1
|
Alizadeh N, Zahedi H, Koopaie M, Fatahzadeh M, Mousavi R, Kolahdooz S. Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics. BMC Pulm Med 2025; 25:41. [PMID: 39863879 PMCID: PMC11765895 DOI: 10.1186/s12890-025-03502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily. The process is also reproducible and cost-effective. The aim of this study was to evaluate the salivary expression of microRNAs let-7a-2, miR-221, and miR-20a in saliva and evaluate their efficacy, using multiple logistic regression (MLR) model, in diagnosis of lung cancer. MATERIALS Samples of saliva were obtained from 40 lung cancer patients (20 lung adenocarcinoma and 20 lung squamous cell carcinoma) and 20 healthy controls. The levels of let-7a-2, miR-221, and miR-20a expression in saliva were assessed by RT-qPCR. Receiver operating characteristic (ROC) curve was utilized to assess the potential significance of miRNAs in saliva for lung cancer diagnosis with the use of multiple logistic regression (MLR), principal component analysis, and machine learning methods. RESULTS Diagnostic odds ratio (DOR) of miR-20a in lung adenocarcinoma diagnosis versus healthy control was higher than miR-221, and DOR of miR-221 was higher than let-7a-2. miR-20a demonstrated a higher DOR for small cell lung carcinoma versus healthy control compared to let-7a-2, which in turn exhibited a higher DOR than miR-221. MLR of miR-221, let-7a-2, miR-20a, and smoking habit using main effects led to accuracy of 0.725 (sensitivity: 0.80, specificity: 0.65) and AUC = 0.795 for differentiation of small-cell lung carcinoma from lung adenocarcinoma. Our results showed that MLR based on salivary miRNAs could diagnose LUAD and SCLC from healthy control using main effects and two-way interactions with the accuracy of 0.90 (sensitivity = 0.95 and specificity = 0.85). CONCLUSION A salivary miRNA-based MLR model is a promising diagnostic tool for lung cancer, offering a non-invasive screening option for high-risk asymptomatic individuals.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395 -433, Tehran, 14399-55991, Iran
| | - Hoda Zahedi
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395 -433, Tehran, 14399-55991, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395 -433, Tehran, 14399-55991, Iran.
| | - Mahnaz Fatahzadeh
- Division of Oral Medicine, Department of Oral Medicine, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, 07103, USA
| | - Reza Mousavi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Veryaskina YA, Titov SE, Skvortsova NV, Kovynev IB, Antonenko OV, Demakov SA, Demenkov PS, Pospelova TI, Ivanov MK, Zhimulev IF. Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential. Int J Mol Sci 2024; 25:13404. [PMID: 39769169 PMCID: PMC11679576 DOI: 10.3390/ijms252413404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells and accounts for approximately 10% of all hematologic malignancies. The clinical outcomes of MM can exhibit considerable variability. Variability in both the genetic and epigenetic characteristics of MM undeniably contributes to tumor dynamics. The aim of the present study was to identify biomarkers with the potential to improve the accuracy of prognosis assessment in MM. Initially, miRNA sequencing was conducted on bone marrow (BM) samples from patients with MM. Subsequently, the expression levels of 27 microRNAs (miRNA) and the gene expression levels of ASF1B, CD82B, CRISP3, FN1, MEF2B, PD-L1, PPARγ, TERT, TIMP1, TOP2A, and TP53 were evaluated via real-time reverse transcription polymerase chain reaction in BM samples from patients with MM exhibiting favorable and unfavorable prognoses. Additionally, the analysis involved the bone marrow samples from patients undergoing examinations for non-cancerous blood diseases (NCBD). The findings indicate a statistically significant increase in the expression levels of miRNA-124, -138, -10a, -126, -143, -146b, -20a, -21, -29b, and let-7a and a decrease in the expression level of miRNA-96 in the MM group compared with NCBD (p < 0.05). No statistically significant differences were detected in the expression levels of the selected miRNAs between the unfavorable and favorable prognoses in MM groups. The expression levels of ASF1B, CD82B, and CRISP3 were significantly decreased, while those of FN1, MEF2B, PDL1, PPARγ, and TERT were significantly increased in the MM group compared to the NCBD group (p < 0.05). The MM group with a favorable prognosis demonstrated a statistically significant decline in TIMP1 expression and a significant increase in CD82B and CRISP3 expression compared to the MM group with an unfavorable prognosis (p < 0.05). From an empirical point of view, we have established that the complex biomarker encompassing the CRISP3/TIMP1 expression ratio holds promise as a prognostic marker in MM. From a fundamental point of view, we have demonstrated that the development of MM is rooted in a cascade of complex molecular pathways, demonstrating the interplay of genetic and epigenetic factors.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei E. Titov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- AO Vector-Best, Novosibirsk 630117, Russia;
| | - Natalia V. Skvortsova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | - Oksana V. Antonenko
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Sergei A. Demakov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Pavel S. Demenkov
- Laboratory of Computer Proteomics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | | | - Igor F. Zhimulev
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| |
Collapse
|
3
|
Cánovas-Cervera I, Nacher-Sendra E, Suay G, Lahoz A, García-Giménez JL, Mena-Mollá S. Role of miRNAs as epigenetic regulators of immune checkpoints in lung cancer immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:109-139. [PMID: 39864893 DOI: 10.1016/bs.ircmb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The advent of immunotherapy in cancer has provided new avenues in the treatment of many malignancies at various stages. Specifically, immune checkpoint inhibitors (ICIs) have transformed the field of lung cancer treatment. However, since some tumors can evade the immune system, not all patients respond properly. Recent research has provided evidence showing how microRNAs (miRNAs) are involved in regulating many immune checkpoints. MiRNAs have demonstrated their ability to modulate immune evasion of tumor cells. Currently, reliable markers are being sought to predict the efficacy of immunotherapy in these types of cancers. Therefore, the association of serum miRNAs and the response of ICIs in lung cancer is under study. Many miRNA molecules and their corresponding target genes have been identified in the regulation of chemoresistance. Therefore, elucidating how these miRNAs control the function of immune checkpoints, as well as the effectiveness of therapies based on ICIs set the basis for the development of new biomarkers to predict treatment response to ICIs. This chapter delves into the molecular role of miRNAs interacting with ICs, such as PD-1 and PD-L1, and the clinical utility of miRNAs, such as miR-16, miR-146a, and miR-335, in predicting treatment response to ICI-based therapy in lung cancer. The aim is to provide a deep insight of the current landscape, serving as a cornerstone for further research.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Guillermo Suay
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute-Hospital La Fe, Valencia, Spain; Analytical Unit, Health Research Institute-Hospital La Fe, Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.
| | - Salvador Mena-Mollá
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
4
|
Olarewaju O, Hu Y, Tsay HC, Yuan Q, Eimterbäumer S, Xie Y, Qin R, Ott M, Sharma AD, Balakrishnan A. MicroRNA miR-20a-5p targets CYCS to inhibit apoptosis in hepatocellular carcinoma. Cell Death Dis 2024; 15:456. [PMID: 38937450 PMCID: PMC11211328 DOI: 10.1038/s41419-024-06841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Hepatocellular carcinoma is a primary liver cancer, characterised by diverse etiology, late diagnoses, and poor prognosis. Hepatocellular carcinoma is mostly resistant to current treatment options, therefore, identification of more effective druggable therapeutic targets is needed. We found microRNA miR-20a-5p is upregulated during mouse liver tumor progression and in human hepatocellular carcinoma patients. In this study, we elucidated the therapeutic potential of targeting oncogenic miR-20a-5p, in vivo, in a xenograft model and in two transgenic hepatocellular carcinoma mouse models via adeno-associated virus-mediated miR-20a-Tough-Decoy treatment. In vivo knockdown of miR-20a-5p attenuates tumor burden and prolongs survival in the two independent hepatocellular carcinoma mouse models. We identified and validated cytochrome c as a novel target of miR-20a-5p. Cytochrome c plays a key role in initiation of the apoptotic cascade and in the electron transport chain. We show for the first time, that miR-20a modulation affects both these key functions of cytochrome c during HCC development. Our study thus demonstrates the promising 'two birds with one stone' approach of therapeutic in vivo targeting of an oncogenic miRNA, whereby more than one key deregulated cellular process is affected, and unequivocally leads to more effective attenuation of HCC progression and significantly longer overall survival.
Collapse
Affiliation(s)
- Olaniyi Olarewaju
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88400, Germany
| | - Yuhai Hu
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hsin-Chieh Tsay
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Simon Eimterbäumer
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany.
- Research Group RNA Therapeutics & Liver Regeneration, REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Kahkesh S, Khoshnazar SM, Gholinezhad Y, Esmailzadeh S, Hosseini SA, Alimohammadi M, Mafi A. The potential role of circular RNAs -regulated PI3K signaling in non-small cell lung cancer: Molecular insights and clinical perspective. Pathol Res Pract 2024; 257:155316. [PMID: 38692125 DOI: 10.1016/j.prp.2024.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Zhu X, Chen X, Zhang X, Zhao L, Shen X. MicroRNA‑373‑3p inhibits the proliferation and invasion of non‑small‑cell lung cancer cells by targeting the GAB2/PI3K/AKT pathway. Oncol Lett 2024; 27:221. [PMID: 38586211 PMCID: PMC10996020 DOI: 10.3892/ol.2024.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/23/2023] [Indexed: 04/09/2024] Open
Abstract
MicroRNAs (miRNAs) were previously demonstrated to be involved in the pathogenesis of non-small-cell lung cancer (NSCLC); however, the roles of certain miRNAs in NSCLC remain to be elucidated. The present study aimed to investigate the functions of screened miRNAs in NSCLC and the potential mechanisms. First, expression profiles of miRNAs were downloaded from the Gene Expression Omnibus (dataset no. GSE29248) and the differentially expressed miRNAs were analyzed by bioinformatics methods. Reverse transcription-quantitative PCR was used to validate the differential expression of miR-373 in clinical samples. The association between miR-373 expression levels and clinicopathological characteristics was also investigated. To further examine how miR-373 mediates the emergence of NSCLC, western blot, Cell Counting Kit-8, cell invasion and wound-healing assays, as well as apoptosis detection and a luciferase assay were used. The results indicated significant downregulation of miR-373 in NSCLC tissues and its low expression was closely associated with the degree of differentiation, clinical stage and tumor size, and was indicative of an unfavorable prognosis for patients with NSCLC. A functional study indicated that overexpression of miR-373 inhibited the proliferation, promoted apoptosis, and suppressed invasion and migration of NSCLC cells. Bioinformatics prediction and functional assays suggested that Grb-associated binding protein 2 (GAB2) was a direct target of miR-373. In addition, GAB2 was found to be significantly upregulated in NSCLC tissues, and clinically, miR-373 was negatively associated with GAB2. Furthermore, overexpression of GAB2 blocked the tumor suppressive effects of miR-373 on NSCLC cells. Mechanistically, miR-373 mimics were able to reduce the expression of GAB2 and subsequently decrease the phosphorylation level of AKT and mTOR protein. The present results indicate that miR-373 exerts its anti-tumor effects in NSCLC cells by targeting the GAB2/PI3K/AKT pathway, suggesting that miR-373 may be a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Xunxia Zhu
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Xiaoyu Chen
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Xuelin Zhang
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Liting Zhao
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| |
Collapse
|
7
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hashemi M, Khosroshahi EM, Chegini MK, Abedi M, Matinahmadi A, Hosnarody YSD, Rezaei M, Saghari Y, Fattah E, Abdi S, Entezari M, Nabavi N, Rashidi M, Raesi R, Taheriazam A. miRNAs and exosomal miRNAs in lung cancer: New emerging players in tumor progression and therapy response. Pathol Res Pract 2023; 251:154906. [PMID: 37939448 DOI: 10.1016/j.prp.2023.154906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Non-coding RNAs have shown key roles in cancer and among them, short RNA molecules are known as microRNAs (miRNAs). These molecules have length less than 25 nucleotides and suppress translation and expression. The functional miRNAs are produced in cytoplasm. Lung cancer is a devastating disease that its mortality and morbidity have undergone an increase in recent years. Aggressive behavior leads to undesirable prognosis and tumors demonstrate abnormal proliferation and invasion. In the present review, miRNA functions in lung cancer is described. miRNAs reduce/increase proliferation and metastasis. They modulate cell death and proliferation. Overexpression of oncogenic miRNAs facilitates drug resistance and radio-resistance in lung cancer. Tumor microenvironment components including macrophages and cancer-associated fibroblasts demonstrate interactions with miRNAs in lung cancer. Other factors such as HIF-1α, lncRNAs and circRNAs modulate miRNA expression. miRNAs have also value in the diagnosis of lung cancer. Understanding such interactions can pave the way for developing novel therapeutics in near future for lung cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Yasaman Sotodeh Dokht Hosnarody
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Selvakumar SC, Preethi KA, Sekar D. MicroRNAs as important players in regulating cancer through PTEN/PI3K/AKT signalling pathways. Biochim Biophys Acta Rev Cancer 2023; 1878:188904. [PMID: 37142060 DOI: 10.1016/j.bbcan.2023.188904] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Cancer being the leading cause of mortality has become a great threat worldwide. Current cancer therapeutics lack specificity and have side effects due to a lack of understanding of the molecular mechanisms and signalling pathways involved in carcinogenesis. In recent years, researchers have been focusing on several signalling pathways to pave the way for novel therapeutics. The PTEN/PI3K/AKT pathway is one of the important pathways involved in cell proliferation and apoptosis, leading to tumour growth. In addition, the PTEN/PI3K/AKT axis has several downstream pathways that could lead to tumour malignancy, metastasis and chemoresistance. On the other hand, microRNAs (miRNAs) are important regulators of various genes leading to disease pathogenesis. Hence studies of the role of miRNAs in regulating the PTEN/PI3K/AKT axis could lead to the development of novel therapeutics for cancer. Thus, in this review, we have focused on various miRNAs involved in the carcinogenesis of various cancer via the PTEN/PI3K/AKT axis.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- RNA Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - K Auxzilia Preethi
- RNA Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Durairaj Sekar
- RNA Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
10
|
Kiełbowski K, Ptaszyński K, Wójcik J, Wojtyś ME. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv Med Sci 2023; 68:121-137. [PMID: 36933328 DOI: 10.1016/j.advms.2023.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Lung cancer is the second most frequently diagnosed cancer worldwide and a leading cause of cancer-related deaths. Non-small cell lung carcinoma (NSCLC) represents 85% of all cases. Accumulating evidence highlights the outstanding role of non-coding RNA (ncRNA) in regulating the tumorigenesis process by modulating crucial signaling pathways. Micro RNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are either up- or downregulated in lung cancer patients and can promote or suppress the progression of the disease. These molecules interact with messenger RNA (mRNA) and with each other to regulate gene expression and stimulate proto-oncogenes or silence tumor suppressors. NcRNAs provide a new strategy to diagnose or treat lung cancer patients and multiple molecules have already been identified as potential biomarkers or therapeutic targets. The aim of this review is to summarize the current evidence on the roles of miRNA, lncRNA and circRNA in NSCLC biology and present their clinical potential.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
11
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
The Interaction of Programmed Cell Death Protein and Its Ligands with Non-Coding RNAs in Neoplasms: Emerging Anticancer Immunotherapeutics. Processes (Basel) 2023. [DOI: 10.3390/pr11020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Recent studies have demonstrated that cancer cells can elude immune cells by creating a sanctuary within the tumor’s microenvironment. Large amounts of immune-suppressing signaling proteins can be expressed by cancer cells. One of the most important mechanisms in this system is immune suppression caused by tumors and the modulation of the immune checkpoint. The immune checkpoint is modulated by both the programmed cell death protein 1 (PD-1) and its ligands, programmed death ligand 1 (PD-L1) and PD-L2. Non-coding RNAs (ncRNA), including the more well-known microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), all play roles in the regulation of biological processes and extensive diseases such as cancer. Thus, the focus of this study is on the interactions between the programmed death protein and its ligands with miRNAs, lncRNAs, and circRNAs during tumorigenesis and tumor progression. Furthermore, some FDA-approved drugs for the treatment of various cancers were based on their interactions with PD-1, PD-Ls, and ncRNAs. This promising strategy is still in the production stages, with additional results and clinical trials being processed.
Collapse
|
13
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
14
|
Leventakou D, Gouloumi AR, Spathis A, Pouliakis A, Koufopoulos N, Pergialiotis V, Drakakis P, Panayiotides IG, Kottaridi C. Expression profile of miRNAs computationally predicted to target PDL-1 in cervical tissues of different histology groups. Front Cell Dev Biol 2023; 11:1101041. [PMID: 36910137 PMCID: PMC9998664 DOI: 10.3389/fcell.2023.1101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Human papilloma virus (HPV) is considered a successful pathogen as it has the ability to evade host immune responses and establish long-term persistent infection. It has been reported that programmed death ligand 1 (PDL-1) expression is correlated with HPV-positivity and is increased with lesion progression or tumor metastasis in cervical cancer. The expression of microRNAs (miRNAs) is often deregulated in cancer, and their potential targets are affected. Methods: RNA was extracted from formalin-fixed paraffin-embedded (FFPE) cervical samples of different histological types, previously typed for the presence of HPV. A specific quantitative polymerase chain reaction (qPCR) protocol with SYBR Green was used to check for the expression of four miRNAs that were computationally predicted to target PDL-1. Results and conclusion: hsa-miR-20a-5p and hsa-miR-106b-5p showed an expression increase with the severity of the lesions, while hsa-miR-125b-5p depicted a significant decrease in its expression in cancerous samples when compared to normal samples.
Collapse
Affiliation(s)
- Danai Leventakou
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alina-Roxani Gouloumi
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris Spathis
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Abraham Pouliakis
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Koufopoulos
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Drakakis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis G Panayiotides
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christine Kottaridi
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
16
|
Kim J, Kang C, Shin S, Hohng S. Rapid quantification of miRNAs using dynamic FRET-FISH. Commun Biol 2022; 5:1072. [PMID: 36207395 PMCID: PMC9546913 DOI: 10.1038/s42003-022-04036-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short regulatory RNAs that control gene expression at the post-transcriptional level. Various miRNAs playing important roles in cancer development are emerging as promising diagnostic biomarkers for early cancer detection. Accurate miRNA detection, however, remains challenging because they are small and highly homologous. Recently developed miRNA detection techniques based on single-molecule imaging enabled highly specific miRNA quantification without amplification, but the time required for these techniques to detect a single miRNA was larger than 10 minutes, making rapid profiling of numerous miRNAs impractical. Here we report a rapid miRNA detection technique, dynamic FRET-FISH, in which single-molecule imaging at high probe concentrations and thus high-speed miRNA detection is possible. Dynamic FRET-FISH can detect miRNAs in 10 s at 1.2 μM probe concentration while maintaining the high-specificity of single-nucleotide discrimination. We expect dynamic FRET-FISH will be utilized for early detection of cancers by profiling hundreds of cancer biomarkers in an hour.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Chanshin Kang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Soochul Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Jo H, Shim K, Jeoung D. Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23179592. [PMID: 36076996 PMCID: PMC9455701 DOI: 10.3390/ijms23179592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression through the epigenetic modification of chromatin structure. HDAC6, unlike many other HDACs, is present in the cytoplasm. Its deacetylates non-histone proteins and plays diverse roles in cancer cell initiation, proliferation, autophagy, and anti-cancer drug resistance. The development of HDAC6-specific inhibitors has been relatively successful. Mechanisms of HDAC6-promoted anti-cancer drug resistance, cancer cell proliferation, and autophagy are discussed. The relationship between autophagy and anti-cancer drug resistance is discussed. The effects of combination therapy, which includes HDAC6 inhibitors, on the sensitivity of cancer cells to chemotherapeutics and immune checkpoint blockade are presented. A summary of clinical trials involving HDAC6-specific inhibitors is also presented. This review presents HDAC6 as a valuable target for developing anti-cancer drugs.
Collapse
|
18
|
Shi L, Zhu W, Huang Y, Zhuo L, Wang S, Chen S, Zhang B, Ke B. Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to promote the progression and chemoresistance of non-small cell lung cancer. Clin Transl Med 2022; 12:e989. [PMID: 35857905 PMCID: PMC9299573 DOI: 10.1002/ctm2.989] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) contributes to overall tumor progression. In the current survey, we explored the ability of microRNA-20a (miR-20a) within these CAF-derived exosomes to influence non-small-cell lung cancer (NSCLC) progression. MATERIALS AND METHODS Normal tissue-associated fibroblasts (NAFs) and CAFs were collected from samples of NSCLC patient tumors and paracancerous lung tissues. Exosomes derived from these cells were then characterized via Western blotting, nanoparticle tracking analyses, and transmission electron microscopy. The expression of miR-20a was assessed via qPCR and fluorescence in situ hybridization (FISH). CCK-8, EdU uptake, and colony formation assessments were used for evaluating tumor proliferation, while Hoechst staining was performed to monitor the in vitro apoptotic death of tumor cells. A model of xenograft tumor established in nude mice was also used to evaluate in vivo tumor responses. RESULTS CAF-derived exosomes exhibited miR-20a upregulation and promoted NSCLC cell proliferation and resistance to cisplatin (DDP). Mechanistically, CAF-derived exosomes were discovered to transmit miR-20a to tumor cells wherein it was able to target PTEN to enhance DDP resistance and proliferation. Associated PTEN downregulation following exosome-derived miR-20a treatment enhanced PI3K/AKT pathway activation. CONCLUSION The achieved outcomes explain that CAFs can release miR-20a-containing exosomes capable of promoting NSCLC progression and chemoresistance, highlighting this pathway as a possible therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Weiliang Zhu
- Department of Cancer CenterZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Yuanyuan Huang
- Department of VIP RegionState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lin Zhuo
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Siyun Wang
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Shaobing Chen
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Bei Zhang
- Department of VIP RegionState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bin Ke
- Department of VIP RegionState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|