity, growth factors, DNA maintenance, and immune pathways including IRF7 and IRF2. CONCLUSION Although no significant results were found for the whole cohort, the study provides insights into ECT-associated methylation changes, highlighting DMPs and DMRs related to ECT outcomes. Analyses on females revealed significant DMRs and pathways related to psychiatric disorders and inflammatory/immune processes.
Collapse
Affiliation(s)
- Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | | | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara", Verona, Italy
| | - Valentina Menesello
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
3
|
Eshibona N, Livesey M, Christoffels A, Bendou H. Investigation of distinct gene expression profile patterns that can improve the classification of intermediate-risk prognosis in AML patients. Front Genet 2023; 14:1131159. [PMID: 36865386 PMCID: PMC9971493 DOI: 10.3389/fgene.2023.1131159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a heterogeneous type of blood cancer that generally affects the elderly. AML patients are categorized with favorable-, intermediate-, and adverse-risks based on an individual's genomic features and chromosomal abnormalities. Despite the risk stratification, the progression and outcome of the disease remain highly variable. To facilitate and improve the risk stratification of AML patients, the study focused on gene expression profiling of AML patients within various risk categories. Therefore, the study aims to establish gene signatures that can predict the prognosis of AML patients and find correlations in gene expression profile patterns that are associated with risk groups. Methods: Microarray data were obtained from Gene Expression Omnibus (GSE6891). The patients were stratified into four subgroups based on risk and overall survival. Limma was applied to screen for differentially expressed genes (DEGs) between short survival (SS) and long survival (LS). DEGs strongly related to general survival were discovered using Cox regression and LASSO analysis. To assess the model's accuracy, Kaplan-Meier (K-M) and receiver operating characteristic (ROC) were used. A one-way ANOVA was performed to assess for differences in the mean gene expression profiles of the identified prognostic genes between the risk subcategories and survival. GO and KEGG enrichment analyses were performed on DEGs. Results: A total of 87 DEGs were identified between SS and LS groups. The Cox regression model selected nine genes CD109, CPNE3, DDIT4, INPP4B, LSP1, CPNE8, PLXNC1, SLC40A1, and SPINK2 that are associated with AML survival. K-M illustrated that the high expression of the nine-prognostic genes is associated with poor prognosis in AML. ROC further provided high diagnostic efficacy of the prognostic genes. ANOVA also validated the difference in gene expression profiles of the nine genes between the survival groups, and highlighted four prognostic genes to provide novel insight into risk subcategories poor and intermediate-poor, as well as good and intermediate-good that displayed similar expression patterns. Conclusion: Prognostic genes can provide more accurate risk stratification in AML. CD109, CPNE3, DDIT4, and INPP4B provided novel targets for better intermediate-risk stratification. This could enhance treatment strategies for this group, which constitutes the majority of adult AML patients.
Collapse
Affiliation(s)
- Nasr Eshibona
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of The Western Cape, Cape Town, South Africa
| | - Michelle Livesey
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of The Western Cape, Cape Town, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of The Western Cape, Cape Town, South Africa
| | | |
Collapse
|
4
|
Combined scRNAseq and Bulk RNAseq Analysis to Reveal the Dual Roles of Oxidative Stress-Related Genes in Acute Myeloid Leukemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5343746. [PMID: 36811020 PMCID: PMC9938912 DOI: 10.1155/2023/5343746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 02/11/2023]
Abstract
Background Oxidative stress (OS) can either lead to leukemogenesis or induce tumor cell death by inflammation and immune response accompanying the process of OS through chemotherapy. However, previous studies mainly focus on the level of OS state and the salient factors leading to tumorigenesis and progression of acute myeloid leukemia (AML), and nothing has been done to distinguish the OS-related genes with different functions. Method First, we downloaded single-cell RNA sequencing (scRNAseq) and bulk RNA sequencing (RNAseq) data from public databases and evaluated the oxidative stress functions between leukemia cells and normal cells by the ssGSEA algorithm. Then, we used machine learning methods to screen out OS gene set A related to the occurrence and prognosis of AML and OS gene set B related to treatment in leukemia stem cells (LSCs) like population (HSC-like). Furthermore, we screened out the hub genes in the above two gene sets and used them to identify molecular subclasses and construct a model for predicting therapy response. Results Leukemia cells have different OS functions compared to normal cells and significant OS functional changes before and after chemotherapy. Two different clusters in gene set A were identified, which showed different biological properties and clinical relevance. The sensitive model for predicting therapy response based on gene set B demonstrated predictive accuracy by ROC and internal validation. Conclusion We combined scRNAseq and bulk RNAseq data to construct two different transcriptomic profiles to reveal the different roles of OS-related genes involved in AML oncogenesis and chemotherapy resistance, which might provide important insights into the mechanism of OS-related genes in the pathogenesis and drug resistance of AML.
Collapse
|
5
|
Ko EA, Zhou T. GPCR genes as a predictor of glioma severity and clinical outcome. J Int Med Res 2022; 50:3000605221113911. [PMID: 35903880 PMCID: PMC9340954 DOI: 10.1177/03000605221113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To undertake a comprehensive analysis of the differential expression of the G protein-coupled receptor (GPCR) genes in order to construct a GPCR gene signature for human glioma prognosis. METHODS This current study investigated several glioma transcriptomic datasets and identified the GPCR genes potentially associated with glioma severity. RESULTS A gene signature comprising 13 GPCR genes (nine upregulated and four downregulated genes in high-grade glioma) was developed. The predictive power of the 13-gene signature was tested in two validation cohorts and a strong positive correlation (Spearman's rank correlation test: ρ = 0.649 for the Validation1 cohort; ρ = 0.693 for the Validation2 cohort) was observed between the glioma grade and 13-gene based severity score in both cohorts. The 13-gene signature was also predictive of glioma prognosis based on Kaplan-Meier survival curve analyses and Cox proportional hazard regression analysis in four cohorts of patients with glioma. CONCLUSIONS Knowledge of GPCR gene expression in glioma may help researchers gain a better understanding of the pathogenesis of high-grade glioma. Further studies are needed to validate the association between these GPCR genes and glioma pathogenesis.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
6
|
Su N, Wang Y, Lu X, Xu W, Wang H, Mo W, Pang H, Tang R, Li S, Yan X, Li Y, Zhang R. Methylation of SPRED1: A New Target in Acute Myeloid Leukemia. Front Oncol 2022; 12:854192. [PMID: 35359401 PMCID: PMC8960233 DOI: 10.3389/fonc.2022.854192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sprouty-related, EVH1 domain-containing protein 1 (SPRED1) has been identified as a novel tumor suppressor gene in acute myeloid leukemia (AML). Previous studies showed that SPRED1 methylation levels were significantly increased in AML patients, making it an interesting candidate for further investigations. To confirm the association of SPRED1 methylation, clinical parameters, and known molecular prognosticators and to identify the impact of methylation level on treatment outcome, we conducted this study in a larger cohort of 75 AML patients. Significantly increased methylation levels of SPRED1 were detected at four of ten CpG units by quantitative high-resolution mass spectrometry-based approach (MassARRAY) in AML patients. Whereas overall survival (OS) and relapse-free survival (RFS) showed no statistical difference between hypermethylation and hypomethylation subgroups, the relationship between methylation level and treatment response was indicated in paired samples from pre- and post-induction. To determine the possible mechanism of SPRED1 methylation in AML, we performed in vitro experiments using THP-1 cells, as the latter showed the highest methylation level (determined by utilizing bisulfite modification) among the three AML cell lines we tested. When treated with 5-AZA and lentivirus transfection, upregulated SPRED1 expression, decreased cell proliferation, increased cell differentiation and apoptosis, and inactivated phosphorylated extracellular signal-regulated kinase (p-ERK) were detected in THP-1 cells. These results show that demethylation of SPRED1 can inhibit the proliferation of AML cells and promote their differentiation and apoptosis, possibly by the ERK pathway. The hypermethylation of SPRED1 is a potential therapeutic target for AML.
Collapse
Affiliation(s)
- Nan Su
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yujiao Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Weihong Xu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - He Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenbin Mo
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Pang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rurong Tang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Jiang N, Zhang X, Chen Q, Kantawong F, Wan S, Liu J, Li H, Zhou J, Lu B, Wu J. Identification of a Mitochondria-Related Gene Signature to Predict the Prognosis in AML. Front Oncol 2022; 12:823831. [PMID: 35359394 PMCID: PMC8960857 DOI: 10.3389/fonc.2022.823831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria-related metabolic reprogramming plays a major role in the occurrence, development, drug resistance, and recurrence of acute myeloid leukemia (AML). However, the roles of mitochondria-related genes (MRGs) in the prognosis and immune microenvironment for AML patients remain largely unknown. In this study, by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, 4 MRGs’ (HPDL, CPT1A, IDH3A, and ETFB) signature was established that demonstrated good robustness in TARGET AML datasets. The univariate and multivariate Cox regression analyses both demonstrated that the MRG signature was a robust independent prognostic factor in overall survival prediction with high accuracy for AML patients. Based on the risk score calculated by the signature, samples were divided into high- and low-risk groups. Gene set enrichment analysis (GSEA) suggested that the MRG signature is involved in the immune-related pathways. Via immune infiltration analysis and immunosuppressive genes analysis, we found that MRG risk of AML patients was strikingly positively correlated with an immune cell infiltration and expression of critical immune checkpoints, indicating that the poor prognosis might be caused by immunosuppressive tumor microenvironment (TME). In summary, the signature based on MRGs could act as an independent risk factor for predicting the clinical prognosis of AML and could also reflect an association with the immunosuppressive microenvironment, providing a novel method for AML metabolic and immune therapy based on the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Foreign Language School, Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xinzhuo Zhang
- Foreign Language School, Southwest Medical University, Luzhou, China
| | - Qi Chen
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Shengli Wan
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Jian Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bin Lu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Jianming Wu, ; Bin Lu,
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Jianming Wu, ; Bin Lu,
| |
Collapse
|