1
|
Gonzalez T, Nie Q, Chaudhary LN, Basel D, Reddi HV. Methylation signatures as biomarkers for non-invasive early detection of breast cancer: A systematic review of the literature. Cancer Genet 2024; 282-283:1-8. [PMID: 38134587 DOI: 10.1016/j.cancergen.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Early detection of breast cancer would help alleviate the burden of treatment for early-stage breast cancer and help patient prognosis. There is currently no established gene panel that utilizes the potential of DNA methylation as a molecular signature for the early detection of breast cancer. This systematic review aims to identify the optimal methylation biomarkers for a non-invasive liquid biopsy assay and the gaps in knowledge regarding biomarkers for early detection of breast cancer. METHODS Following the PRISMA-ScR method, Pubmed and Google Scholar was searched for publications related to methylation biomarkers in breast cancer over a five-year period. Eligible publications were mined for key data fields such as study aims, cohort demographics, types of breast cancer studied, technologies used, and outcomes. Data was analyzed to address the objectives of the review. RESULTS Literature search identified 112 studies of which based on eligibility criteria, 13 studies were included. 28 potential methylation gene targets were identified, of which 23 were methylated at the promoter region, 1 was methylated in the body of the gene and 4 were methylated at yet to be identified locations. CONCLUSIONS Our evaluation shows that at minimum APC, RASSFI, and FOXA1 genes would be a promising set of genes to start with for the early detection of breast cancer, based on the sensitivity and specificity outlined in the studies. Prospective studies are needed to optimize biomarkers for broader impact in early detection of breast cancer.
Collapse
Affiliation(s)
- Tessa Gonzalez
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA
| | - Qian Nie
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA
| | - Lubna N Chaudhary
- Division of Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, CT, USA
| | - Donald Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, CT, USA
| | - Honey V Reddi
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA.
| |
Collapse
|
2
|
Ponce D, Rodríguez F, Miranda JP, Binder AM, Santos JL, Michels KB, Cutler GB, Pereira A, Iñiguez G, Mericq V. Differential methylation pattern in pubertal girls associated with biochemical premature adrenarche. Epigenetics 2023; 18:2200366. [PMID: 37053179 PMCID: PMC10114989 DOI: 10.1080/15592294.2023.2200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Biochemical premature adrenarche is defined by elevated serum DHEAS [≥40 μg/dL] before age 8 y in girls. This condition is receiving more attention due to its association with obesity, hyperinsulinemia, dyslipidemia, and polycystic ovary syndrome. Nevertheless, the link between early androgen excess and these risk factors remains unknown. Epigenetic modifications, and specifically DNA methylation, have been associated with the initiation and progression of numerous disorders, including obesity and insulin resistance. The aim of this study was to determine if prepubertal androgen exposure is associated with a different methylation profile in pubertal girls. Eighty-six healthy girls were studied. At age 7 y, anthropometric measurements were begun and DHEAS levels were determined. Girls were classified into Low DHEAS (LD) [<42 μg/dL] and High DHEAS (HD) [≥42 μg/dL] groups. At Tanner stages 2 and 4 a DNA methylation microarray was performed to identify differentially methylated CpG positions (DMPs) between HD and LD groups. We observed a differential methylation pattern between pubertal girls with and without biochemical PA. Moreover, a set of DNA methylation markers, selected by the LASSO method, successfully distinguished between HD and LD girls regardless of Tanner stage. Additionally, a subset of these markers were significantly associated with glucose-related measures such as insulin level, HOMA-IR, and glycaemia. This pilot study provides evidence consistent with the hypothesis that high DHEAS concentration, or its hormonally active metabolites, may induce a unique blood methylation signature in pubertal girls, and that this methylation pattern is associated with altered glucose metabolism.
Collapse
Affiliation(s)
- Diana Ponce
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - José P Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - José L Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Germán Iñiguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Onyido EK, James D, Garcia-Parra J, Sinfield J, Moberg A, Coombes Z, Worthington J, Williams N, Francis LW, Conlan RS, Gonzalez D. Elucidating Novel Targets for Ovarian Cancer Antibody-Drug Conjugate Development: Integrating In Silico Prediction and Surface Plasmon Resonance to Identify Targets with Enhanced Antibody Internalization Capacity. Antibodies (Basel) 2023; 12:65. [PMID: 37873862 PMCID: PMC10594448 DOI: 10.3390/antib12040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) constitute a rapidly expanding category of biopharmaceuticals that are reshaping the landscape of targeted chemotherapy. The meticulous process of selecting therapeutic targets, aided by specific monoclonal antibodies' high specificity for binding to designated antigenic epitopes, is pivotal in ADC research and development. Despite ADCs' intrinsic ability to differentiate between healthy and cancerous cells, developmental challenges persist. In this study, we present a rationalized pipeline encompassing the initial phases of the ADC development, including target identification and validation. Leveraging an in-house, computationally constructed ADC target database, termed ADC Target Vault, we identified a set of novel ovarian cancer targets. We effectively demonstrate the efficacy of Surface Plasmon Resonance (SPR) technology and in vitro models as predictive tools, expediting the selection and validation of targets as ADC candidates for ovarian cancer therapy. Our analysis reveals three novel robust antibody/target pairs with strong binding and favourable antibody internalization rates in both wild-type and cisplatin-resistant ovarian cancer cell lines. This approach enhances ADC development and offers a comprehensive method for assessing target/antibody combinations and pre-payload conjugation biological activity. Additionally, the strategy establishes a robust platform for high-throughput screening of potential ovarian cancer ADC targets, an approach that is equally applicable to other cancer types.
Collapse
Affiliation(s)
- Emenike Kenechi Onyido
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - David James
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Jezabel Garcia-Parra
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - John Sinfield
- Cytiva, Björkgatan 30, 751 84 Uppsala, Sweden; (J.S.); (A.M.)
| | - Anna Moberg
- Cytiva, Björkgatan 30, 751 84 Uppsala, Sweden; (J.S.); (A.M.)
| | - Zoe Coombes
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Jenny Worthington
- Axis Bioservices Ltd., 189 Castleroe Rd, Coleraine BT51 3RP, UK; (J.W.); (N.W.)
| | - Nicole Williams
- Axis Bioservices Ltd., 189 Castleroe Rd, Coleraine BT51 3RP, UK; (J.W.); (N.W.)
| | - Lewis Webb Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Robert Steven Conlan
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| |
Collapse
|
4
|
Carrier A, Desjobert C, Lobjois V, Rigal L, Busato F, Tost J, Ensenyat-Mendez M, Marzese DM, Pradines A, Favre G, Lamant L, Lanfrancone L, Etievant C, Arimondo PB, Riond J. Epigenetically regulated PCDHB15 impairs aggressiveness of metastatic melanoma cells. Clin Epigenetics 2022; 14:156. [PMID: 36443814 PMCID: PMC9707039 DOI: 10.1186/s13148-022-01364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
The protocadherin proteins are cell adhesion molecules at the crossroad of signaling pathways playing a major role in neuronal development. It is now understood that their role as signaling hubs is not only important for the normal physiology of cells but also for the regulation of hallmarks of cancerogenesis. Importantly, protocadherins form a cluster of genes that are regulated by DNA methylation. We have identified for the first time that PCDHB15 gene is DNA-hypermethylated on its unique exon in the metastatic melanoma-derived cell lines and patients' metastases compared to primary tumors. This DNA hypermethylation silences the gene, and treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine reinduces its expression. We explored the role of PCDHB15 in melanoma aggressiveness and showed that overexpression impairs invasiveness and aggregation of metastatic melanoma cells in vitro and formation of lung metastasis in vivo. These findings highlight important modifications of the methylation of the PCDHβ genes in melanoma and support a functional role of PCDHB15 silencing in melanoma aggressiveness.
Collapse
Affiliation(s)
- Arnaud Carrier
- Unité de Service et de Recherche USR n°3388 CNRS-Pierre Fabre, Epigenetic Targeting of Cancer (ETaC), Toulouse, France ,Cancer Epigenetics Group, Institut de Recerca Contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Cécile Desjobert
- Unité de Service et de Recherche USR n°3388 CNRS-Pierre Fabre, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Valérie Lobjois
- grid.508721.9Institut des Technologies Avancées en Sciences du Vivant – ITAV-USR3505, CNRS, Université de Toulouse, Université Paul Sabatier-UT3, Toulouse, France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, CNRS UMR 5088, Université Paul Sabatier-UT3, Toulouse, France
| | - Lise Rigal
- grid.508721.9Institut des Technologies Avancées en Sciences du Vivant – ITAV-USR3505, CNRS, Université de Toulouse, Université Paul Sabatier-UT3, Toulouse, France
| | - Florence Busato
- grid.460789.40000 0004 4910 6535Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humain, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Jörg Tost
- grid.460789.40000 0004 4910 6535Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humain, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Miquel Ensenyat-Mendez
- grid.507085.fCancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Diego M. Marzese
- grid.507085.fCancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Anne Pradines
- grid.15781.3a0000 0001 0723 035XInserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France ,grid.417829.10000 0000 9680 0846Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Gilles Favre
- grid.15781.3a0000 0001 0723 035XInserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France ,grid.417829.10000 0000 9680 0846Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Laurence Lamant
- grid.488470.7Laboratoire d’Anatomopathologie, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Luisa Lanfrancone
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, Instituto Europeo di Oncologia, Via Adamello 16, 20139 Milan, Italy
| | - Chantal Etievant
- Unité de Service et de Recherche USR n°3388 CNRS-Pierre Fabre, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Paola B. Arimondo
- Unité de Service et de Recherche USR n°3388 CNRS-Pierre Fabre, Epigenetic Targeting of Cancer (ETaC), Toulouse, France ,grid.428999.70000 0001 2353 6535EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, CNRS UMR N°3523, Institut Pasteur, 28 Rue du Dr Roux, 75015 Paris, France
| | - Joëlle Riond
- Unité de Service et de Recherche USR n°3388 CNRS-Pierre Fabre, Epigenetic Targeting of Cancer (ETaC), Toulouse, France ,grid.15781.3a0000 0001 0723 035XInserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN. Epigenetic oncogenesis, biomarkers and emerging chemotherapeutics for breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194873. [PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia; Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria.
| | - Abdulfatai Temitope Ajiboye
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Wahab Adesina Osunniran
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
6
|
The Dysregulation of SOX Family Correlates with DNA Methylation and Immune Microenvironment Characteristics to Predict Prognosis in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2676114. [PMID: 35465267 PMCID: PMC9020970 DOI: 10.1155/2022/2676114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Background Due to the molecular heterogeneity of hepatocellular carcinoma (HCC), majority of patients respond poorly among various of therapy. This study is aimed at conducting a comprehensive analysis about roles of SOX family in HCC for obtaining more therapeutic targets and biomarkers which may bring new ideas for the treatment of HCC. Methods UALCAN, Kaplan Meier plotter, cBioPortal, STRING, WebGestalt, Metascape, TIMER 2.0, DiseaseMeth, MethSurv, HPA, CCLE database, and Cytoscape software were used to comprehensively analyze the bioinformatic data. Results SOX2, SOX4, SOX8, SOX10, SOX11, SOX12, SOX17, and SOX18 were significantly differentially expressed in HCC and normal tissues and were valuable for the grade and survival of HCC patients. In addition, the gene alterations of SOX family happened frequently, and SOX4 and SOX17 had the highest mutation rate. The function of SOX family on HCC may be closely correlated with the regulation of angiogenesis-related signaling pathways. Moreover, SOX4, SOX8, SOX11, SOX12, SOX17, and SOX18 were correlation with 8 types of immune cells (including CD8+ T cell, CD4+ T cell, B cell, Tregs, neutrophil, macrophage, myeloid DC, and NK cell), and we found that most types of immune cells had a positive correlation with SOX family. Notably, CD4+ T cell and macrophage were positively related with all these SOX family. NK cells were negatively related with most SOX family genes. DNA methylation levels in promoter area of SOX2, SOX4, and SOX10 were lower in HCC than normal tissues, while SOX8, SOX11, SOX17, and SOX18 had higher DNA methylation levels than normal tissues. Moreover, higher DNA methylation level of SOX12 and SOX18 demonstrated worse survival rates in patients with HCC. Conclusion SOX family genes could predict the prognosis of HCC. In addition, the regulation of angiogenesis-related signaling pathways may participate in the development of HCC. DNA methylation level and immune microenvironment characteristics (especially CD4+ T cell and macrophage immune cell infiltration) could be a novel insight for predicting prognosis in HCC.
Collapse
|