1
|
Kumari S, Gupta S, Jamil A, Tabatabaei D, Karakashev S. Exploring Metabolic Approaches for Epithelial Ovarian Cancer Therapy. J Cell Physiol 2025; 240:e31495. [PMID: 39676338 DOI: 10.1002/jcp.31495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Epithelial ovarian cancer (EOC) has the highest mortality rate among malignant tumors of the female reproductive system and the lowest survival rate. This poor prognosis is due to the aggressive nature of EOC, its late-stage diagnosis, and the tumor's ability to adapt to stressors through metabolic reprogramming. EOC cells sustain their rapid proliferation by altering the uptake, utilization, and regulation of carbohydrates, lipids, and amino acids. These metabolic changes support tumor growth and contribute to metastasis, chemotherapy resistance, and immune evasion. Targeting these metabolic vulnerabilities has shown promise in preclinical studies, with some therapies advancing to clinical trials. However, challenges remain due to tumor heterogeneity, adaptive resistance mechanisms, and the influence of the tumor microenvironment. This review provides a comprehensive summary of metabolic targets for EOC treatment and offers an overview of the current landscape of clinical trials focusing on ovarian cancer metabolism. Future efforts should prioritize combination therapies that integrate metabolic inhibitors with immunotherapies or chemotherapy. Advances in precision medicine and multi-omics approaches will be crucial for identifying patient-specific metabolic dependencies and improving outcomes. By addressing these challenges, metabolism-based therapies can significantly transform the treatment of this devastating disease.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Shraddha Gupta
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Aisha Jamil
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Deyana Tabatabaei
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Sergey Karakashev
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Li C, Liu W, Liu Y, Wang W, Deng W. Role of ATP citrate lyase and its complementary partner on fatty acid synthesis in gastric cancer. Sci Rep 2024; 14:30043. [PMID: 39627427 PMCID: PMC11615372 DOI: 10.1038/s41598-024-81448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
ATP citrate lyase (ACLY) and acyl-CoA short-chain synthetases 2 (ACSS2) are key enzymes in lipid metabolism. We explored the role of ACLY in gastric cancer (GC) and the effect of ACLY and ACSS2 compensation on GC growth. We used immunohistochemistry to verify the expression level of ACLY in GC, shRNA to stably knock down the expression level of ACLY in GC cells. The expression levels of lipid metabolizing enzymes were verified by qPCR and WB, and targeted lipidomics and quantification of lipid metabolism-related indicators helped us to understand the changes in lipid metabolism. Finally, subcutaneous graft tumors validate our findings from in vitro experiments. ACLY is upregulated in GC tissues, downregulation of ACLY reduced lipid accumulation and inhibited GC proliferation, migration, and invasion in vitro. ACSS2 maintains cell growth by compensatory elevation to maintain fatty acid synthesis activity in ACLY-depleted GC cells. Inhibition of ACSS2 enhanced the inhibitory effect of downregulation of ACLY on the growth of transplanted tumors in nude mice. Downregulation of ACLY inhibited GC cell growth in vitro and in vivo. ACSS2 was compensated to increase to maintain cell growth in ACLY-depleted GC cells.
Collapse
Affiliation(s)
- Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Wenxuan Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Youzhao Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
3
|
Santarsiero A, Convertini P, Iacobazzi D, Infantino V, Todisco S. Metabolic Crossroad Between Macrophages and Cancer Cells: Overview of Hepatocellular Carcinoma. Biomedicines 2024; 12:2684. [PMID: 39767591 PMCID: PMC11727080 DOI: 10.3390/biomedicines12122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
The metabolic interplay between macrophages and cancer cells mirrors the plasticity of both kinds of cells, which adapt to the microenvironment by sustaining cell growth and proliferation. In this way, cancer cells induce macrophage polarization, and, on the other hand, tumor-associated macrophages (TAMs) contribute to the survival of cancer cells. In a simplified manner, macrophages can assume two opposite subtypes: M1, pro-inflammatory and anti-tumor phenotype, and M2, anti-inflammatory and protumor phenotype. How do cancer cells induce macrophage polarization? Any actor involved in tumor growth, including the mitochondria, releases molecules into the tumor microenvironment (TME) that trigger a subtype transition. These metabolic changes are the primary cause of this polarization. Hepatocellular carcinoma (HCC), the prevalent type of liver primary tumor, is characterized by cells with extensive metabolic adaptions due to high flexibility in different environmental conditions. This review focuses on the main metabolic features of M1 and M2 macrophages and HCC cells underlying their metabolic behavior in response to TME.
Collapse
Affiliation(s)
- Anna Santarsiero
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy; (A.S.); (V.I.)
| | - Paolo Convertini
- Department of Basic and Applied Science, University of Basilicata, 85100 Potenza, Italy;
| | - Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK;
| | - Vittoria Infantino
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy; (A.S.); (V.I.)
| | - Simona Todisco
- Department of Basic and Applied Science, University of Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
4
|
Ma X, Ligan C, Huang S, Chen Y, Li M, Cao Y, Zhao W, Zhao S. Mitochondrial activity related genes of mast cells identify poor prognosis and metastasis of ovarian cancer. Immunobiology 2024; 229:152831. [PMID: 38944891 DOI: 10.1016/j.imbio.2024.152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.
Collapse
Affiliation(s)
- Xinghua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shijia Huang
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yirong Chen
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Lee HT, Lin CS, Liu CY, Chen P, Tsai CY, Wei YH. Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:9458. [PMID: 39273403 PMCID: PMC11395599 DOI: 10.3390/ijms25179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Hui-Ting Lee
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for General Education, Kainan University, Taoyuan City 338, Taiwan
| | - Chao-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Po Chen
- Cancer Free Biotech, Taipei 114, Taiwan
| | - Chang-Youh Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Clinical Trial Center, Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
6
|
Uboveja A, Aird KM. Interplay between altered metabolism and DNA damage and repair in ovarian cancer. Bioessays 2024; 46:e2300166. [PMID: 38873912 DOI: 10.1002/bies.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes. We will also discuss relevant data from other cancers that could be used to inform ovarian cancer therapeutic strategies. Changes in the choice of DNA repair mechanism adopted by ovarian cancer are a major factor in promoting therapeutic resistance. Therefore, the impact of metabolic reprogramming on DNA repair mechanisms in ovarian cancer has major clinical implications for targeted combination therapies for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Zhang X, Xu Y, Li S, Qin Y, Zhu G, Zhang Q, Zhang Y, Guan F, Fan T, Liu H. SIRT2-mediated deacetylation of ACLY promotes the progression of oesophageal squamous cell carcinoma. J Cell Mol Med 2024; 28:e18129. [PMID: 38426936 PMCID: PMC10906381 DOI: 10.1111/jcmm.18129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.
Collapse
Affiliation(s)
- Xueying Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yue Xu
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shenglei Li
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yue Qin
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Guangzhao Zhu
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qing Zhang
- Translational Medicine Research CenterZhengzhou People's HospitalZhengzhouHenanChina
| | - Yanting Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fangxia Guan
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tianli Fan
- Department of Pharmacology, School of Basic MedicineZhengzhou UniversityZhengzhouHenanChina
| | - Hongtao Liu
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
8
|
Xiao Q, Xia M, Tang W, Zhao H, Chen Y, Zhong J. The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Lett 2024; 582:216512. [PMID: 38036043 DOI: 10.1016/j.canlet.2023.216512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, 330031, PR China
| | - Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
9
|
Liang JJ, Zhou XF, Long H, Li CY, Wei J, Yu XQ, Guo ZY, Zhou YQ, Deng ZS. Recent advance of ATP citrate lyase inhibitors for the treatment of cancer and related diseases. Bioorg Chem 2024; 142:106933. [PMID: 37890210 DOI: 10.1016/j.bioorg.2023.106933] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
ATP citrate lyase (ACLY), a strategic metabolic enzyme that catalyzes the glycolytic to lipidic metabolism, has gained increasing attention as an attractive therapeutic target for hyperlipidemia, cancers and other human diseases. Despite of continual research efforts, targeting ACLY has been very challenging. In this field, most reported ACLY inhibitors are "substrate-like" analogues, which occupied with the same active pockets. Besides, some ACLY inhibitors have been disclosed through biochemical screening or high throughput virtual screening. In this review, we briefly summarized the cancer-related functions and the recent advance of ACLY inhibitors with a particular focus on the SAR studies and their modes of action. We hope to provide a timely and updated overview of ACLY and the discovery of new ACLY inhibitors.
Collapse
Affiliation(s)
- Jian-Jia Liang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiang-Feng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Long
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chun-Yun Li
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jing Wei
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiao-Qin Yu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhi-Yong Guo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yi-Qing Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhang-Shuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
10
|
Kolb S, Hoffmann I, Monjé N, Dragomir MP, Jank P, Bischoff P, Keunecke C, Pohl J, Kunze CA, Marchenko S, Schmitt WD, Kulbe H, Sers C, Sehouli J, Braicu EI, Denkert C, Darb-Esfahani S, Horst D, Sinn BV, Taube ET. LRP1B-a prognostic marker in tubo-ovarian high-grade serous carcinoma. Hum Pathol 2023; 141:158-168. [PMID: 37742945 DOI: 10.1016/j.humpath.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the LDL receptor family and has often been discussed as a tumor suppressor gene, as its down-regulation is correlated with a poor prognosis in multiple carcinoma entities. Due to the high metastasis rate into the fatty peritoneal cavity and current research findings showing a dysregulation of lipid metabolism in tubo-ovarian high-grade serous carcinoma (HGSC), we questioned the prognostic impact of the LRP1B protein expression. We examined a well-characterized large cohort of 571 patients with primary HGSC and analyzed the LRP1B protein expression via immunohistochemical staining (both in tumor and stroma cells separately), performed precise bioimage analysis with QuPath, and calculated the prognostic impact using SPSS. Our results demonstrate that LRP1B functions as a significant prognostic marker for overall survival (OS) and progression-free survival (PFS) in HGSC on the protein level. High cytoplasmic expression of LRP1B in tumor, stroma, and combined tumor and stroma cells has a significantly positive association with a mean prolongation of the OS by 42 months (P = .005), 29 months (P = .005), and 25 months (P = .001), respectively. Additionally, the mean PFS was 18 months longer in tumor (P = .002), 19 months in stroma (P = .004), and 19 months in both cell types combined (P = .01). Our results remained significant in multivariate analysis. We envision LRP1B as a potential prognostic tool that could help us understand the functional role of lipid metabolism in advanced HGSC, especially regarding liposomal medications.
Collapse
Affiliation(s)
- Svenja Kolb
- Department of Gynecology, Vivantes Netzwerk für Gesundheit GmbH Berlin, Vivantes Hospital Neukölln, 12351, Berlin, Germany
| | - Inga Hoffmann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Nanna Monjé
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Carlotta Keunecke
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jonathan Pohl
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Sofya Marchenko
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Wolfgang D Schmitt
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Silvia Darb-Esfahani
- MVZ Pathologie Spandau, 13589 Berlin, Spandau, Germany; MVZ Pathologie Berlin-Buch, 13125 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Bruno V Sinn
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Eliane T Taube
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany.
| |
Collapse
|
11
|
Liu H, Li X, Dong Y, Zhou C, Rezeng C. Lipid metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. J Cancer 2023; 14:2066-2074. [PMID: 37497413 PMCID: PMC10367916 DOI: 10.7150/jca.86683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Epidemiological data have shown a positive correlation between lipid levels and tumor occurrence, such as the correlation between tumor frequency and aggressiveness, and cardiovascular disease, obesity, type 2 diabetes mellitus, and hyperinsulinemia. Therefore, reducing fat accumulation or weakening lipid metabolism may affect the carcinogenic processes of cells. Many studies have shown that traditional Chinese Medicine (TCM) has obvious advantages over traditional therapies in terms of fewer side effects, lower toxicity, and lower economic burden. This paper reviews the mechanism by which TCM regulates lipid metabolism and its antitumor effect through this regulation, with the aim of elucidating the bioactive compounds in TCM with good efficacy and few side effects that can provide promising therapeutic drugs for targeting lipid metabolism reprogramming in cancer.
Collapse
Affiliation(s)
- Hui Liu
- Chengde Medical University, Chengde, China, Hebei 067000, China
| | - Xiuming Li
- Department of Urology, Affiliated Hospital of Chengde Medical University, Hebei 067000, China
| | - Yajie Dong
- Chengde Medical University, Chengde, China, Hebei 067000, China
| | - Changhua Zhou
- Department of Pediatrics, Chengde County Hospital of Traditional Chinese Medicine, Hebei 067000, China
| | - Caidan Rezeng
- School of Pharmacy, Qinghai University for Nationalities, Qinghai, 810000, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing 100029, China
| |
Collapse
|
12
|
PTGIS May Be a Predictive Marker for Ovarian Cancer by Regulating Fatty Acid Metabolism. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:2397728. [PMID: 36785673 PMCID: PMC9918844 DOI: 10.1155/2023/2397728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Background Ovarian cancer tends to metastasize to the omentum, which is an organ mainly composed of adipose tissue. Many studies have found that fatty acid metabolism is related to the occurrence and metastasis of cancers. Therefore, it is possible that fatty acid metabolism-related genes (FAMRG) affect the prognosis of ovarian cancer patients. Methods First, profiles of ovarian cancer and normal ovarian tissue transcriptomes were acquired from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. A LASSO regression predictive model was developed via the "glmnet" R package. The nomogram was created via the "regplot." Gene Set Variation Analysis (GSVA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses were conducted to determine the FAMRGs' roles. The percentage of immunocyte infiltration was calculated via CIBERSORT. Using "pRRophetic," the sensitivity of eight regularly used medications and immunotherapy was anticipated. Results 125 genes were determined as different expression genes (DEGs). Based on RXRA, ECI2, PTGIS, and ACACB, a prognostic model is created and the risk score is calculated. Analyses of univariate and multivariate regressions revealed that the risk score was a distinct prognostic factor (univariate: HR: 2.855, 95% CI: 1.756-4.739, P < 0.001; multivariate: HR: 2.943, 95% CI: 1.800-4.812, P < 0.001). The nomogram demonstrated that it properly predicted the 1-year survival rate. The expression of memory B molecular units, follicular helper T molecular units, regulatory T molecular units, and M1 macrophages differed remarkably between the groups at high and low risk (P < 0.05). Adipocytokine signaling pathways, cancer pathways, and degradation of valine, leucine, and isoleucine vary between high- and low-risk populations. The findings of the GO enrichment revealed that the extracellular matrix and cellular structure were the two most enriched pathways. PTGIS, which is an important gene in fatty acid metabolism, was identified as the hub gene. This result was verified in ovarian cancer and ovarian tissues. The connection between the gene and survival was statistically remarkable (P = 0.015). The pRRophetic algorithm revealed that the low-risk group was more adaptable to cisplatin, doxorubicin, 5-fluorouracil, and etoposide (P < 0.001). Conclusion PTGIS may be an indicator of prognosis and a possible therapeutic target for the therapy of ovarian cancer patients. The fatty acid metabolism of immune cells may be controlled, which has an indirect effect on cancer cell growth.
Collapse
|
13
|
Moreira-Barbosa C, Matos A, Fernandes R, Mendes-Ferreira M, Rodrigues R, Cruz T, Costa ÂM, Cardoso AP, Ghilardi C, Oliveira MJ, Ribeiro R. The role of fatty acids metabolism on cancer progression and therapeutics development. BIOACTIVE LIPIDS 2023:101-132. [DOI: 10.1016/b978-0-12-824043-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
15
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
16
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
17
|
Mozihim AK, Chung I, Said NABM, Jamil AHA. Reprogramming of Fatty Acid Metabolism in Gynaecological Cancers: Is There a Role for Oestradiol? Metabolites 2022; 12:metabo12040350. [PMID: 35448537 PMCID: PMC9031151 DOI: 10.3390/metabo12040350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Gynaecological cancers are among the leading causes of cancer-related death among women worldwide. Cancer cells undergo metabolic reprogramming to sustain the production of energy and macromolecules required for cell growth, division and survival. Emerging evidence has provided significant insights into the integral role of fatty acids on tumourigenesis, but the metabolic role of high endogenous oestrogen levels and increased gynaecological cancer risks, notably in obesity, is less understood. This is becoming a renewed research interest, given the recently established association between obesity and incidence of many gynaecological cancers, including breast, ovarian, cervical and endometrial cancers. This review article, hence, comprehensively discusses how FA metabolism is altered in these gynaecological cancers, highlighting the emerging role of oestradiol on the actions of key regulatory enzymes of lipid metabolism, either directly through its classical ER pathways, or indirectly via the IGIFR pathway. Given the dramatic rise in obesity and parallel increase in the prevalence of gynaecological cancers among premenopausal women, further clarifications of the complex mechanisms underpinning gynaecological cancers are needed to inform future prevention efforts. Hence, in our review, we also highlight opportunities where metabolic dependencies can be exploited as viable therapeutic targets for these hormone-responsive cancers.
Collapse
Affiliation(s)
- Azilleo Kristo Mozihim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nur Akmarina B. M. Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
- Correspondence: ; Tel.: +60-3-7967-4909
| |
Collapse
|
18
|
Seo J, Yun JE, Kim SJ, Chun YS. Lipid metabolic reprogramming by hypoxia-inducible factor-1 in the hypoxic tumour microenvironment. Pflugers Arch 2022; 474:591-601. [PMID: 35348849 DOI: 10.1007/s00424-022-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Cancer cells rewire metabolic processes to adapt to the nutrient- and oxygen-deprived tumour microenvironment, thereby promoting their proliferation and metastasis. Previous research has shown that modifying glucose metabolism, the Warburg effect, makes glycolytic cancer cells more invasive and aggressive. Lipid metabolism has also been receiving attention because lipids function as energy sources and signalling molecules. Because obesity is a risk factor for various cancer types, targeting lipid metabolism may be a promising cancer therapy. Here, we review the lipid metabolic reprogramming in cancer cells mediated by hypoxia-inducible factor-1 (HIF-1). HIF-1 is the master transcription factor for tumour growth and metastasis by transactivating genes related to proliferation, survival, angiogenesis, invasion, and metabolism. The glucose metabolic shift (the Warburg effect) is mediated by HIF-1. Recent research on HIF-1-related lipid metabolic reprogramming in cancer has confirmed that HIF-1 also modifies lipid accumulation, β-oxidation, and lipolysis in cancer, triggering its progression. Therefore, targeting lipid metabolic alterations by HIF-1 has therapeutic potential for cancer. We summarize the role of the lipid metabolic shift mediated by HIF-1 in cancer and its putative applications for cancer therapy.
Collapse
Affiliation(s)
- Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan.,Kanagawa Institute of Industrial Science and Technology, Kawasaki, 213-0012, Japan
| | - Jeong-Eun Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
19
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
ATP-citrate lyase regulates stemness and metastasis in hepatocellular carcinoma via the Wnt/β-catenin signaling pathway. Hepatobiliary Pancreat Dis Int 2021; 20:251-261. [PMID: 33129711 DOI: 10.1016/j.hbpd.2020.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most highly malignant tumors. Liver tumor-initiating cells (LTICs) have been considered to contribute to HCC progression and metastasis. ATP-citrate lyase (ACLY), as a key enzyme for de novo lipogenesis, has been reported to be upregulated in various tumors. However, its expression and role in HCC and LTICs remain unknown. METHODS The expressions of ACLY in HCC tissues were detected by quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry. Kaplan-Meier curves and Chi-square test were used to determine the clinical significance of ACLY expression in HCC patients. A series of assays were performed to determine the function of ACLY on stemness, migration and invasion of HCC cells. Luciferase reporter assay, Western blotting and immunoprecipitation were used to study the regulation of the Wnt/β-catenin signaling by ACLY. Rescue experiments were performed to investigate whether β-catenin was the mediator of ACLY-regulated stemness and migration in HCC cells. RESULTS ACLY was highly expressed in HCC tissues and LTICs. Overexpression of ACLY was significantly correlated with poor prognosis, progression and metastasis of HCC patients. Knockdown of ACLY remarkably suppressed stemness properties, migration and invasion in HCC cells. Mechanistically, ACLY could regulate the canonical Wnt pathway by affecting the stability of β-catenin, and Lys49 acetylation of β-catenin might mediate ACLY-regulated β-catenin level in HCC cells. CONCLUSIONS ACLY is a potent regulator of Wnt/β-catenin signaling in modulating LTICs stemness and metastasis in HCC. ACLY may serve as a new target for the diagnosis and treatment of HCC.
Collapse
|
21
|
Khan W, Augustine D, Rao RS, Patil S, Awan KH, Sowmya SV, Haragannavar VC, Prasad K. Lipid metabolism in cancer: A systematic review. J Carcinog 2021; 20:4. [PMID: 34321955 PMCID: PMC8312377 DOI: 10.4103/jcar.jcar_15_20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/30/2020] [Accepted: 12/05/2020] [Indexed: 12/22/2022] Open
Abstract
Preclinical studies and clinical trials have emphasized the decisive role of lipid metabolism in tumor proliferation and metastasis. This systematic review aimed to explore the existing literature to evaluate the role and significance of the genes and pathways most commonly involved in the regulation of lipid metabolism in cancer. The literature search was performed as per Preferred Reporting Items for Systematic Reviews and Meta-analyses. Approximately 2396 research articles were initially selected, of which 215 were identified as potentially relevant for abstract review. Upon further scrutiny, 62 of the 215 studies were reviews, seminars, or presentations, and 44 were original study articles and were thus included in the systematic review. The predominant gene involved in lipid metabolism in cancer was stearoyl-coenzyme A desaturase 1 (SCD1), followed by fatty acid synthase (FASN). The pathway most commonly involved in lipid metabolism in cancer was the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, followed by the mitogen activated protein kinase (MAPK) pathway. SCD1 and FASN play significant roles in the initiation and progression of cancer and represent attractive targets for potentially effective anti-cancer treatment strategies. The regulation of cancer metabolism by the Akt kinases will be an interesting topic of future study.
Collapse
Affiliation(s)
- Wafa Khan
- Department of Oral Pathology and Microbiology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Roopa S Rao
- Department of Oral Pathology and Microbiology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States
| | - Samudrala Venkatesiah Sowmya
- Department of Oral Pathology and Microbiology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Vanishri C Haragannavar
- Department of Oral Pathology and Microbiology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Kavitha Prasad
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
22
|
Wei X, Shi J, Lin Q, Ma X, Pang Y, Mao H, Li R, Lu W, Wang Y, Liu P. Targeting ACLY Attenuates Tumor Growth and Acquired Cisplatin Resistance in Ovarian Cancer by Inhibiting the PI3K-AKT Pathway and Activating the AMPK-ROS Pathway. Front Oncol 2021; 11:642229. [PMID: 33816292 PMCID: PMC8011496 DOI: 10.3389/fonc.2021.642229] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Ovarian cancer is the most lethal female genital malignancy. Although cisplatin is the first-line chemotherapy to treat ovarian cancer patients along with debulking surgeries, its efficacy is limited due to the high incidence of cisplatin resistance. ATP citrate lyase (ACLY) has been shown to be a key metabolic enzyme and is associated with poor prognosis in various cancers, including ovarian cancer. Nevertheless, no studies have probed the mechanistic relationship between ACLY and cisplatin resistance. Methods: Survival analysis was mainly carried out online. Bioinformatic analysis was performed in R/R studio. Proliferative activity was measured by MTT and colony formation assays. Cell cycle and apoptosis analysis were performed by flow cytometry. The acquired-cisplatin-resistant cell line A2780/CDDP was generated by exposing A2780 to cisplatin at gradually elevated concentrations. MTT assay was used to calculate IC50 values of cisplatin. A xenograft tumor assay was used test cell proliferation in vivo. Results: Higher expression of ACLY was found in ovarian cancer tissue and related to poor prognosis. Knockdown of ACLY in A2780, SKOV3, and HEY cells inhibited cell proliferation, caused cell-cycle arrest by modulating the P16–CDK4–CCND1 pathway, and induced apoptosis probably by inhibiting p-AKT activity. Bioinformatic analysis of the GSE15709 dataset revealed upregulation of ACLY and activation of PI3K–AKT pathway in cells with acquired cisplatin resistance, in line with observations on A2780/CDDP cells that we generated. Knockdown of ACLY alleviated cisplatin resistance, and works synergistically with cisplatin treatment to induce apoptosis in A2780/CDDP cells by inhibiting the PI3K–AKT pathway and activating AMPK–ROS pathway. The ACLY-specific inhibitor SB-204990 showed the same effect. In A2780/CDDP cells, AKT overexpression could attenuate cisplatin re-sensitization caused by ACLY knockdown. Conclusions: Knockdown of ACLY attenuated cisplatin resistance by inhibiting the PI3K–AKT pathway and activating the AMPK–ROS pathway. These findings suggest that a combination of ACLY inhibition and cisplatin might be an effective strategy for overcoming cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, Tengzhou, China
| | - Qianhan Lin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
24
|
Ji Z, Shen Y, Feng X, Kong Y, Shao Y, Meng J, Zhang X, Yang G. Deregulation of Lipid Metabolism: The Critical Factors in Ovarian Cancer. Front Oncol 2020; 10:593017. [PMID: 33194756 PMCID: PMC7604390 DOI: 10.3389/fonc.2020.593017] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is one of the most malignant gynecological cancers around the world. In spite of multiple treatment options, the five-year survival rate is still very low. Several metabolism alterations are described as a hallmark in cancers, but alterations of lipid metabolism in ovarian cancer have been paid less attention. To explore new markers/targets for accurate diagnosis, prognosis, and therapeutic treatments based on metabolic enzyme inhibitors, here, we reviewed available literature and summarized several key metabolic enzymes in lipid metabolism of ovarian cancer. In this review, the rate limiting enzymes associated with fatty acid synthesis (FASN, ACC, ACLY, SCD), the lipid degradation related enzymes (MAGL, CPT, 5-LO, COX2), and the receptors related to lipid uptake (FABP4, CD36, LDLR), which promote the development of ovarian cancer, were analyzed and evaluated. We also focused on the review of application of current metabolic enzyme inhibitors for the treatment of ovarian cancer through which the potential therapeutic agents may be developed for ovarian cancer therapy.
Collapse
Affiliation(s)
- Zhaodong Ji
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Shen
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, China
| | - Xu Feng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| |
Collapse
|
25
|
Jha V, Galati S, Volpi V, Ciccone L, Minutolo F, Rizzolio F, Granchi C, Poli G, Tuccinardi T. Discovery of a new ATP-citrate lyase (ACLY) inhibitor identified by a pharmacophore-based virtual screening study. J Biomol Struct Dyn 2020; 39:3996-4004. [PMID: 32448086 DOI: 10.1080/07391102.2020.1773314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ATP citrate lyase (ACLY) is an important enzyme that catalyzes the conversion of citrate to acetyl-CoA in normal cells, facilitating the de novo fatty acid synthesis. Lipids and fatty acids were found to be accumulated in different types of tumors, such as brain, breast, rectal and ovarian cancer, representing a great source of energy for cancer cell growth and metabolism. Since ACLY-mediated conversion of citrate to acetyl-CoA constitutes the basis for fatty acid synthesis, ACLY seems to be quite an unexplored and promising therapeutic target for anticancer drug design. A pharmacophore-based virtual screening (VS) protocol with the aid of hierarchical docking, consensus docking (CD), molecular dynamics (MD) simulations and ligand-protein binding free energy calculations led to the identification of compound VS1, which showed a moderate but promising inhibitory activity, demonstrating to be 2.5 times more potent than reference inhibitor 2-hydroxycitrate. These results validate the reliability of our VS workflow and pave the way for the design of novel and more potent ACLY inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vibhu Jha
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Valerio Volpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.,Department of Molecular science and Nanosystems, University Ca' Foscari of Venice, Venice, Italy
| | | | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
26
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
27
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
28
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
29
|
Huang L, Wang C, Xu H, Peng G. Targeting citrate as a novel therapeutic strategy in cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1873:188332. [PMID: 31751601 DOI: 10.1016/j.bbcan.2019.188332] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023]
Abstract
An important feature shared by many cancer cells is drastically altered metabolism that is critical for rapid growth and proliferation. The distinctly reprogrammed metabolism in cancer cells makes it possible to manipulate the levels of metabolites for cancer treatment. Citrate is a key metabolite that bridges many important metabolic pathways. Recent studies indicate that manipulating the level of citrate can impact the behaviors of both cancer and immune cells, resulting in induction of cancer cell apoptosis, boosting immune responses, and enhanced cancer immunotherapy. In this review, we discuss the recent developments in this emerging area of targeting citrate in cancer treatment. Specifically, we summarize the molecular basis of altered citrate metabolism in both tumors and immune cells, explore the seemingly conflicted growth promoting and growth inhibiting roles of citrate in various tumors, discuss the use of citrate in the clinic as a novel biomarker for cancer progression and outcomes, and highlight the new development of combining citrate with other therapeutic strategies in cancer therapy. An improved understanding of complex roles of citrate in the suppressive tumor microenvironment should open new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lan Huang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Cindy Wang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Huaxi Xu
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| |
Collapse
|
30
|
ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem 2018; 157:1276-1291. [DOI: 10.1016/j.ejmech.2018.09.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 09/01/2018] [Indexed: 02/06/2023]
|
31
|
The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem J 2018; 475:2305-2328. [PMID: 30064989 DOI: 10.1042/bcj20170712] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
Intercellular communications play a major role in tissue homeostasis. In pathologies such as cancer, cellular interactions within the tumor microenvironment (TME) contribute to tumor progression and resistance to therapy. Tunneling nanotubes (TNTs) are newly discovered long-range intercellular connections that allow the exchange between cells of various cargos, ranging from ions to whole organelles such as mitochondria. TNT-transferred mitochondria were shown to change the metabolism and functional properties of recipient cells as reported for both normal and cancer cells. Metabolic plasticity is now considered a hallmark of cancer as it notably plays a pivotal role in drug resistance. The acquisition of cancer drug resistance was also associated to TNT-mediated mitochondria transfer, a finding that relates to the role of mitochondria as a hub for many metabolic pathways. In this review, we first give a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs. We further describe recent studies highlighting the role of the TNT-transferred mitochondria in acquired cancer cell drug resistance. We also present how changes in metabolic pathways, including glycolysis, pentose phosphate and lipid metabolism, are linked to cancer cell resistance to therapy. Finally, we provide examples of novel therapeutic strategies targeting mitochondria and cell metabolism as a way to circumvent cancer cell drug resistance.
Collapse
|
32
|
Kuo CY, Ann DK. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond) 2018; 38:47. [PMID: 29996946 PMCID: PMC6042406 DOI: 10.1186/s40880-018-0317-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
The role of fatty acid metabolism, including both anabolic and catabolic reactions in cancer has gained increasing attention in recent years. Many studies have shown that aberrant expression of the genes involved in fatty acid synthesis or fatty acid oxidation correlate with malignant phenotypes including metastasis, therapeutic resistance and relapse. Such phenotypes are also strongly associated with the presence of a small percentage of unique cells among the total tumor cell population. This distinct group of cells may have the ability to self-renew and propagate or may be able to develop resistance to cancer therapies independent of genetic alterations. Therefore, these cells are referred to as cancer stem cells/tumor-initiating cells/drug-tolerant persisters, which are often refractory to cancer treatment and difficult to target. Moreover, interconversion between cancer cells and cancer stem cells/tumor-initiating cells/drug-tolerant persisters may occur and makes treatment even more challenging. This review highlights recent findings on the relationship between fatty acid metabolism, cancer stemness and therapeutic resistance and prompts discussion about the potential mechanisms by which fatty acid metabolism regulates the fate of cancer cells and therapeutic resistance.
Collapse
Affiliation(s)
- Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan, China.
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
33
|
Rapa I, Votta A, Gatti G, Izzo S, Buono NL, Giorgio E, Vatrano S, Napoli F, Scarpa A, Scagliotti G, Papotti M, Volante M. High miR-100 expression is associated with aggressive features and modulates TORC1 complex activation in lung carcinoids. Oncotarget 2018; 9:27535-27546. [PMID: 29938004 PMCID: PMC6007959 DOI: 10.18632/oncotarget.25541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) is a promising therapeutic target in advanced lung carcinoid patients. However, the mechanisms of mTOR modulation and of responsiveness to mTOR inhibitors are largely unclear. Our aim was to analyze the expression and functional role of specific miRNAs in lung carcinoids as an alternative mechanism targeting mTOR pathway. EXPERIMENTAL DESIGN Seven miRNAs, selected by bioinformatic tools and literature search, were analyzed in 142 lung neuroendocrine neoplasms (92 carcinoids and a control group of 50 high grade neuroendocrine carcinomas), and compared with mTOR mRNA expression and clinical/pathological parameters. Tissue results were validated in vitro in two lung carcinoid cell lines by specific RNA interference and biological/pharmacological tests. RESULTS Tissutal expression of five miRNAs (miR-99b, miR-100, miR-155, miR-193a-3p, miR-193a-5p) was inversely correlated with mTOR mRNA expression, supporting their role in the negative regulation of mTOR transcription. High expression of miR-100, miR-193a-3p and miR-193a-5p was associated with aggressive features and, for the former two, with shorter time to progression. In H727 and UMC11 lung carcinoid cells, miR-100 modulated mTOR RNA and TORC1 complex protein expression, positively promoted cell migration and negatively influenced cell proliferation. Moreover, miR-100 directly influenced responsiveness of H727 and UMC11 cells to rapamycin. CONCLUSIONS MiR-100 actively participates to the regulation of mTOR expression in lung carcinoids and represents a novel candidate prognostic biomarker for this tumor type; moreover, inhibition of its expression is associated to increased responsiveness to mTOR inhibitors and might represent a novel strategy to sensitize lung carcinoids to these target agents.
Collapse
Affiliation(s)
- Ida Rapa
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Arianna Votta
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Gaia Gatti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Stefania Izzo
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Nicola Lo Buono
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simona Vatrano
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Francesca Napoli
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Centre at Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giorgio Scagliotti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| |
Collapse
|
34
|
Williams NC, O'Neill LAJ. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front Immunol 2018; 9:141. [PMID: 29459863 PMCID: PMC5807345 DOI: 10.3389/fimmu.2018.00141] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP) production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs) and macrophages have an altered Krebs cycle, one consequence of which is the accumulation of both citrate and succinate. Citrate is exported from the mitochondria via the mitochondrial citrate- carrier. Cytosolic metabolism of citrate to acetyl-coenzyme A (acetyl-CoA) is important for both fatty-acid synthesis and protein acetylation, both of which have been linked to macrophage and DC activation. Citrate-derived itaconate has a direct antibacterial effect and also has been shown to act as an anti-inflammatory agent, inhibiting succinate dehydrogenase. These findings identify citrate as an important metabolite for macrophage and DC effector function.
Collapse
Affiliation(s)
- Niamh C Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Wang D, Yin L, Wei J, Yang Z, Jiang G. ATP citrate lyase is increased in human breast cancer, depletion of which promotes apoptosis. Tumour Biol 2017; 39:1010428317698338. [PMID: 28443474 DOI: 10.1177/1010428317698338] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a malignant tumor that is harmful to women’s health around the world. Investigating the biological mechanism is, therefore, of pivotal importance to improve patients’ prognoses. Compared to non-neoplastic tissues, enhanced glucose and lipid metabolism is one of the most common properties of malignant breast cancer. Adenosine triphosphate (ATP) citrate lyase is a key enzyme linking aerobic glycolysis and fatty acid synthesis and is of high biological and prognostic significance in breast cancer. In our clinical study, fresh clinical tissues were used to analyze ATP citrate lyase expression by western blotting, and paraffin archived samples from 62 breast cancer patients were used to analyze ATP citrate lyase expression by immunohistochemistry. In the cellular study, following small interfering RNA–mediated inhibition of ATP citrate lyase in MCF-7 cells, cell viability and apoptosis were measured using the Cell Counting Kit-8 and flow cytometry, respectively. Breast cancer tissues showed strong expression of ATP citrate lyase, whereas adjacent normal tissues showed weak expression. Silencing of endogenous ATP citrate lyase expression by small interfering RNA in MCF-7 cells suppressed cell viability and increased cell apoptosis. Collectively, our study revealed that expression of ATP citrate lyase was significantly increased in breast cancer tissue compared with normal tissue. In addition, we found that depletion of ATP citrate lyase suppressed tumor growth, which suggests that ATP citrate lyase–related inhibitors might be potential therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Diyu Wang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Yin
- Department of General Surgery, Suzhou Wuzhong People’s Hospital, Suzhou, China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhixue Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoqin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Cha JY, Lee HJ. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics. J Cancer Prev 2016; 21:209-215. [PMID: 28053954 PMCID: PMC5207604 DOI: 10.15430/jcp.2016.21.4.209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells can affect numerous cellular processes, including cell growth, proliferation, differentiation, and survival. The potential dependence of cancer cells on the deregulated lipid metabolism suggests that enzymes and regulating factors involved in this process are promising targets for cancer treatment. In this review, we focus on the features associated with the lipid metabolic pathways in cancer, and highlight recent advances on the therapeutic targets of specific lipid metabolic enzymes or regulating factors and target-directed small molecules that can be potentially used as anticancer drugs.
Collapse
Affiliation(s)
- Ji-Young Cha
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| | - Ho-Jae Lee
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
37
|
MicroRNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget 2016; 7:5702-14. [PMID: 26744318 PMCID: PMC4868715 DOI: 10.18632/oncotarget.6790] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Luminal A breast cancer usually responds to hormonal therapies but does not benefit from chemotherapies, including microtubule-targeted paclitaxel. MicroRNAs could play a role in mediating this differential response. In this study, we examined the role of micro RNA 100 (miR-100) in the sensitivity of breast cancer to paclitaxel treatment. We found that while miR-100 was downregulated in both human breast cancer primary tumors and cell lines, the degree of downregulation was greater in the luminal A subtype than in other subtypes. The IC50 of paclitaxel was much higher in luminal A than in basal-like breast cancer cell lines. Ectopic miR-100 expression in the MCF-7 luminal A cell line enhanced the effect of paclitaxel on cell cycle arrest, multinucleation, and apoptosis, while knockdown of miR-100 in the MDA-MB-231 basal-like line compromised these effects. Similarly, overexpression of miR-100 enhanced the effects of paclitaxel on tumorigenesis in MCF-7 cells. Rapamycin-mediated inhibition of the mammalian target of rapamycin (mTOR), a target of miR-100, also sensitized MCF-7 cells to paclitaxel. Gene set enrichment analysis showed that genes that are part of the known paclitaxel-sensitive signature had a significant expression correlation with miR-100 in breast cancer samples. In addition, patients with lower levels of miR-100 expression had worse overall survival. These results suggest that miR-100 plays a causal role in determining the sensitivity of breast cancers to paclitaxel treatment.
Collapse
|
38
|
Guerram M, Jiang ZZ, Yousef BA, Hamdi AM, Hassan HM, Yuan ZQ, Luo HW, Zhu X, Zhang LY. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget 2016; 6:21865-77. [PMID: 26068969 PMCID: PMC4673132 DOI: 10.18632/oncotarget.4156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/14/2015] [Indexed: 01/21/2023] Open
Abstract
Increased lipogenesis and protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression and is under intense investigation as a potential antineoplastic target. Acetyltanshinone IIA (ATA) is a compound that was obtained from chemical modifications of tanshinone IIA (TIIA), a potent anticancer agent extracted from the dried roots of the Chinese herbal medicine Salvia miltiorrhiza Bunge. A previous investigation indicated that ATA is more effective in inhibiting the growth of breast cancer especially cells with HER2 overexpression. However, the molecular mechanism(s) mediating this cytotoxic effect on HER2-positive breast cancer remained undefined. Studies described here report that ATA induced G1/S phase arrest and apoptosis in the HER2-positive MDA-MB-453, SK-BR-3, and BT-474 breast cancer cell lines. Mechanistic investigations revealed that the ATA-induced apoptosis effect is associated with remarkably down-regulation of receptor tyrosine kinases (RTKs) EGFR/HER2 and inhibition of their downstream pro-survival signaling pathways. Interestingly, ATA was found to trigger oxidative and endoplasmic reticulum (ER) stresses and to activate AMP activated protein kinase (AMPK) leading to inactivation of key enzymes involved in lipid and protein biogenesis. Intraperitoneal administration of ATA significantly inhibited the growth of MDA-MB-453 xenografts in athymic mice without causing weight loss and any other side effects. Additionally, transwell migration, invasion, and wound healing assays revealed that ATA could suppress tumor angiogenesis in vitro. Taken together, our data suggest that ATA may have broad utility in the treatment of HER2-overexpressed breast cancers.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Bashir Alsiddig Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Aida Mejda Hamdi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hozeifa Mohamed Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Qiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hou-Wei Luo
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiong Zhu
- Medical and Chemical Institute, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
39
|
|
40
|
Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 2016; 73:377-92. [PMID: 26499846 PMCID: PMC11108301 DOI: 10.1007/s00018-015-2070-4] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is widely observed during cancer development to confer cancer cells the ability to survive and proliferate, even under the stressed, such as nutrient-limiting, conditions. It is famously known that cancer cells favor the "Warburg effect", i.e., the enhanced glycolysis or aerobic glycolysis, even when the ambient oxygen supply is sufficient. In addition, deregulated anabolism/catabolism of fatty acids and amino acids, especially glutamine, serine and glycine, have been identified to function as metabolic regulators in supporting cancer cell growth. Furthermore, extensive crosstalks are being revealed between the deregulated metabolic network and cancer cell signaling. These exciting advancements have inspired new strategies for treating various malignancies by targeting cancer metabolism. Here we review recent findings related to the regulation of glucose, fatty acid and amino acid metabolism, their crosstalk, and relevant cancer therapy strategy.
Collapse
Affiliation(s)
- Zhaoyong Li
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
41
|
Jiang H, Dai J, Huang X, Chen Y, Qu P, Li J, Yi C, Yang Y, Zhang K, Huang Q. Genetic variants in de novo lipogenic pathway genes predict the prognosis of surgically-treated hepatocellular carcinoma. Sci Rep 2015; 5:9536. [PMID: 25826294 PMCID: PMC4379911 DOI: 10.1038/srep09536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
Over-expression of de novo lipogenesis (DNL) pathway genes is associated with the prognosis of various types of cancers. However, effects of single nucleotide polymorphisms (SNPs) in these genes on recurrence and death of hepatocellular carcinoma (HCC) patients after surgery are still unknown. A total of 492 primary HCC patients treated with surgery were included in this study. Nine SNPs in 3 genes (ACACA, FASN and ACLY) of DNL pathway were genotyped. Multivariate Cox proportional hazard regression model and Kaplan-Meier curve were used to analyze the association of SNPs with clinical outcomes. Two SNPs in ACACA gene were significantly associated with overall survival of HCC patients. Patients carrying homozygous variant genotype (VV) in rs7211875 had significantly increased risk of death, while patients carrying VV genotype in rs11871275 had significant decreased risk of death, when compared with those carrying homozygous wild-type or heterozygous genotypes. Moreover, patients carrying VV genotype in rs11871275 had decreased recurrence risk, while patients carrying variant genotype in rs4485435 of FASN gene had increased recurrence risk. Further cumulative effect analysis showed significant dose-dependent effects of unfavorable SNPs on both death and recurrence. SNPs in DNL genes may serve as independent prognostic markers for HCC patients after surgery.
Collapse
Affiliation(s)
- Hequn Jiang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyao Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaojun Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yibing Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Qu
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jibin Li
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Cheng Yi
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yefa Yang
- Department of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Kejing Zhang
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
42
|
Xie S, Zhou F, Wang J, Cao H, Chen Y, Liu X, Zhang Z, Dai J, He X. Functional polymorphisms of ATP citrate lyase gene predicts clinical outcome of patients with advanced colorectal cancer. World J Surg Oncol 2015; 13:42. [PMID: 25890184 PMCID: PMC4359538 DOI: 10.1186/s12957-015-0440-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/07/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that ATP citrate lyase (ACLY) plays an important role in the development of many cancers. Our current study aims to assess the effects of functional single nucleotide polymorphisms (SNPs) in ACLY gene on recurrence and survival of colorectal cancer (CRC) patients. METHODS A total of 697 resected Chinese CRC patients were included in this study. Two functional single nucleotide polymorphisms in ACLY gene were examined using the Sequenom iPLEX genotyping system. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the prognosis analysis. RESULTS Multivariate Cox regression analysis showed that there was no significant association between SNPs in ACLY gene and the prognosis of total patient cohort. However, in patients with stage III + IV diseases, the two functional SNPs (rs2304497 and rs9912300) exhibited a significant association with the risks of death (HR = 0.47, 95% CI = 0.24-0.90 and HR = 0.59, 95% CI = 0.37-0.92, respectively) and recurrence (HR = 0.46, 95% CI = 0.24-0.86 and HR = 0.54, CI = 0.35-0.83, respectively). Kaplan-Meier analysis indicated that those CRC patients carrying heterozygous (WV) or homozygous variant (VV) genotypes in rs2304497 and rs9912300 had significantly better overall survival (OS) and recurrence-free survival (RFS). Moreover, we observed remarkable cumulative effects of these two SNPs on overall survival and recurrence-free survival (P for trend = 0.012 and 0.003, respectively). Compared with patients carrying zero unfavorable genotype, those carrying two unfavorable genotypes had a 2.24-fold and 2.33-fold increase of death and recurrence risks, respectively. CONCLUSIONS The SNPs in ACLY gene may serve as independent prognostic markers for patients with advanced stage CRC.
Collapse
Affiliation(s)
- Shuang Xie
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, 169 West Changle Street, Xi'an, 710032, China. .,State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Zhou
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, 169 West Changle Street, Xi'an, 710032, China. .,Department of General Surgery, Huaihai Hospital, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China.
| | - Jiaojiao Wang
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Haiyan Cao
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yibing Chen
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaonan Liu
- Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhaohui Zhang
- Department of General Surgery, Huaihai Hospital, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China.
| | - Jingyao Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, 169 West Changle Street, Xi'an, 710032, China.
| |
Collapse
|
43
|
Lemus HN, Mendivil CO. Adenosine triphosphate citrate lyase: Emerging target in the treatment of dyslipidemia. J Clin Lipidol 2015; 9:384-9. [PMID: 26073398 DOI: 10.1016/j.jacl.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/02/2023]
Abstract
Despite major advances in pharmacologic therapy over the last few decades, dyslipidemia remains a prevalent, insufficiently recognized, and undercontrolled risk factor for cardiovascular disease. Statins are the mainstay of hypercholesterolemia treatment, but because of adherence and tolerability issues that limit dose titration, there is a need for additional therapies with good efficacy and better tolerability. Adenosine triphosphate (ATP) citrate lyase, a cytoplasmic enzyme responsible for the generation of acetyl coenzyme A for the de novo synthesis of fatty acids and cholesterol, is a very interesting molecular target for the reduction of plasma lipids. Furthermore, ATP citrate lyase inhibition may be accompanied by activation of 5'-adenosine monophosphate-activated protein kinase, a key signaling molecule that acts a central hub in cellular metabolic regulation. ETC-1002 is a small molecule inhibitor of ATP citrate lyase that also activates 5'-adenosine monophosphate-activated protein kinase, effectively reducing low-density lipoprotein cholesterol and inducing some other positive metabolic changes. Recent evidence from phase I and II clinical trials in humans has shown a positive efficacy and safety profile of ETC-1002, with low-density lipoprotein cholesterol reductions similar to those attainable by usual doses of many statins and with no major apparent side effects. These results potentially introduce a new family of medications that may expand our therapeutic arsenal against hypercholesterolemia.
Collapse
Affiliation(s)
- Hernán N Lemus
- Universidad de los Andes Medical School, Bogotá, Colombia
| | - Carlos O Mendivil
- Universidad de los Andes Medical School, Bogotá, Colombia; Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
44
|
Jin X, Zhang KJ, Guo X, Myers R, Ye Z, Zhang ZP, Li XF, Yang HS, Xing JL. Fatty Acid Synthesis Pathway Genetic Variants and Clinical Outcome of Non-Small Cell Lung Cancer Patients after Surgery. Asian Pac J Cancer Prev 2014; 15:7097-103. [DOI: 10.7314/apjcp.2014.15.17.7097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Gao Y, Islam MS, Tian J, Lui VWY, Xiao D. Inactivation of ATP citrate lyase by Cucurbitacin B: A bioactive compound from cucumber, inhibits prostate cancer growth. Cancer Lett 2014; 349:15-25. [PMID: 24690568 DOI: 10.1016/j.canlet.2014.03.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/03/2023]
Abstract
Prostate cancer, a leading cause of cancer-related deaths in males, is well recognized as having late disease on-set (mostly at age 60-70) and showing slow/latent disease development, and strategies to prevent cancer formation in late manhood may have significant health impacts. Cucurbitacin B (CuB) is a naturally occurring compound that is found abundantly in cucumbers and other vegetables, and it is known to exert anti-cancer activities (primarily via apoptosis-induction) in several human cancers. However, its chemopreventive potential for prostate cancer has not yet been investigated. Here, we reported that CuB significantly and specifically inhibited prostate cancer cell growth with low IC50 (~0.3 μM; PC-3 and LNCaP), accompanied by marked apoptosis (Caspase 3/7 activation, PARP cleavage, increase of Annexin V-Alexa Fluor 488 (Alexa488)+ cells and accumulation of Sub-G0/G1 population), whereas normal human prostate epithelial cells (PrEC) were CuB-insensitive. Using a chemopreventive model, pre-treatment of mice with CuB (2 weeks before PC-3 prostate cancer cell implantation) significantly reduced the rate of in vivo tumor-formation. A 79% reduction in tumor size (accompanied by marked in situ apoptosis) was observed in the CuB-treated group (with no noticeable toxicity) vs. controls at day 31. Strikingly, mechanistic investigations demonstrated that CuB drove dose-dependent inhibition of ATP citrate lyase phosphorylation (ACLY; an important enzyme for cancer metabolism) both in vitro and in the CuB-chemopreventive mouse model. Importantly, ACLY over-expression abrogated CuB's apoptotic effects in prostate cancer cells, confirming ACLY as a direct target of CuB. Thus, CuB harbors potent chemopreventive activity for prostate cancer, and we revealed a novel anti-tumor mechanism of CuB via inhibition of ACYL signaling in human cancer.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical College, University of Pittsburgh, Shadyside Medical Center, Suit G37, 5200 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Mohammad Shyful Islam
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical College, University of Pittsburgh, Shadyside Medical Center, Suit G37, 5200 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Jiang Tian
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical College, University of Pittsburgh, Shadyside Medical Center, Suit G37, 5200 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Vivian Wai Yan Lui
- Department of Pharmacology and Pharmacy, Li Ka Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region
| | - Dong Xiao
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical College, University of Pittsburgh, Shadyside Medical Center, Suit G37, 5200 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
46
|
Is cancer a metabolic disease? THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:4-17. [PMID: 24139946 DOI: 10.1016/j.ajpath.2013.07.035] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/10/2013] [Accepted: 07/17/2013] [Indexed: 12/17/2022]
Abstract
Although cancer has historically been viewed as a disorder of proliferation, recent evidence has suggested that it should also be considered a metabolic disease. Growing tumors rewire their metabolic programs to meet and even exceed the bioenergetic and biosynthetic demands of continuous cell growth. The metabolic profile observed in cancer cells often includes increased consumption of glucose and glutamine, increased glycolysis, changes in the use of metabolic enzyme isoforms, and increased secretion of lactate. Oncogenes and tumor suppressors have been discovered to have roles in cancer-associated changes in metabolism as well. The metabolic profile of tumor cells has been suggested to reflect the rapid proliferative rate. Cancer-associated metabolic changes may also reveal the importance of protection against reactive oxygen species or a role for secreted lactate in the tumor microenvironment. This article reviews recent research in the field of cancer metabolism, raising the following questions: Why do cancer cells shift their metabolism in this way? Are the changes in metabolism in cancer cells a consequence of the changes in proliferation or a driver of cancer progression? Can cancer metabolism be targeted to benefit patients?
Collapse
|
47
|
Zhou Y, Bollu LR, Tozzi F, Ye X, Bhattacharya R, Gao G, Dupre E, Xia L, Lu J, Fan F, Bellister S, Ellis LM, Weihua Z. ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol Cancer Ther 2013; 12:2782-91. [PMID: 24132143 DOI: 10.1158/1535-7163.mct-13-0098] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combination chemotherapy is standard for metastatic colorectal cancer; however, nearly all patients develop drug resistance. Understanding the mechanisms that lead to resistance to individual chemotherapeutic agents may enable identification of novel targets and more effective therapy. Irinotecan is commonly used in first- and second-line therapy for patients with metastatic colorectal cancer, with the active metabolite being SN38. Emerging evidence suggests that altered metabolism in cancer cells is fundamentally involved in the development of drug resistance. Using Oncomine and unbiased proteomic profiling, we found that ATP citrate lyase (ACLy), the first-step rate-limiting enzyme for de novo lipogenesis, was upregulated in colorectal cancer compared with its levels in normal mucosa and in chemoresistant colorectal cancer cells compared with isogenic chemo-naïve colorectal cancer cells. Overexpression of exogenous ACLy by lentivirus transduction in chemo-naïve colorectal cancer cells led to significant chemoresistance to SN38 but not to 5-fluorouracil or oxaliplatin. Knockdown of ACLy by siRNA or inhibition of its activity by a small-molecule inhibitor sensitized chemo-naïve colorectal cancer cells to SN38. Furthermore, ACLy was significantly increased in cancer cells that had acquired resistance to SN38. In contrast to chemo-naïve cells, targeting ACLy alone was not effective in resensitizing resistant cells to SN38, due to a compensatory activation of the AKT pathway triggered by ACLy suppression. Combined inhibition of AKT signaling and ACLy successfully resensitized SN38-resistant cells to SN38. We conclude that targeting ACLy may improve the therapeutic effects of irinotecan and that simultaneous targeting of ACLy and AKT may be warranted to overcome SN38 resistance.
Collapse
Affiliation(s)
- Yunfei Zhou
- Corresponding Authors: Zhang Weihua, Department of Biology and Biochemistry, College of Natural Sciences and Mathematics University of Houston, 4800 Calhoun Rd, HSC358, Houston, TX 77204.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Louwen F, Yuan J. Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 2013; 4:958-71. [PMID: 23948487 PMCID: PMC3759674 DOI: 10.18632/oncotarget.1096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023] Open
Abstract
Polo-like kinase 1, a pivotal regulator of mitosis and cytokinesis, is highly expressed in a broad spectrum of tumors and its expression correlates often with poor prognosis, suggesting its potential as a therapeutic target. p53, the guardian of the genome, is the most important tumor suppressor. In this review, we address the intertwined relationship of these two key molecules by fighting each other as eternal rivals in many signaling pathways. p53 represses the promoter of Polo-like kinase 1, whereas Polo-like kinase 1 inhibits p53 and its family members p63 and p73 in cancer cells lacking functional p53. Plk1 inhibitors target all rapidly dividing cells irrespective of tumor cells or non-transformed normal but proliferating cells. Upon treatment with Plk1 inhibitors, p53 in tumor cells is activated and induces strong apoptosis, whereas tumor cells with inactive p53 arrest in mitosis with DNA damage. Thus, inactive p53 is not associated with a susceptible cytotoxicity of Polo-like kinase 1 inhibition and could rather foster the induction of polyploidy/aneuploidy in surviving cells. In addition, compared to the mono-treatment, combination of Polo-like kinase 1 inhibition with anti-mitotic or DNA damaging agents boosts more severe mitotic defects, effectually triggers apoptosis and strongly inhibits proliferation of cancer cells with functional p53. In this regard, restoration of p53 in tumor cells with loss or mutation of p53 will reinforce the cytotoxicity of combined Polo-like kinase 1 therapy and provide a proficient strategy for combating relapse and metastasis of cancer.
Collapse
Affiliation(s)
- Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|