1
|
Sun P, Antwi SO, Sartorius K, Zheng X, Li X. Tumor Microenvironment, Clinical Features, and Advances in Therapy for Bone Metastasis in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14194888. [PMID: 36230816 PMCID: PMC9563035 DOI: 10.3390/cancers14194888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) is one of the most malignant neoplasms worldwide, accounting for about 770,000 deaths in 2020. The incidence of gastric cancer bone metastasis (GC-BM) is low, about 0.9–13.4%, and GC patients develop GC-BM because of a suitable bone microenvironment. Osteoblasts, osteoclasts, and tumor cells interact with each other, secreting cytokines such as PTHrP, RANK-L, IL-6, and other growth factors that disrupt the normal bone balance and promote tumor growth. The functions and numbers of immune cells in the bone microenvironment are continuously inhibited, resulting in bone balance disorder due to the cytokines released from destroyed bone and growing tumor cells. Patients with GC-BM are generally younger than 65 years old and they often present with a later stage of the disease, as well as more aggressive tumors. They usually have shorter overall survival (OS) because of the occurrence of skeletal-related events (SREs) and undetected bone destruction due to the untimely bone inspection. Current treatments of GC-BM focus mainly on gastric cancer and SRE-related treatment. This article reviews the clinical features, possible molecular pathogeneses, and the most commonly used diagnostic methods and treatments of bone metastasis in gastric cancer.
Collapse
Affiliation(s)
- Pengcheng Sun
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213004, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213004, China
| | - Samuel O. Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kurt Sartorius
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
- School of Laboratory Medicine and Molecular Sciences, College of Health Sciences, University of Kwazulu-Natal, Durban 4041, South Africa
- UKZN Gastrointestinal Cancer Research Unit, University of Kwazulu-Natal, Durban 4041, South Africa
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213004, China
- Correspondence: (X.Z.); (X.L.)
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213004, China
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
- Correspondence: (X.Z.); (X.L.)
| |
Collapse
|
2
|
Huang L, Zhao Y, Shi Y, Hu W, Zhang J. Bone Metastasis From Gastric Adenocarcinoma-What Are the Risk Factors and Associated Survival? A Large Comprehensive Population-Based Cohort Study. Front Oncol 2022; 12:743873. [PMID: 35402215 PMCID: PMC8989732 DOI: 10.3389/fonc.2022.743873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/28/2022] [Indexed: 01/19/2023] Open
Abstract
Background While bone metastasis is not common in gastric adenocarcinoma (GaC), it can have important impacts on prognosis. This large cohort study aimed at exploring factors associated with bone metastasis in GaC and investigating the time-dependent cumulative mortalities and prognostic factors in GaC patients with bone metastasis at the population level. Methods Data on patients with GaC diagnosed in 2010–2016 were retrieved from a large population-based database. We explored factors associated with bone metastasis using the multivariable-adjusted logistic model. We then calculated the time-dependent cancer-specific mortalities in GaC patients with bone metastasis using the cumulative incidence function and compared mortalities across subgroups using Gray’s test. We further assessed factors associated with mortality using the multivariable-adjusted Fine–Gray subdistribution hazard model. Results Together 11,072 eligible patients with metastatic GaC were enrolled, which comprised 1,511 (14%) people with bone metastasis and 9,561 (86%) with other metastasis, encompassing 6,999 person-years of follow-up. Bone metastasis was more frequently detected in 2014 or later, in younger patients, in patients with gastric cardia cancers, in people with signet-ring cell carcinoma, and in those with poorly differentiated/undifferentiated cancers; it was less commonly observed in black patients. Bone metastasis was associated with more frequent brain and lung metastases. The median survival of patients with bone metastasis was 4 months; the 6-month and 3-year cancer-specific cumulative mortalities were 56% and 85%, respectively. In patients receiving chemotherapy, American Indians/Alaskan Natives, patients with gastric antrum/pylorus cancers, and those with positive lymph nodes had higher mortality risks, while those undergoing resection had lower mortality hazards. Conclusion In GaC patients, bone metastasis was associated with various clinicopathologic factors including age, ethnicity, tumor location, histology, differentiation, and metastasis to other sites. Patients with bone metastasis had poor prognosis which was associated with ethnicity, tumor location, lymph node involvement, and treatment. Our findings provide important hints for tailed patient management and for further mechanistic investigations.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Hu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them. J Clin Med 2021; 10:jcm10081777. [PMID: 33921760 PMCID: PMC8073984 DOI: 10.3390/jcm10081777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the third cause of cancer-related death worldwide; the prognosis is poor especially in the case of metastatic disease. Liver, lymph nodes, peritoneum, and lung are the most frequent sites of metastases from GC; however, bone metastases from GC have been reported in the literature. Nevertheless, it is unclear how the metastatic sites may affect the prognosis. In particular, knowledge about the impact of bone metastases on GC patients’ outcome is scant, and this may be related to the rarity of bone lesions and/or their underestimation at the time of diagnosis. In fact, there is still a lack of specific recommendation for their detection at the diagnosis. Then, the majority of the evidences in this field came from retrospective analysis on very heterogeneous study populations. In this context, the aim of this narrative review is to delineate an overview about the evidences existing about bone metastases in GC patients, focusing on their incidence and biology, the prognostic role of bone involvement, and their possible implication in the treatment choice.
Collapse
|
4
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
5
|
Luan F, Li X, Cheng X, Huangfu L, Han J, Guo T, Du H, Wen X, Ji J. TNFRSF11B activates Wnt/β-catenin signaling and promotes gastric cancer progression. Int J Biol Sci 2020; 16:1956-1971. [PMID: 32398963 PMCID: PMC7211174 DOI: 10.7150/ijbs.43630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) has been studied to be involved in the development and progression of several human malignancies. However, little is unveiled regarding the complex mechanisms of TNFRSF11B in human gastric cancer (GC). The clinical significance of TNFRSF11B was assessed in 70 and 160 GC tissues using immunohistochemistry method and gene microarray analysis, respectively. The biological function of TNFRSF11B was studied in vitro and in vivo assays. Immunofluorescence assay was used to evaluate the expression of β-catenin in the nucleus. The expression of β-catenin and related protein was determined by Western blot. The interaction between TNFRSF11B and GSK3β was detected by co-immunoprecipitation. We demonstrated that TNFRSF11B was highly expressed in the cytoplasm of GC and associated with the patient poor outcome. Our studies showed that TNFRSF11B in GC cells significantly promoted cell proliferation, migration, invasion in vitro and tumorigenic ability in vitro and in vivo. Meanwhile, TNFRSF11B inhibited GC cell apoptosis. The proportion of nuclear active β-catenin showed positively correlation with TNFRSF11B expression. TNFRSF11B directly combined with GSK-3β upregulating its phosphorylation, and increased expression of β-catenin and its downstream effectors. Collectively, these findings demonstrate that TNFRSF11B promote the aggressive phenotypes of GC cells and activated Wnt/β-catenin signaling. Accordingly, TNFRSF11B had potential as a biomarker and inhibition of TNFRSF11B expression might offer a new therapeutic target for GC patients.
Collapse
Affiliation(s)
- Fengming Luan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
- Department of gastrointestinal surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaomei Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaojing Cheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Longtao Huangfu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Han
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Guo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianzi Wen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
- Department of gastrointestinal surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
6
|
de Vries TJ, El Bakkali I, Kamradt T, Schett G, Jansen IDC, D'Amelio P. What Are the Peripheral Blood Determinants for Increased Osteoclast Formation in the Various Inflammatory Diseases Associated With Bone Loss? Front Immunol 2019; 10:505. [PMID: 30941138 PMCID: PMC6434996 DOI: 10.3389/fimmu.2019.00505] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 01/18/2023] Open
Abstract
Local priming of osteoclast precursors (OCp) has long been considered the main and obvious pathway that takes place in the human body, where local bone lining cells and RANKL-expressing osteocytes may facilitate the differentiation of OCp. However, priming of OCp away from bone, such as in inflammatory tissues, as revealed in peripheral blood, may represent a second pathway, particularly relevant in individuals who suffer from systemic bone loss such as prevalent in inflammatory diseases. In this review, we used a systematic approach to review the literature on osteoclast formation in peripheral blood in patients with inflammatory diseases associated with bone loss. Only studies that compared inflammatory (bone) disease with healthy controls in the same study were included. Using this core collection, it becomes clear that experimental osteoclastogenesis using peripheral blood from patients with bone loss diseases in prevalent diseases such as rheumatoid arthritis, osteoporosis, periodontitis, and cancer-related osteopenia unequivocally point toward an intrinsically increased osteoclast formation and activation. In particular, such increased osteoclastogenesis already takes place without the addition of the classical osteoclastogenesis cytokines M-CSF and RANKL in vitro. We show that T-cells and monocytes as OCp are the minimal demands for such unstimulated osteoclast formation. In search for common and disease-specific denominators of the diseases with inflammation-driven bone loss, we demonstrate that altered T-cell activity and a different composition—such as the CD14+CD16+ vs. CD14+CD16– monocytes—and priming of OCp with increased M-CSF, RANKL, and TNF- α levels in peripheral blood play a role in increased osteoclast formation and activity. Future research will likely uncover the barcodes of the OCp in the various inflammatory diseases associated with bone loss.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ismail El Bakkali
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thomas Kamradt
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Georg Schett
- Department of Internal Medicine III, Friedrich-Alexander University Erlangen-Nürnberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Patrizia D'Amelio
- Gerontology and Bone Metabolic Diseases Division, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Becerra-Pedraza LC, Carlos NG, Carmona GRC, Martínez-Piña DA. Uncommon Initial Presentation of Gastric Cancer with Bone Metastases: a Case Report. J Gastrointest Cancer 2017; 50:334-337. [PMID: 29047043 DOI: 10.1007/s12029-017-0015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis Cuitláhuac Becerra-Pedraza
- General Hospital of Morelia Dr. Miguel Silva, Morelia, Michoacán, Mexico. .,, Av. Insurgentes Sur. # 3877. Col Fama, Tlalpan, Mexico City, Mexico.
| | | | | | | |
Collapse
|
8
|
Satolli MA, Buffoni L, Spadi R, Roato I. Gastric cancer: The times they are a-changin'. World J Gastrointest Oncol 2015; 7:303-16. [PMID: 26600930 PMCID: PMC4644853 DOI: 10.4251/wjgo.v7.i11.303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/15/2015] [Accepted: 08/13/2015] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the third leading cause of cancer death worldwide. Even though during these last decades gastric cancer incidence decreased in Western countries, it remains endemic and with a high incidence in Eastern countries. The survival in advanced and metastatic stage of gastric cancer is still very poor. Recently the Cancer Genoma Atlas Research Network identified four subtypes with different molecular profiles to classify gastric cancer in order to offer the optimal targeted therapies for pre-selected patients. Indeed, the key point is still the selection of patients for the right treatment, on basis of molecular tumor characterization. Since chemotherapy reached a plateau of efficacy for gastric cancer, the combination between cytotoxic therapy and biological agents gets a better prognosis and decreases chemotherapeutic toxicity. Currently, Trastuzumab in combination with platinum and fluorouracil is the only approved targeted therapy in the first line for c-erbB2 positive patients, whereas Ramucirumab is the only approved targeted agent for patients with metastatic gastric cancer. New perspectives for an effective treatment derived from the immunotherapeutic strategies. Here, we report an overview on gastric cancer treatments, with particular attention to recent advances in targeted therapies and in immunotherapeutic approach.
Collapse
|
9
|
Leporini C, Ammendola M, Marech I, Sammarco G, Sacco R, Gadaleta CD, Oakley C, Russo E, De Sarro G, Ranieri G. Targeting mast cells in gastric cancer with special reference to bone metastases. World J Gastroenterol 2015; 21:10493-10501. [PMID: 26457010 PMCID: PMC4588072 DOI: 10.3748/wjg.v21.i37.10493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/15/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Bone metastases from gastric cancer (GC) are considered a relatively uncommon finding; however, they are related to poorer prognosis. Both primary GC and its metastatic progression rely on angiogenesis. Several lines of evidence from GC patients strongly support the involvement of mast cells (MCs) positive to tryptase (MCPT) in primary gastric tumor angiogenesis. Recently, we analyzed infiltrating MCs and neovascularization in bone tissue metastases from primary GC patients, and observed a significant correlation between infiltrating MCPT and angiogenesis. Such a finding suggested the involvement of peritumoral MCPT by infiltrating surrounding tumor cells, and in bone metastasis angiogenesis from primary GC. Thus, an MCPT-stimulated angiogenic process could support the development of metastases in bone tissue. From this perspective, we aim to review the hypothetical involvement of tumor-infiltrating, peritumoral MCPT in angiogenesis-mediated GC cell growth in the bone microenvironment and in tumor-induced osteoclastic bone resorption. We also focus on the potential use of MCPT targeting agents, such as MCs tryptase inhibitors (gabexate mesylate, nafamostat mesylate) or c-KitR tyrosine kinase inhibitors (imatinib, masitinib), as possible new anti-angiogenic and anti-resorptive strategies for the treatment of GC patients affected by bone metastases.
Collapse
|
10
|
Mori G, D'Amelio P, Faccio R, Brunetti G. Bone-immune cell crosstalk: bone diseases. J Immunol Res 2015; 2015:108451. [PMID: 26000310 PMCID: PMC4427089 DOI: 10.1155/2015/108451] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 01/14/2023] Open
Abstract
Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.
Collapse
Affiliation(s)
- Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Patrizia D'Amelio
- Department of Medical Science, Section of Gerontology and Bone Metabolism Diseases, University of Torino, 10126 Torino, Italy
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| |
Collapse
|
11
|
Ammendola M, Marech I, Sammarco G, Zuccalà V, Luposella M, Zizzo N, Patruno R, Crovace A, Ruggieri E, Zito AF, Gadaleta CD, Sacco R, Ranieri G. Infiltrating mast cells correlate with angiogenesis in bone metastases from gastric cancer patients. Int J Mol Sci 2015; 16:3237-50. [PMID: 25648323 PMCID: PMC4346892 DOI: 10.3390/ijms16023237] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/26/2015] [Indexed: 12/14/2022] Open
Abstract
While gastric cancer is a well established angiogenesis driven tumor, no data has been published regarding angiogenesis stimulated by mast cells (MCs) positive for tryptase in bone metastases from gastric cancer patients (BMGCP). It is well established that MCs play a role in immune responses and more recently it was demonstrated that MCs have been involved in tumor angiogenesis. We analyzed infiltrating MCs and neovascularization in BMGCP diagnosed by histology. A series of 15 stage T3-4N2-3M1 (by AJCC for Gastric Cancer Staging 7th Edition) BMGCP from bone biopsies were selected. Tumour tissue samples were evaluated by mean of immunohistochemistry and image analysis methods in terms of MCs density positive to tryptase (MCDPT), MCs area positive to tryptase (MCAPT), microvascular density (MVD) and endothelial area (EA). A significant correlation between MCDPT, MCAPT, MVD and EA groups to each other was found by Pearson and t-test analysis (r ranged from 0.68 to 0.82; p-value ranged from 0.00 to 0.02). Our very preliminary data suggest that infiltrating MCs positive for tryptase may play a role in BMGCP angiogenesis, and could be further evaluated as a novel target of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, Catanzaro 88100, Italy.
- Surgery Unit, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, Bari 70124, Italy.
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, Bari 70124, Italy.
| | - Giuseppe Sammarco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, Catanzaro 88100, Italy.
| | - Valeria Zuccalà
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, Catanzaro 88100, Italy.
| | - Maria Luposella
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, Catanzaro 88100, Italy.
| | - Nicola Zizzo
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, Bari 70010, Italy.
| | - Rosa Patruno
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, Bari 70010, Italy.
| | - Alberto Crovace
- Chair of Pathology, Veterinary Medical School, University "Aldo Moro" of Bari, Via Casamassima, Bari 70010, Italy.
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Medical School, Università "Aldo Moro", Via Casamassima, Bari 70010, Italy.
| | - Eustachio Ruggieri
- Surgery Unit, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, Bari 70124, Italy.
| | | | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, Bari 70124, Italy.
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, Clinical Surgery Unit, University "Magna Graecia" Medical School, Viale Europa, Germaneto, Catanzaro 88100, Italy.
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", viale Orazio Flacco 65, Bari 70124, Italy.
| |
Collapse
|
12
|
Inanc M, Kaynar L, Enhos S, Pala C, Karaca H, Berk V, Ozkan M, Sıvgın S, Eser B, Cetin M, Elmali F. Nuclear factor-kappa B ligand and osteoprotegerin levels in serum and gingival crevicular fluid in patients with bone metastases treated with zoledronic acid. Med Oncol 2014; 31:837. [PMID: 24448976 DOI: 10.1007/s12032-013-0837-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/30/2013] [Indexed: 02/05/2023]
Abstract
Bone metastases are frequently observed in patients with certain types of cancer and are significant cause of morbidity. Zoledronic acid (ZA) is routinely prescribed for patients with bone metastases by affecting osteoclast function. We aimed to assess the effect of ZA over time in patients with bone metastases by analyzing novel bone turnover marker levels including receptor activator of nuclear factor-k B ligand (RANKL) and osteoprotegerin (OPG) in serum and gingival crevicular fluid (GCF). Also, associations between these bone turnover markers with hematological and biochemistry dysregulation were studied. The study enrolled patients with bone metastases including 32 patients diagnosed with solid tumors and 15 patients with multiple myeloma. In these patients, GCF and serum RANKL and OPG levels were measured and compared with measures of hematological and biochemical parameters before and after 3 months of ZA therapy. Mean subject age was 54 years old with a range of 28-80 years. Skeletal-related events were observed in 8.5% of all patients. After the 3-month treatment of ZA therapy, no significant differences were found in serum and GCF levels of RANKL and OPG when compared with before treatment levels. GCF RANKL levels at baseline and following 3 months of ZA therapy were significantly higher in patients with solid tumors when compared patients diagnosed with multiple myeloma (p=0.001; p<0.001, respectively). GCF OPG levels after the entire course of ZA therapy were greater in patients with 5 or more bone metastases (p=0.04). For patients with multiple myeloma, control GCF OPG was negatively correlated with control platelet and WBC counts (p=0.018 and p=0.027, respectively). A negative correlation was observed between control serum RANKL and control serum OPG levels in myeloma patients (p=0.001). After 3 months of ZA therapy, no significant differences were observed in GCF and serum RANKL and OPG levels when compared with baseline. A negative correlation was observed between serum control RANKL and OPG levels in myeloma patients. OPG levels were greater in patients with 5 or more bone metastases. In patients diagnosed with multiple myeloma, GCF OPG levels were negatively associated with WBC and platelet counts.
Collapse
Affiliation(s)
- Mevlude Inanc
- Medical Oncology Department, Kayseri Training and Research Hospital, Kayseri, 38039, Turkey,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|