1
|
Kunutsor SK, Lehoczki A, Laukkanen JA. Coffee consumption, cancer, and healthy aging: epidemiological evidence and underlying mechanisms. GeroScience 2024:10.1007/s11357-024-01332-8. [PMID: 39266809 DOI: 10.1007/s11357-024-01332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
This comprehensive review examines the role of coffee consumption in promoting healthy aging and its potential impact on cancer prevention. Previous research has shown that moderate coffee intake may contribute to extending healthspan and enhancing longevity through beneficial effects on cardiometabolic health and key biological processes involved in aging. However, the relationship between coffee consumption and cancer risk remains controversial. This review synthesizes longitudinal observational and interventional data on the effects of coffee consumption on overall and site-specific cancers, explores underlying biological mechanisms, and discusses clinical and public health implications. Additionally, the review highlights evidence from Mendelian randomization (MR) studies to assess potential causal relationships. Our findings suggest that coffee consumption is associated with a reduced risk of several cancers, including skin, liver, prostate, and endometrial cancers, and may also lower cancer recurrence rates, particularly in colorectal cancer. These protective associations appear consistent across different demographic groups, with the most significant benefits observed at consumption levels of three or more cups per day. However, evidence is inconclusive for many other cancers, and coffee consumption is consistently linked to an increased risk of lung cancer. MR studies generally do not support a strong causal relationship for most cancers, though some suggest potential protective effects for hepatocellular, colorectal, and possibly prostate cancers, with mixed results for ovarian cancer and an increased risk for esophageal cancer and multiple myeloma. The protective effect of coffee on liver and prostate cancer is supported by both observational and MR studies. The potential anti-cancer benefits of coffee are attributed to its bioactive compounds, such as caffeine, chlorogenic acids, and diterpenes, which possess antioxidant and anti-inflammatory properties. These compounds may reduce oxidative stress, inhibit cancer cell proliferation, induce apoptosis, and modulate hormone levels. The review emphasizes the need for further research to clarify dose-response relationships, causal associations, and the biological mechanisms underlying these associations. While coffee consumption appears to contribute to cancer prevention and healthy aging, caution is warranted due to the increased risk of certain cancers, highlighting the complexity of its health effects.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 409 Tache Avenue, St. Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| | - Andrea Lehoczki
- Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland District, Jyväskylä, Finland
| |
Collapse
|
2
|
Koczurkiewicz-Adamczyk P, Piska K, Gunia-Krzyżak A, Bucki A, Jamrozik M, Lorenc E, Ryszawy D, Wójcik-Pszczoła K, Michalik M, Marona H, Kołaczkowski M, Pękala E. Cinnamic acid derivatives as chemosensitising agents against DOX-treated lung cancer cells - Involvement of carbonyl reductase 1. Eur J Pharm Sci 2020; 154:105511. [PMID: 32801001 DOI: 10.1016/j.ejps.2020.105511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Doxorubicin (DOX) therapy is limited by both cancer cells resistance and cardiotoxicity. DOX biotransformation to doxorubicinol (DOXol) by reductases enzymes (mainly by CBR1; carbonyl reductase 1) is a key process responsible for DOX adverse effects development. Thus, inhibition of CBR1 can increase the therapeutic effect of DOX. In the present study, we used a group of new synthetized cinnamic acid (CA) derivatives to improve the effectiveness and safety profile of DOX therapy against cancer cells in vitro. The possible mechanism of CBR1 inhibition was simulated by molecular modelling studies. The kinetics of DOX reduction in the presence of active CA derivatives were measured in cytosols. The chemosensitising activity of CA derivatives including proapoptotic, anti-invasiveness activity were investigated in A549 lung cancer cell line. In our research 7 from 16 tested CA derivatives binded to the active site of CBR1 enzyme and improved DOX stability by inhibition of DOXol formation. Co-treatment of A549 cells with active CA derivatives and DOX induced cells apoptosis by activation of caspase cascade. At the same time we observed decrease of invasive properties (cell migration and transmigration assays) and the rearangments of F-actin cytoskeleton in CA derivatves + DOX treated cells. Meanwhile, control, human lung fibroblasts stay realtivelly unvulnerable and viable. New synthetized CA derivatives may inhibit the activity of CBR1 leading to the stabilization of DOX therapeutic levels in cancer cells and to protect the myocardium against DOXol cytotoxic effect. Favourable physicochemical properties supported by a safety profile and multidirectional chemosensitising activity render CA derivatives a promising group for the development of agent useful in combined therapy.
Collapse
Affiliation(s)
- Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St 9, 30-688, Kraków, Poland.
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St 9, 30-688, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Ewelina Lorenc
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnoloy, Jagiellonian University, Kraków, Poland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnoloy, Jagiellonian University, Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St 9, 30-688, Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnoloy, Jagiellonian University, Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St 9, 30-688, Kraków, Poland
| |
Collapse
|
3
|
High bisphenol A concentrations augment the invasiveness of tumor cells through Snail-1/Cx43/ERRγ-dependent epithelial-mesenchymal transition. Toxicol In Vitro 2019; 62:104676. [PMID: 31629898 DOI: 10.1016/j.tiv.2019.104676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
Bisphenol A (BPA) is commonly present in plastics used for food storage and preservation. The release of BPA from these products results in a permanent human exposition to BPA; however, the quality and quantity of BPA adverse effects remain a matter of controversy. The common presence of BPA in the human environment and the controversies concerning the relations of human exposition to BPA and cancer incidence justify the research on the interactions between BPA and pro-metastatic signaling in cancer cells. Here, we describe a novel BPA-reactive signaling axis that induces the epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cells. BPA exerted negligible effects on their properties in a wide range of concentrations (10 nM - 100 nM), whereas it considerably induced A549 invasiveness at high concentrations (10 μM). The BPA-induced EMT was illustrated by morphologic changes, E/N-cadherin switch and vimentin/Snail-1/connexin(Cx)43 up-regulation in A549 populations. It was followed by enhancement of A549 drug-resistance. Corresponding effects of BPA were observed in prostate cancer cell populations. Concomitantly, we observed increased levels and perinuclear accumulation of estrogen-related receptor gamma (ERRγ) in BPA-treated cells, its interactions with Cx43/Snail-1, and the corresponding effects of phenol red on A549 cells. Collectively, these data identify a novel, pro-metastatic Snail-1/Cx43/ERRγ signaling pathway. Its reactivity to BPA underlies the induction of cancer cells' invasiveness in the presence of high BPA concentrations in vitro. Thus, the chronic exposition of cancer cells to extrinsic and intrinsic BPA should be considered as a potential obstacle in a cancer therapy.
Collapse
|
4
|
Pichla M, Sroka J, Pienkowska N, Piwowarczyk K, Madeja Z, Bartosz G, Sadowska-Bartosz I. Metastatic prostate cancer cells are highly sensitive to 3-bromopyruvic acid. Life Sci 2019; 227:212-223. [PMID: 30928407 DOI: 10.1016/j.lfs.2019.03.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
AIMS 3-Bromopyruvate (3-BP), an alkylating agent and a glycolytic inhibitor, is a promising anticancer agent, which can be efficient also against multidrug-resistant cancer cells. The aim of this study was to examine how 3-BP affects the survival and mobility of rat (MAT-LyLu and AT-2) and human (DU-145 and PC-3) metastatic prostate cancer cell lines. MAIN METHODS Cytotoxicity was estimated with Neutral Red. Cell mobility was analyzed by time-lapse microscopic monitoring of trajectories of individual cells at 5-min intervals for 6h. ATP was estimated with luciferin/luciferase and glutathione (GSH) with o-phthalaldehyde. Actin cytoskeleton was visualized with phalloidin conjugated with Atto-488. KEY FINDINGS All metastatic prostate cell lines studied were very sensitive to 3-BP (IC50 of 4-26μM). 3-Bromopyruvate drastically reduced cell movement even at concentrations of 5-10μM after 1h treatment. This compound depleted also cellular ATP and GSH, and disrupted actin cytoskeleton. SIGNIFICANCE The data obtained suggest that 3-BP can potentially be useful for treatment of metastatic prostate cancer and, especially, be efficient in limiting metastasis.
Collapse
Affiliation(s)
- Monika Pichla
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Jolanta Sroka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Cracow, Poland
| | - Natalia Pienkowska
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Cracow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Cracow, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska Street 141/143, 90-236 Łódź, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland.
| |
Collapse
|
5
|
Pudełek M, Catapano J, Kochanowski P, Mrowiec K, Janik-Olchawa N, Czyż J, Ryszawy D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 2019; 134:172-181. [PMID: 30825580 DOI: 10.1016/j.fitote.2019.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/11/2023]
Abstract
Thuja occidentalis L. is indigenous for Northern America and commonly cultivated in Europe. Raw materials obtained from this tree are widely applied in the ethnomedicine and phytotherapy of numerous ailments, incl. scurvy, cystitis, rheumatism and cancer. Despite wide medicinal applications of Thuja occidentalis, still little is known on its therapeutic potential in tumor treatment. α-thujone is the main component of Thuja occidentalis essential oil, which has been suggested to possess anti-tumor activities. This monoterpene easily penetrates the blood-brain barrier. Therefore, we examined its effects on the malignancy of glioblastoma multiforme (GBM) cells, with the special emphasis on the mechanisms of its effect on cell viability and invasiveness. α-thujone exerted the attenuating effect on the viability and proliferation of GBM cells when administered at the concentrations between 100 and 500 μg/ml (660 μM - 3.2 mM). This effect was correlated with the induction of apoptosis in GBM cell populations and with considerable inhibition of GBM cells motility. Mechanistic analyses demonstrated the induction of oxidative stress and autophagy in α-thujone-treated tumor cells, whereas normal astrocytes displayed considerably lower sensitivity to α-thujone. Our observations demonstrate that α-thujone exerts pro-apoptotic and anti-invasive effects on GBM cells. They confirm the potential of α-thujone for the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Maciej Pudełek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jessica Catapano
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paweł Kochanowski
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Krzysztof Mrowiec
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Natalia Janik-Olchawa
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
6
|
Boucher J, Monvoisin A, Vix J, Mesnil M, Thuringer D, Debiais F, Cronier L. Connexins, important players in the dissemination of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:202-215. [PMID: 28693897 DOI: 10.1016/j.bbamem.2017.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022]
Abstract
Over the past 50years, increasing experimental evidences have established that connexins (Cxs) and gap junctional intercellular communication (GJIC) ensure an important role in both the onset and development of cancerous processes. In the present review, we focus on the impact of Cxs and GJIC during the development of prostate cancer (PCa), from the primary growth mainly localized in acinar glands and ducts to the distant metastasis mainly concentrated in bone. As observed in several other types of solid tumours, Cxs and especially Cx43 exhibit an ambivalent role with a tumour suppressor effect in the early stages and, conversely, a rather pro-tumoural profile for most of invasion and dissemination steps to secondary sites. We report here the current knowledge on the function of Cxs during PCa cells migration, cytoskeletal dynamics, proteinases activities and the cross talk with the surrounding stromal cells in the microenvironment of the tumour and the bones. In addition, we discuss the role of Cxs in the bone tropism even if the prostate model is rarely used to study the complete sequence of cancer dissemination compared to breast cancer or melanoma. Even if not yet fully understood, these recent findings on Cxs provide new insights into their molecular mechanisms associated with progression and bone targeted behaviour of PCa. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Jonathan Boucher
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Arnaud Monvoisin
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Justine Vix
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Marc Mesnil
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | | | - Françoise Debiais
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Laurent Cronier
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France.
| |
Collapse
|
7
|
Korohoda W, Hapek A, Pietrzak M, Ryszawy D, Madeja Z. 9-AAA inhibits growth and induces apoptosis in human melanoma A375 and rat prostate adenocarcinoma AT-2 and Mat-LyLu cell lines but does not affect the growth and viability of normal fibroblasts. Oncol Lett 2016; 12:4125-4132. [PMID: 27895781 DOI: 10.3892/ol.2016.5201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 06/08/2016] [Indexed: 11/05/2022] Open
Abstract
The present study found that, similarly to 5-fluorouracil, low concentrations (1-10 µM) of 9-aminoacridine (9-AAA) inhibited the growth of the two rat prostate cancer AT-2 and Mat-LyLu cell lines and the human melanoma A375 cell line. However, at the same concentrations, 9-AAA had no effect on the growth and apoptosis of normal human skin fibroblasts (HSFs). The differences between the cellular responses of the AT-2 and Mat-LyLu cell lines, which differ in malignancy, were found to be relatively small compared with the differences between normal HSFs and the cancer cell lines. Visible effects on the cell growth and survival of tumor cell lines were observed after 24-48 h of treatment with 9-AAA, and increased over time. The inhibition of cancer cell growth was found to be due to the gradually increasing number of cells dying by apoptosis, which was observed using two methods, direct counting and FlowSight analysis. Simultaneously, cell motile activity decreased to the same degree in cancer and normal cells within the first 8 h of incubation in the presence of 9-AAA. The results presented in the current study suggest that short-lasting tests for potential anticancer substances can be insufficient; which may result in cell type-dependent differences in the responses of cells to tested compounds that act with a delay being overlooked. The observed differences in responses between normal human fibroblasts and cancer cells to 9-AAA show the requirement for additional studies to be performed simultaneously on differently reacting cancer and normal cells, to determine the molecular mechanisms responsible for these differences.
Collapse
Affiliation(s)
- Włodzimierz Korohoda
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Anna Hapek
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Monika Pietrzak
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|