1
|
Nagasue K, Kida R, Shigaki R, Nitanai K, Yagita A, Yanada H, Umekage Y, Mori C, Minami Y, Funayama T, Yamamoto M, Tanino M, Yoshida R, Sasaki T. Treatment of lung adenocarcinoma with chemotherapy helps mitigate chronic myeloid leukaemia progression: A case report. Oncol Lett 2025; 29:31. [PMID: 39512510 PMCID: PMC11542147 DOI: 10.3892/ol.2024.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/11/2024] [Indexed: 11/15/2024] Open
Abstract
Treatment outcomes for inoperable advanced non-small cell lung cancer have improved in recent years. However, information on coexisting haematological tumours is lacking. The present patient was a 65-year-old woman with stage IVA lung adenocarcinoma. The patient was administered a combination of platinum therapy and immune checkpoint inhibitors. The patient was subsequently diagnosed with chronic myeloid leukaemia (CML) following leukocytosis. Carboplatin and pemetrexed combination therapy resulted in shrinkage of lung cancer. Improvements in peripheral blood leukocyte counts and bone marrow findings were observed. These results suggested that the treatment of lung cancer may control the course of CML.
Collapse
Affiliation(s)
- Kazunori Nagasue
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Ryotaro Kida
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Ryota Shigaki
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Kiichi Nitanai
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Akari Yagita
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Hiraku Yanada
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Institute of Biomedical Research, Medical Corporation Keiyukai, Yoshida Hospital, Asahikawa, Hokkaido 070-0054, Japan
| | - Yasuhiro Umekage
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Chie Mori
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Yoshinori Minami
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Takuya Funayama
- Department of Internal Medicine, Division of Hematology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Masayo Yamamoto
- Department of Internal Medicine, Division of Hematology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Mishie Tanino
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Hokkaido 078-8510, Japan
| | - Ryohei Yoshida
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Institute of Biomedical Research, Medical Corporation Keiyukai, Yoshida Hospital, Asahikawa, Hokkaido 070-0054, Japan
| | - Takaaki Sasaki
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
2
|
Kaewlert W, Sakonsinsiri C, Lert-Itthiporn W, Mahalapbutr P, Ali S, Rungrotmongkol T, Jusakul A, Armartmuntree N, Pairojkul C, Feng G, Ma N, Pinlaor S, Murata M, Thanan R. Buparlisib and ponatinib inhibit aggressiveness of cholangiocarcinoma cells via suppression of IRS1-related pathway by targeting oxidative stress resistance. Biomed Pharmacother 2024; 180:117569. [PMID: 39418964 DOI: 10.1016/j.biopha.2024.117569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an oxidative stress-driven liver cancer with bile duct epithelial cell phenotypes and currently lacks effective treatments, making targeted drug therapy urgently needed. Oxidative stress plays a critical role in CCA carcinogenesis, involving cells with oxidative stress resistance via upregulation of the PI3K and MEKK3 signaling pathways. In this study, we investigated the antineoplastic efficacy of a PI3K inhibitor (buparlisib) and a multi-tyrosine kinase inhibitor (ponatinib) on CCA. The cytotoxicity of the drug combination was studied in vitro using CCA cell lines and in vivo using CCA xenograft models. It was found that the drug combination suppressed growth, colony formation, and migration abilities of CCA cells and induced oxidative damage, cell cycle arrest, and autophagy by suppressing MEKK3 and YAP1 through inhibition of insulin receptor substrate 1 (IRS1) signaling. Moreover, the drugs would potentially bind to the IRS1 protein, significanly decreasing IRS1 phosphorylation. Additionally, the drug combination significantly diminished the expression of YAP1, the cell proliferation marker and an antioxidant regulator, and increased oxidative stress-responsive markers in the xenograft model. In conclusion, targeting oxidative stress resistance with combined buparlisib and ponatinib suppressed tumor growth and migration by repressing IRS1-related pathways and ultimately inducing oxidative damage, suggesting the potential for targeted therapy and clinical trials in CCA patients over the use of a single drug.
Collapse
Affiliation(s)
- Waleeporn Kaewlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduated School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apinya Jusakul
- The Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napat Armartmuntree
- Department of Medical Science, Amnatcharoen Campus, Mahidol University, Amnat Charoen 37000, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Guofei Feng
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan.
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Yu R, Ai N, Huang C, Wang D, Bian C, Ge W, Chong CM. Aspirin reduces Ponatinib-induced cardiovascular toxic phenotypes and death in zebrafish. Biomed Pharmacother 2024; 180:117503. [PMID: 39357328 DOI: 10.1016/j.biopha.2024.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Ponatinib (Iclusig) is an oral tyrosine kinase BCR-ABL inhibitor for treating patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML) who are resistant to the therapies with other tyrosine kinase inhibitors. However, adverse cardiovascular events caused by Ponatinib are a serious issue that affects patients' survival rates. Thus, it is necessary to search for candidate drugs to reduce the cardiovascular toxicity of Ponatinib. PURPOSE To investigate the effects of Aspirin on Ponatinib-induced cardiovascular toxicity in zebrafish. METHODS AB strain of wild type zebrafish (Danio rerio), Tg (cmlc2: GFP) transgenic zebrafish, and Tg (gata1: dsRed) transgenic zebrafish were used as in vivo models to assess survival, blood flow, cardiac morphology, and function. Thrombus formation was detected using O-dianisidine staining. The transcriptome of zebrafish larvae treated with Ponatinib was assessed using RNA sequencing. RESULTS Ponatinib not only reduced survival rate but also caused cardiovascular toxic events such as pericardial edema, abnormal heart structure, low heart rate, and thrombosis. In addition, whole-body transcriptome analysis showed that Ponatinib up-regulated the expression of cyclooxygenase-1 (COX-1). Compared with other antithrombotic drugs, a COX-1 inhibitor Aspirin more effectively reduced ponatinib-induced cardiovascular toxicity events and improved the survival rate of zebrafish larvae. CONCLUSION Our findings suggest that Aspirin exhibits the potential to reduce Ponatinib-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Ruiqi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, SAR 999078, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| |
Collapse
|
4
|
Mahapatra S, Kar P. Computational biophysical characterization of the effect of gatekeeper mutations on the binding of ponatinib to the FGFR kinase. Arch Biochem Biophys 2024; 758:110070. [PMID: 38909834 DOI: 10.1016/j.abb.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fibroblast Growth Factor Receptor (FGFR) is connected to numerous downstream signalling cascades regulating cellular behavior. Any dysregulation leads to a plethora of illnesses, including cancer. Therapeutics are available, but drug resistance driven by gatekeeper mutation impedes the treatment. Ponatinib is an FDA-approved drug against BCR-ABL kinase and has shown effective results against FGFR-mediated carcinogenesis. Herein, we undertake molecular dynamics simulation-based analysis on ponatinib against all the FGFR isoforms having Val to Met gatekeeper mutations. The results suggest that ponatinib is a potent and selective inhibitor for FGFR1, FGFR2, and FGFR4 gatekeeper mutations. The extensive electrostatic and van der Waals interaction network accounts for its high potency. The FGFR3_VM mutation has shown resistance towards ponatinib, which is supported by their lesser binding affinity than wild-type complexes. The disengaged molecular brake and engaged hydrophobic spine were believed to be the driving factors for weak protein-ligand interaction. Taken together, the inhibitory and structural characteristics exhibited by ponatinib may aid in thwarting resistance based on Val-to-Met gatekeeper mutations at an earlier stage of treatment and advance the design and development of other inhibitors targeted at FGFRs harboring gatekeeper mutations.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
5
|
El-Gamil DS, Zaky MY, Maximous PM, Sharaky M, El-Dessouki AM, Riad NM, Shaaban S, Abdel-Halim M, Al-Karmalawy AA. Exploring chromone-2-carboxamide derivatives for triple-negative breast cancer targeting EGFR, FGFR3, and VEGF pathways: Design, synthesis, and preclinical insights. Drug Dev Res 2024; 85:e22228. [PMID: 38952003 DOI: 10.1002/ddr.22228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 μM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.
Collapse
Affiliation(s)
- Dalia S El-Gamil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed Y Zaky
- Zoology Department, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Patrick M Maximous
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Noura M Riad
- Department of Chemistry, School of Life and Medical Sciences, New Administrative Capital, University of Hertfordshire hosted by Global Academic Foundation, Cairo, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
6
|
Xu M, Li W, He J, Wang Y, Lv J, He W, Chen L, Zhi H. DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm. Int J Mol Sci 2024; 25:5267. [PMID: 38791306 PMCID: PMC11121335 DOI: 10.3390/ijms25105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
Collapse
Affiliation(s)
- Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150000, China;
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
7
|
Ahmed FF, Das AD, Sumi MJ, Islam MZ, Rahman MS, Rashid MH, Alyami SA, Alotaibi N, Azad AKM, Moni MA. Identification of genetic biomarkers, drug targets and agents for respiratory diseases utilising integrated bioinformatics approaches. Sci Rep 2023; 13:19072. [PMID: 37925496 PMCID: PMC10625598 DOI: 10.1038/s41598-023-46455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Respiratory diseases (RD) are significant public health burdens and malignant diseases worldwide. However, the RD-related biological information and interconnection still need to be better understood. Thus, this study aims to detect common differential genes and potential hub genes (HubGs), emphasizing their actions, signaling pathways, regulatory biomarkers for diagnosing RD and candidate drugs for treating RD. In this paper we used integrated bioinformatics approaches (such as, gene ontology (GO) and KEGG pathway enrichment analysis, molecular docking, molecular dynamic simulation and network-based molecular interaction analysis). We discovered 73 common DEGs (CDEGs) and ten HubGs (ATAD2B, PPP1CB, FOXO1, AKT3, BCR, PDE4D, ITGB1, PCBP2, CD44 and SMARCA2). Several significant functions and signaling pathways were strongly related to RD. We recognized six transcription factor (TF) proteins (FOXC1, GATA2, FOXL1, YY1, POU2F2 and HINFP) and five microRNAs (hsa-mir-218-5p, hsa-mir-335-5p, hsa-mir-16-5p, hsa-mir-106b-5p and hsa-mir-15b-5p) as the important transcription and post-transcription regulators of RD. Ten HubGs and six major TF proteins were considered drug-specific receptors. Their binding energy analysis study was carried out with the 63 drug agents detected from network analysis. Finally, the five complexes (the PDE4D-benzo[a]pyrene, SMARCA2-benzo[a]pyrene, HINFP-benzo[a]pyrene, CD44-ketotifen and ATAD2B-ponatinib) were selected for RD based on their strong binding affinity scores and stable performance as the most probable repurposable protein-drug complexes. We believe our findings will give readers, wet-lab scientists, and pharmaceuticals a thorough grasp of the biology behind RD.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Arnob Dip Das
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mst Joynab Sumi
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Zohurul Islam
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- High Performance Computing (HPC) Laboratory, Department of Mathematics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Harun Rashid
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - Naif Alotaibi
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
8
|
Liu Y, Zhang X, Zhang P, He T, Zhang W, Ma D, Li P, Chen J. A high-throughput Gaussia luciferase reporter assay for screening potential gasdermin E activators against pancreatic cancer. Acta Pharm Sin B 2023; 13:4253-4272. [PMID: 37799380 PMCID: PMC10548051 DOI: 10.1016/j.apsb.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 10/07/2023] Open
Abstract
It is discovered that activated caspase-3 tends to induce apoptosis in gasdermin E (GSDME)-deficient cells, but pyroptosis in GSDME-sufficient cells. The high GSDME expression and apoptosis resistance of pancreatic ductal adenocarcinoma (PDAC) cells shed light on another attractive strategy for PDAC treatment by promoting pyroptosis. Here we report a hGLuc-hGSDME-PCA system for high-throughput screening of potential GSDME activators against PDAC. This screening system neatly quantifies the oligomerization of GSDME-N to characterize whether pyroptosis occurs under the stimulation of chemotherapy drugs. Based on this system, ponatinib and perifosine are screened out from the FDA-approved anti-cancer drug library containing 106 compounds. Concretely, they exhibit the most potent luminescent activity and cause drastic pyroptosis in PDAC cells. Further, we demonstrate that perifosine suppresses pancreatic cancer by promoting pyroptosis via caspase-3/GSDME pathway both in vitro and in vivo. Collectively, this study reveals the great significance of hGLuc-hGSDME-PCA in identifying compounds triggering GSDME-dependent pyroptosis and developing promising therapeutic agents for PDAC.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tingting He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Ghezzi C, Perez S, Ryan K, Wong A, Chen BY, Damoiseaux R, Clark PM. Early Reduction of Glucose Consumption Is a Biomarker of Kinase Inhibitor Efficacy Which Can Be Reversed with GLUT1 Overexpression in Lung Cancer Cells. Mol Imaging Biol 2023; 25:541-553. [PMID: 36284040 PMCID: PMC10732700 DOI: 10.1007/s11307-022-01782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Small molecule inhibitors that target oncogenic driver kinases are an important class of therapies for non-small cell lung cancer (NSCLC) and other malignancies. However, these therapies are not without their challenges. Each inhibitor works on only a subset of patients, the pharmacokinetics of these inhibitors is variable, and these inhibitors are associated with significant side effects. Many of these inhibitors lack non-invasive biomarkers to confirm pharmacodynamic efficacy, and our understanding of how these inhibitors block cancer cell growth remains incomplete. Limited clinical studies suggest that early (< 2 weeks after start of therapy) changes in tumor glucose consumption, measured by [18F]FDG PET imaging, can predict therapeutic efficacy, but the scope of this strategy and functional relevance of this inhibition of glucose consumption remains understudied. Here we demonstrate that early inhibition of glucose consumption as can be measured clinically with [18F]FDG PET is a consistent phenotype of efficacious targeted kinase inhibitors and is necessary for the subsequent inhibition of growth across models of NSCLC. METHODS We tested nine NSCLC cell lines (A549, H1129, H1734, H1993, H2228, H3122, H460, HCC827, and PC9 cells) and ten targeted therapies (afatinib, buparlisib, ceritinib, cabozantinib, crizotinib, dovitinib, erlotinib, ponatinib, trametinib, and vemurafenib) across concentrations ranging from 1.6 nM to 5 µM to evaluate whether these inhibitors block glucose consumption at 24-h post-drug treatment and cell growth at 72-h post-drug treatment. We overexpressed the facilitative glucose transporter SLC2A1 (GLUT1) to test the functional connection between blocked glucose consumption and cell growth after treatment with a kinase inhibitor. A subset of these inhibitors and cell lines were studied in vivo. RESULTS Across the nine NSCLC cell lines, ten targeted therapies, and a range of inhibitor concentrations, whether a kinase inhibitor blocked glucose consumption at 24-h post-drug treatment strongly correlated with whether that inhibitor blocked cell growth at 72-h post-drug treatment in cell culture. These results were confirmed in vivo with [18F]FDG PET imaging. GLUT1 overexpression blocked the kinase inhibitors from limiting glucose consumption and cell growth. CONCLUSIONS Our results demonstrate that the early inhibition of lung cancer glucose consumption in response to a kinase inhibitor is a strong biomarker of and is often required for the subsequent inhibition of cell growth. Early inhibition of glucose consumption may provide complementary information to other biomarkers in determining whether a drug will effectively limit tumor growth.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stefani Perez
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaitlin Ryan
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alicia Wong
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bao Ying Chen
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter M Clark
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095-1770, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Barbar J, Armach M, Hodroj MH, Assi S, El Nakib C, Chamseddine N, Assi HI. Emerging genetic biomarkers in lung adenocarcinoma. SAGE Open Med 2022; 10:20503121221132352. [PMID: 36277445 PMCID: PMC9583216 DOI: 10.1177/20503121221132352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Comprehensive genomic profiling is a next-generation sequencing approach used to
detect several known and emerging genomic alterations. Many genomic variants
detected by comprehensive genomic profiling have become recognized as
significant cancer biomarkers, leading to the development of major clinical
trials. Lung adenocarcinoma has become one of the most targeted cancers for
genomic profiling with a series of actionable mutations such as EGFR, KRAS,
HER2, BRAF, FGFR, MET, ALK, and many others. The importance of these mutations
lies in establishing targeted therapies that significantly change the outcome in
lung adenocarcinoma besides the prognostic value of some mutations. This review
sheds light on the development of the comprehensive genomic profiling field,
mainly lung adenocarcinoma, and discusses the role of a group of mutations in
this disease.
Collapse
Affiliation(s)
- Jawad Barbar
- Department of Internal Medicine,
Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American
University of Beirut Medical Center, Beirut, Lebanon
| | - Maria Armach
- Department of Internal Medicine,
Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American
University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad Hassan Hodroj
- Department of Internal Medicine,
Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American
University of Beirut Medical Center, Beirut, Lebanon
| | - Sahar Assi
- Department of Internal Medicine,
American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine,
Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American
University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Chamseddine
- Department of Internal Medicine,
Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American
University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine,
Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American
University of Beirut Medical Center, Beirut, Lebanon,Hazem I Assi, Department of Internal
Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute,
American University of Beirut Medical Center, P.O. Box: 11-0236, Riad El Solh,
Beirut 1107 2020, Lebanon.
| |
Collapse
|
11
|
Moes-Sosnowska J, Skupinska M, Lechowicz U, Szczepulska-Wojcik E, Skronska P, Rozy A, Stepniewska A, Langfort R, Rudzinski P, Orlowski T, Popiel D, Stanczak A, Wieczorek M, Chorostowska-Wynimko J. FGFR1-4 RNA-Based Gene Alteration and Expression Analysis in Squamous Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms231810506. [PMID: 36142417 PMCID: PMC9505002 DOI: 10.3390/ijms231810506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
While fibroblast growth factor receptors (FGFRs) are involved in several biological pathways and FGFR inhibitors may be useful in the treatment of squamous non-small cell lung cancer (Sq-NSCLC), FGFR aberrations are not well characterized in Sq-NSCLC. We comprehensively evaluated FGFR expression, fusions, and variants in 40 fresh-frozen primary Sq-NSCLC (stage IA3−IV) samples and tumor-adjacent normal tissues using real-time PCR and next-generation sequencing (NGS). Protein expression of FGFR1−3 and amplification of FGFR1 were also analyzed. FGFR1 and FGFR4 median gene expression was significantly (p < 0.001) decreased in tumors compared with normal tissue. Increased FGFR3 expression enhanced the recurrence risk (hazard ratio 4.72, p = 0.029), while high FGFR4 expression was associated with lymph node metastasis (p = 0.036). Enhanced FGFR1 gene expression was correlated with FGFR1 protein overexpression (r = 0.75, p = 0.0003), but not with FGFR1 amplification. NGS revealed known pathogenic FGFR2,3 variants, an FGFR3::TACC3 fusion, and a novel TACC1::FGFR1 fusion together with FGFR1,2 variants of uncertain significance not previously reported in Sq-NSCLC. These findings expand our knowledge of the Sq-NSCLC molecular background and show that combining different methods increases the rate of FGFR aberrations detection, which may improve patient selection for FGFRi treatment.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Microtubule-Associated Proteins
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 4/genetics
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Monika Skupinska
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Ewa Szczepulska-Wojcik
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Paulina Skronska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Aneta Stepniewska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Renata Langfort
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Piotr Rudzinski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Tadeusz Orlowski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
- Correspondence: or
| |
Collapse
|
12
|
Moes-Sosnowska J, Chorostowska-Wynimko J. Fibroblast Growth Factor Receptor 1-4 Genetic Aberrations as Clinically Relevant Biomarkers in Squamous Cell Lung Cancer. Front Oncol 2022; 12:780650. [PMID: 35402233 PMCID: PMC8991910 DOI: 10.3389/fonc.2022.780650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors (FGFRis) are a potential therapeutic option for squamous non-small cell lung cancer (Sq-NSCLC). Because appropriate patient selection is needed for targeted therapy, molecular profiling is key to discovering candidate biomarker(s). Multiple FGFR aberrations are present in Sq-NSCLC tumors-alterations (mutations and fusions), amplification and mRNA/protein overexpression-but their predictive potential is unclear. Although FGFR1 amplification reliability was unsatisfactory, FGFR mRNA overexpression, mutations, and fusions are promising. However, currently their discriminatory power is insufficient, and the available clinical data are from small groups of Sq-NSCLC patients. Here, we focus on FGFR aberrations as predictive biomarkers for FGFR-targeting agents in Sq-NSCLC. Known and suggested molecular determinants of FGFRi resistance are also discussed.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
13
|
Yang L, Zhu W, Yao Y, Xie M, Lv S, Cheng J, Cai G, Zhao H, Zhao C, Wang L, Huang X. Hypocrellin A exerts antitumor effects by inhibiting the FGFR1 signaling pathway in non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 97:153924. [PMID: 35091318 DOI: 10.1016/j.phymed.2022.153924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer, which is the deadliest form of cancer worldwide. Recent studies have shown that genes in the fibroblast growth factor (FGF) family are highly mutated in lung cancer, and fibroblast growth factor receptor 1 (FGFR1) has been found to be involved in various cancers, including lung cancer, suggesting that FGFR1 is a valid therapeutic target. Hypocrellin A (HA), a molecule with multiple biological activities, has been shown to influence cancer growth, but the specific mechanisms of its antitumor action have not been fully explored. METHODS MTT, colony formation, wound healing, transwell cell invasion and EdU cell proliferation assays were performed upon HA treatment of three NSCLC cell lines, H460, PC-9 and H1975. Hoechst 33258 staining and caspase 3 activity assays were carried out to investigate the impact of HA on apoptosis in these cells. Molecular docking and surface plasmon resonance were conducted to assess binding of HA to FGFR1. A mouse tumor model was used to detect the NSCLC-inhibitory ability of HA in vivo. RESULTS Through in vitro assays, HA was shown to negatively impact cell viability, migration, invasion and promote apoptosis in three human NSCLC cell line models. HA was shown to bind to FGFR1 and to inhibit its autophosphorylation and the phosphorylation of downstream signaling molecules. Inhibition of tumor growth was also demonstrated in a mouse xenograft tumor model, and no toxic effects of HA treatment were observed. CONCLUSIONS HA inhibits the activity of the FGFR1 and STAT3 signaling pathways. HA thus represents a potential new FGFR1-targeted treatment for NSCLC.
Collapse
Affiliation(s)
- Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenjing Zhu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yulei Yao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengyao Xie
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuoshuo Lv
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiayun Cheng
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Gexiang Cai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
14
|
Rajpoot S, Srivastava G, Siddiqi MI, Saqib U, Parihar SP, Hirani N, Baig MS. Identification of novel inhibitors targeting TIRAP interactions with BTK and PKCδ in inflammation through an in silico approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:141-166. [PMID: 35174746 DOI: 10.1080/1062936x.2022.2035817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Advanced computational tools focusing on protein-protein interaction (PPI) based drug development is a powerful platform to accelerate the therapeutic development of small lead molecules and repurposed drugs. Toll/interleukin-1 receptor (TIR) domain-containing adapter protein (TIRAP) and its interactions with other proteins in macrophages signalling are crucial components of severe or persistent inflammation. TIRAP activation through Bruton's tyrosine kinase (BTK) and Protein Kinase C delta (PKCδ) is essential for downstream inflammatory signalling. We created homology-based structural models of BTK and PKCδ in MODELLER 9.24. TIRAP interactions with BTK and PKCδ in its non-phosphorylated and phosphorylated states were determined by multiple docking tools including HADDOCK 2.4, pyDockWEB and ClusPro 2.0. Food and Drug Administration (FDA)-approved drugs were virtually screened through Discovery Studio LibDock and Autodock Vina tools to target the common TIR domain residues of TIRAP, which interact with both BTK and PKC at the identified interfacial sites of the complexes. Four FDA-approved drugs were identified and found to have stable interactions over a range of 100 ns MD simulation timescales. These drugs block the interactions of both kinases with TIRAP in silico. Hence, these drugs have the potential to dampen downstream inflammatory signalling and inflammation-mediated disease.
Collapse
Affiliation(s)
- S Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - G Srivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow, India
| | - M I Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow, India
| | - U Saqib
- Department of Chemistry, Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - S P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - N Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - M S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| |
Collapse
|
15
|
The ponatinib/gossypol novel combination provides enhanced anticancer activity against murine solid Ehrlich carcinoma via triggering apoptosis and inhibiting proliferation/angiogenesis. Toxicol Appl Pharmacol 2021; 432:115767. [PMID: 34699866 DOI: 10.1016/j.taap.2021.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022]
Abstract
The search for new antitumor agents or combinations that are more effective and, hopefully, provide fewer health hazards is ongoing. Therefore, this study investigated the efficacy of a novel combination of ponatinib, a multi-targeted tyrosine kinase inhibitor, and the natural phytochemical gossypol against murine solid Ehrlich carcinoma. Six groups of ten mice each received vehicle (I), ponatinib in doses of 10 and 15 mg/kg (II, III) respectively, gossypol in a dose of 4 mg/kg (IV), and ponatinib (10 or 15 mg/kg) in combination with gossypol (4 mg/kg; V, VI). All treatments started on the 12th post-Ehrlich ascites carcinoma (EAC) implantation day and were administered intraperitoneally in daily doses for 3 weeks. Treatment of EAC-bearing mice with ponatinib/gossypol combination improved anticancer efficacy over either drug alone, as demonstrated by greater decreases in tumor weight and volume, and ponatinib (10 mg/kg)/gossypol combination was more efficient than ponatinib (15 mg/kg). Mechanistically, the ponatinib/gossypol combination significantly increased apoptotic markers p53, Bax, and caspase-9 while decreasing anti-apoptotic marker Bcl-2. Furthermore, it greatly decreased proliferative and angiogenic markers, FGFR4 and VEGF, respectively. Histopathology revealed a significant decline in neoplastic cells, the majority of which have necrotic changes and numerous apoptotic bodies, as well as a decrease in mitotic figures and tumor giant cells, indicating the capacity to suppress cancer proliferation/persistence. Overall, gossypol could be used as an adjuvant medication for ponatinib in cancer treatment, possibly leading to successful dose reductions and fewer side effects; however, further research is needed before a clinical application could be feasible.
Collapse
|
16
|
Receptor-Tyrosine Kinase Inhibitor Ponatinib Inhibits Meningioma Growth In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13235898. [PMID: 34885009 PMCID: PMC8657092 DOI: 10.3390/cancers13235898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
To date, there is no standard-of-care systemic therapy for the treatment of aggressive meningiomas. Receptor tyrosine kinases (RTK) are frequently expressed in aggressive meningiomas and are associated with poor survival. Ponatinib is a FDA- and EMA-approved RTK inhibitor and its efficacy in meningioma has not been studied so far. Therefore, we investigated ponatinib as a potential drug candidate against meningioma. Cell viability and cell proliferation of ponatinib-treated meningioma cells were assessed using crystal violet assay, manual counting and BrdU assay. Treated meningioma cell lines were subjected to flow cytometry to evaluate the effects on cell cycle and apoptosis. Meningioma-bearing mice were treated with ponatinib to examine antitumor effects in vivo. qPCR was performed to assess the mRNA levels of tyrosine kinase receptors after ponatinib treatment. Full-length cDNA sequencing was carried out to assess differential gene expression. IC50 values of ponatinib were between 171.2 and 341.9 nM in three meningioma cell lines. Ponatinib induced G0/G1 cell cycle arrest and subsequently led to an accumulation of cells in the subG1-phase. A significant induction of apoptosis was observed in vitro. In vivo, ponatinib inhibited meningioma growth by 72.6%. Mechanistically, this was associated with downregulation of PDGFRA/B and FLT3 mRNA levels, and mitochondrial dysfunction. Taken together, ponatinib is a promising candidate for targeted therapy in the treatment of aggressive meningioma.
Collapse
|
17
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
18
|
Pacini L, Jenks AD, Lima NC, Huang PH. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells 2021; 10:1154. [PMID: 34068816 PMCID: PMC8151052 DOI: 10.3390/cells10051154] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Genetic alterations, such as amplifications, mutations and translocations in the fibroblast growth factor receptor (FGFR) family have been found in non-small cell lung cancer (NSCLC) where they have a role in cancer initiation and progression. FGFR aberrations have also been identified as key compensatory bypass mechanisms of resistance to targeted therapy against mutant epidermal growth factor receptor (EGFR) and mutant Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) in lung cancer. Targeting FGFR is, therefore, of clinical relevance for this cancer type, and several selective and nonselective FGFR inhibitors have been developed in recent years. Despite promising preclinical data, clinical trials have largely shown low efficacy of these agents in lung cancer patients with FGFR alterations. Preclinical studies have highlighted the emergence of multiple intrinsic and acquired resistance mechanisms to FGFR tyrosine kinase inhibitors, which include on-target FGFR gatekeeper mutations and activation of bypass signalling pathways and alternative receptor tyrosine kinases. Here, we review the landscape of FGFR aberrations in lung cancer and the array of targeted therapies under clinical evaluation. We also discuss the current understanding of the mechanisms of resistance to FGFR-targeting compounds and therapeutic strategies to circumvent resistance. Finally, we highlight our perspectives on the development of new biomarkers for stratification and prediction of FGFR inhibitor response to enable personalisation of treatment in patients with lung cancer.
Collapse
Affiliation(s)
| | | | | | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (L.P.); (A.D.J.); (N.C.L.)
| |
Collapse
|
19
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
20
|
Xu D, Zhang J, Xu H, Zhang Y, Chen W, Gao R, Dehmer M. Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data. BMC Genomics 2020; 21:650. [PMID: 32962626 PMCID: PMC7510277 DOI: 10.1186/s12864-020-07038-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background The small number of samples and the curse of dimensionality hamper the better application of deep learning techniques for disease classification. Additionally, the performance of clustering-based feature selection algorithms is still far from being satisfactory due to their limitation in using unsupervised learning methods. To enhance interpretability and overcome this problem, we developed a novel feature selection algorithm. In the meantime, complex genomic data brought great challenges for the identification of biomarkers and therapeutic targets. The current some feature selection methods have the problem of low sensitivity and specificity in this field. Results In this article, we designed a multi-scale clustering-based feature selection algorithm named MCBFS which simultaneously performs feature selection and model learning for genomic data analysis. The experimental results demonstrated that MCBFS is robust and effective by comparing it with seven benchmark and six state-of-the-art supervised methods on eight data sets. The visualization results and the statistical test showed that MCBFS can capture the informative genes and improve the interpretability and visualization of tumor gene expression and single-cell sequencing data. Additionally, we developed a general framework named McbfsNW using gene expression data and protein interaction data to identify robust biomarkers and therapeutic targets for diagnosis and therapy of diseases. The framework incorporates the MCBFS algorithm, network recognition ensemble algorithm and feature selection wrapper. McbfsNW has been applied to the lung adenocarcinoma (LUAD) data sets. The preliminary results demonstrated that higher prediction results can be attained by identified biomarkers on the independent LUAD data set, and we also structured a drug-target network which may be good for LUAD therapy. Conclusions The proposed novel feature selection method is robust and effective for gene selection, classification, and visualization. The framework McbfsNW is practical and helpful for the identification of biomarkers and targets on genomic data. It is believed that the same methods and principles are extensible and applicable to other different kinds of data sets.
Collapse
Affiliation(s)
- Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Jialin Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China.
| | - Wei Chen
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Matthias Dehmer
- Institute for Intelligent Production, Faculty for Management, University of Applied Sciences Upper Austria, Steyr Campus, Steyr, Austria.,College of Computer and Control Engineering, Nankai University, Tianjin, 300071, China.,Department of Mechatronics and Biomedical Computer Science, UMIT, Hall in Tyrol, Austria
| |
Collapse
|
21
|
Singh AP, Umbarkar P, Tousif S, Lal H. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int J Cardiol 2020; 316:214-221. [PMID: 32470534 DOI: 10.1016/j.ijcard.2020.05.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
Abstract
The advent of tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. However, cardiotoxicity associated with these targeted therapies puts the cancer survivors at higher risk. Ponatinib is a third-generation TKI for the treatment of CML patients having gatekeeper mutation T315I, which is resistant to the first and second generation of TKIs, namely, imatinib, nilotinib, dasatinib, and bosutinib. Multiple unbiased screening from our lab and others have identified ponatinib as most cardiotoxic FDA approved TKI among the entire FDA approved TKI family (total 50+). Indeed, ponatinib is the only treatment option for CML patients with T315I mutation. This review focusses on the cardiovascular risks and mechanism/s associated with CML TKIs with a particular focus on ponatinib cardiotoxicity. We have summarized our recent findings with transgenic zebrafish line harboring BNP luciferase activity to demonstrate the cardiotoxic potential of ponatinib. Additionally, we will review the recent discoveries reported by our and other laboratories that ponatinib primarily exerts its cardiotoxicity via an off-target effect on cardiomyocyte prosurvival signaling pathways, AKT and ERK. Finally, we will shed light on future directions for minimizing the adverse sequelae associated with CML-TKIs.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Hind Lal
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| |
Collapse
|
22
|
Singh AP, Glennon MS, Umbarkar P, Gupte M, Galindo CL, Zhang Q, Force T, Becker JR, Lal H. Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Cardiovasc Res 2020; 115:966-977. [PMID: 30629146 DOI: 10.1093/cvr/cvz006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukaemia (CML). However, cardiotoxicity of these agents remains a serious concern. The underlying mechanism of these adverse cardiac effects is largely unknown. Delineation of the underlying mechanisms of TKIs associated cardiac dysfunction could guide potential prevention strategies, rescue approaches, and future drug design. This study aimed to determine the cardiotoxic potential of approved CML TKIs, define the associated signalling mechanism and identify potential alternatives. METHODS AND RESULTS In this study, we employed a zebrafish transgenic BNP reporter line that expresses luciferase under control of the nppb promoter (nppb:F-Luciferase) to assess the cardiotoxicity of all approved CML TKIs. Our in vivo screen identified ponatinib as the most cardiotoxic agent among the approved CML TKIs. Then using a combination of zebrafish and isolated neonatal rat cardiomyocytes, we delineated the signalling mechanism of ponatinib-induced cardiotoxicity by demonstrating that ponatinib inhibits cardiac prosurvival signalling pathways AKT and extra-cellular-signal-regulated kinase (ERK), and induces cardiomyocyte apoptosis. As a proof of concept, we augmented AKT and ERK signalling by administration of Neuregulin-1β (NRG-1β), and this prevented ponatinib-induced cardiomyocyte apoptosis. We also demonstrate that ponatinib-induced cardiotoxicity is not mediated by inhibition of fibroblast growth factor signalling, a well-known target of ponatinib. Finally, our comparative profiling for the cardiotoxic potential of CML approved TKIs, identified asciminib (ABL001) as a potentially much less cardiotoxic treatment option for CML patients with the T315I mutation. CONCLUSION Herein, we used a combination of in vivo and in vitro methods to systematically screen CML TKIs for cardiotoxicity, identify novel molecular mechanisms for TKI cardiotoxicity, and identify less cardiotoxic alternatives.
Collapse
Affiliation(s)
- Anand P Singh
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Michael S Glennon
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA.,Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, 200 Lothrop, BST E1258, Pittsburgh, PA, USA
| | - Prachi Umbarkar
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Manisha Gupte
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Cristi L Galindo
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Qinkun Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Thomas Force
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| | - Jason R Becker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA.,Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, 200 Lothrop, BST E1258, Pittsburgh, PA, USA
| | - Hind Lal
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB#348A, Nashville, TN, USA
| |
Collapse
|
23
|
Larocque E, Chu EFY, Naganna N, Sintim HO. Nicotinamide-Ponatinib Analogues as Potent Anti-CML and Anti-AML Compounds. ACS OMEGA 2020; 5:2690-2698. [PMID: 32095692 PMCID: PMC7033671 DOI: 10.1021/acsomega.9b03223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Ponatinib is a multikinase inhibitor that is used to treat chronic myeloid leukemia patients harboring mutated ABL1(T315I) kinase. Due to the potent inhibition of FLT3, RET, and fibroblast growth factor receptors (FGFRs), it is also being evaluated against acute myeloid leukemia (AML), biliary, and lung cancers. The multikinase inhibition profile of ponatinib may also account for its toxicity, thus analogs with improved kinase selectivity or different kinase inhibition profiles could be better tolerated. The introduction of nitrogen into drug compounds can enhance efficacy and drug properties (a concept called "necessary nitrogen"). Here, we introduce additional nitrogen into the benzamide moiety of ponatinib to arrive at nicotinamide analogs. A nicotinamide analogue of ponatinib, HSN748, retains activity against FLT3, ABL1, RET, and PDGFRα/β but loses activity against c-Src and P38α. MNK1 and 2 are key kinases that phosphorylate eIF4E to regulate the protein translation complex. MNK also modulates mTORC1 signaling and contributes to rapamycin resistance. Inhibitors of MNK1 and 2 are being evaluated for anticancer therapy. Ponatinib is not a potent inhibitor of MNK1 or 2, but the nicotinamide analogs are potent inhibitors of MNKs. This illustrates a powerful demonstration of the necessary nitrogen concept to alter both the potency and selectivity of drugs.
Collapse
Affiliation(s)
- Elizabeth Larocque
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Elizabeth Fei Yin Chu
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Nimmashetti Naganna
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Institute
for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue
University Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47906, United States
| |
Collapse
|
24
|
Miao JL, Zhou JH, Cai JJ, Liu RJ. The association between fibroblast growth factor receptor 1 gene amplification and lung cancer: a meta-analysis. Arch Med Sci 2020; 16:16-26. [PMID: 32051701 PMCID: PMC6963147 DOI: 10.5114/aoms.2020.91284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/11/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Identifying target oncogenic alterations in lung cancer represents a major development in disease management. We examined the association of fibroblast growth factor receptor 1 (FGFR1) gene amplification with pathological characteristics and geographic region. MATERIAL AND METHODS We conducted a meta-analysis of studies published between January 2010 and October 2016. Relative risks (RR) and corresponding 95% confidence intervals (CI) were calculated regarding the rate of FGFR1 amplification in different lung cancer types and geographic region. RESULTS Twenty-three studies (5252 patients) were included. There was heterogeneity between studies. However, in subgroup analyses for squamous cell carcinoma (SCC), small cell lung cancer (SCLC), studies using the same definition of FGFR1 amplification, and those from Australia, no significant heterogeneity was detected. The prevalence of FGFR1 amplification in these studies ranged from 4.9% to 49.2% in non-small cell lung cancer (NSCLC), 5.1% to 41.5% in SCC, 0% to 14.7% in adenocarcinoma, and 0% to 7.8% in SCLC. The prevalence of FGFR1 amplification was significantly higher in SCC than in adenocarcinoma (RR = 5.2) and SCLC (RR = 4.2). The prevalence of FGFR1 amplification ranged from 5.6% to 22.2% in Europe, 4.1% to 18.2% in the United States, 7.8% to 49.2% in Asia, and 14.2% to 18.6% in Australia. The rate of FGFR1 amplification was higher in Asians than in non-Asians (RR = 1.9) in NSCLC. CONCLUSIONS These results suggest that FGFR1 amplification occurs more frequently in SCC and in Asians. FGFR1 amplification may be a potential new therapeutic target for specific patients and lung cancer subtypes.
Collapse
Affiliation(s)
- Jian-Long Miao
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Jin-Hua Zhou
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Jing-Jing Cai
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Rui-Juan Liu
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
25
|
Li X, Li Z, Wu X, Xiong Z, Yang T, Fu Z, Liu X, Tan X, Zhong F, Wan X, Wang D, Ding X, Yang R, Hou H, Li C, Liu H, Chen K, Jiang H, Zheng M. Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation. J Med Chem 2019; 63:8723-8737. [PMID: 31364850 DOI: 10.1021/acs.jmedchem.9b00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The kinome-wide virtual profiling of small molecules with high-dimensional structure-activity data is a challenging task in drug discovery. Here, we present a virtual profiling model against a panel of 391 kinases based on large-scale bioactivity data and the multitask deep neural network algorithm. The obtained model yields excellent internal prediction capability with an auROC of 0.90 and consistently outperforms conventional single-task models on external tests, especially for kinases with insufficient activity data. Moreover, more rigorous experimental validations including 1410 kinase-compound pairs showed a high-quality average auROC of 0.75 and confirmed many novel predicted "off-target" activities. Given the verified generalizability, the model was further applied to various scenarios for depicting the kinome-wide selectivity and the association with certain diseases. Overall, the computational model enables us to create a comprehensive kinome interaction network for designing novel chemical modulators or drug repositioning and is of practical value for exploring previously less studied kinases.
Collapse
Affiliation(s)
- Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhaojun Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Information Management, Dezhou University, 566 West University Road, Dezhou 253023, China
| | - Xiaolong Wu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhaoping Xiong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Tianbiao Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaohong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Xiaoqin Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Feisheng Zhong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaozhe Wan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dingyan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chunpu Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
26
|
Tan FH, Putoczki TL, Stylli SS, Luwor RB. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. Onco Targets Ther 2019; 12:635-645. [PMID: 30705592 PMCID: PMC6343508 DOI: 10.2147/ott.s189391] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human malignancies are often the result of overexpressed and constitutively active receptor and non-receptor tyrosine kinases, which ultimately lead to the mediation of key tumor-driven pathways. Several tyrosine kinases (ie, EGFR, FGFR, PDGFR, VEGFR), are aberrantly activated in most common tumors, including leukemia, glioblastoma, gastrointestinal stromal tumors, non-small-cell lung cancer, and head and neck cancers. Iclusig™ (ponatinib, previously known as AP24534) is an orally active multi-tyrosine kinase inhibitor and is currently approved by the US Food and Drug Administration for patients with chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, specifically targeting the BCR-ABL gene mutation, T315I. Due to ponatinib's unique multi-targeted characteristics, further studies have demonstrated its ability to target other important tyrosine kinases (FGFR, PDGFR, SRC, RET, KIT, and FLT1) in other human malignancies. This review focuses on the available data of ponatinib and its molecular targets for treatment in various cancers, with a discussion on the broader potential of this agent in other cancer indications.
Collapse
Affiliation(s)
- Fiona H Tan
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia, .,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Tracy L Putoczki
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia, .,Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia, .,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia,
| |
Collapse
|
27
|
Ponatinib Inhibits Multiple Signaling Pathways Involved in STAT3 Signaling and Attenuates Colorectal Tumor Growth. Cancers (Basel) 2018; 10:cancers10120526. [PMID: 30572654 PMCID: PMC6316865 DOI: 10.3390/cancers10120526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) signaling is a major driver of colorectal cancer (CRC) growth, however therapeutics, which can effectively target this pathway, have so far remained elusive. Here, we performed an extensive screen for STAT3 inhibitors among a library of 1167 FDA-approved agents, identifying Ponatinib as a lead candidate. We found that Ponatinib inhibits STAT3 activity driven by EGF/EGFR, IL-6/IL-6R and IL-11/IL-11R, three major ligand/receptor systems involved in CRC development and progression. Ponatinib was able to inhibit CRC migration and tumor growth in vivo. In addition, Ponatinib displayed a greater ability to inhibit STAT3 activity and mediated superior anti-proliferative efficacy compared to five FDA approved SRC and Janus Kinase (JAK) inhibitors. Finally, long-term exposure of CRC cells to Ponatinib, Dasatinib and Bosutinib resulted in acquired resistance to Dasatinib and Bosutinib occurring within six weeks. However, acquired resistance to Ponatinib was observed after long-term exposure of >4 months. Overall, our results identify a novel anti-STAT3 property of Ponatinib and thus, Ponatinib offers a potential therapeutic strategy for CRC.
Collapse
|
28
|
Recent Studies on Ponatinib in Cancers Other Than Chronic Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10110430. [PMID: 30423915 PMCID: PMC6267038 DOI: 10.3390/cancers10110430] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 02/08/2023] Open
Abstract
Ponatinib is a third line drug for the treatment of chronic myeloid leukemia patients, especially those that develop the gatekeeper mutation T315I, which is resistant to the first and the second line drugs imatinib, nilotinib, dasatinib and bosutinib. The compound was first identified as a pan Bcr-Abl and Src kinase inhibitor. Further studies have indicated that it is a multitargeted inhibitor that is active on FGFRs, RET, AKT, ERK1/2, KIT, MEKK2 and other kinases. For this reason, the compound has been evaluated on several cancers in which these kinases play important roles, including thyroid, breast, ovary and lung cancer, neuroblastoma, rhabdoid tumours and in myeloproliferative disorders. Ponatinib is also being tested in clinical trials to evaluate its activity in FLT3-ITD acute myelogenous leukemia, head and neck cancers, certain type of lung cancer, gastrointestinal stromal tumours and other malignancies. In this review we report the most recent preclinical and clinical studies on ponatinib in cancers other than CML, with the aim of giving a complete overview of this interesting compound.
Collapse
|
29
|
Li JJ, Yan S, Pan Y, Liu Z, Liu Y, Deng Q, Tan Q, Woodward ER, Wu N. FGFR genes mutation is an independent prognostic factor and associated with lymph node metastasis in squamous non-small cell lung cancer. Cancer Biol Ther 2018; 19:1108-1116. [PMID: 30403900 DOI: 10.1080/15384047.2018.1480294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Targeting FGFRs is one of the most promising therapeutic strategies in squamous non-small cell lung cancer (SQCC). However, different FGFR genomic aberrations can be associated with distinct biological characteristics that result in different clinical outcomes or therapeutic consequences. Currently, the full spectrum of FGFR gene aberrations and their clinical significance in SQCC have not been comprehensively studied. Here, we used Next-generation sequencing to investigate the presence of FGFR gene mutations in 143 tumors from patients with stage I, II or III SQCC and who had not been treated with chemotherapy or radiotherapy prior to surgery. FGFR gene mutations were identified in 24 cases, resulting in an overall frequency of 16.9%. Among the mutations, 7% (10/143) were somatic mutations, and 9.8% (14/143) germline mutations. FGFR mutations were significantly associated with an increased risk of lymph node metastasis. SQCC patients with a FGFR somatic mutation had shorter OS (overall survival, log rank P = 0.005) and DFS (disease-free survival,log rank P = 0.004) compared with those without an FGFR mutation. The multivariate analysis confirmed that a somatic mutation was an independent poor prognostic factor for OS (HR: 4.26, 95% CI: 1.49-12.16, P = 0.007) and DFS (HR: 3.16, 95% CI: 1.20-8.35, P = 0.020). Our data indicate that FGFR genes mutation is an independent prognostic factor and associated with lymph node metastasis in stage I to III Chinese SQCC patients.
Collapse
Affiliation(s)
- Jing Jing Li
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Shi Yan
- b Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II , Peking University Cancer Hospital & Institute , Beijing , China
| | - Yaqi Pan
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Zhen Liu
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Ying Liu
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Qiuju Deng
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Qin Tan
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Emma R Woodward
- c Manchester Centre for Genomic Medicine , Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC) , Manchester , UK
| | - Nan Wu
- b Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II , Peking University Cancer Hospital & Institute , Beijing , China
| |
Collapse
|
30
|
Peyvandipour A, Saberian N, Shafi A, Donato M, Draghici S. A novel computational approach for drug repurposing using systems biology. Bioinformatics 2018; 34:2817-2825. [PMID: 29534151 PMCID: PMC6084573 DOI: 10.1093/bioinformatics/bty133] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Motivation Identification of novel therapeutic effects for existing US Food and Drug Administration (FDA)-approved drugs, drug repurposing, is an approach aimed to dramatically shorten the drug discovery process, which is costly, slow and risky. Several computational approaches use transcriptional data to find potential repurposing candidates. The main hypothesis of such approaches is that if gene expression signature of a particular drug is opposite to the gene expression signature of a disease, that drug may have a potential therapeutic effect on the disease. However, this may not be optimal since it fails to consider the different roles of genes and their dependencies at the system level. Results We propose a systems biology approach to discover novel therapeutic roles for established drugs that addresses some of the issues in the current approaches. To do so, we use publicly available drug and disease data to build a drug-disease network by considering all interactions between drug targets and disease-related genes in the context of all known signaling pathways. This network is integrated with gene-expression measurements to identify drugs with new desired therapeutic effects based on a system-level analysis method. We compare the proposed approach with the drug repurposing approach proposed by Sirota et al. on four human diseases: idiopathic pulmonary fibrosis, non-small cell lung cancer, prostate cancer and breast cancer. We evaluate the proposed approach based on its ability to re-discover drugs that are already FDA-approved for a given disease. Availability and implementation The R package DrugDiseaseNet is under review for publication in Bioconductor and is available at https://github.com/azampvd/DrugDiseaseNet. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Adib Shafi
- Computer Science, Wayne State University, Detroit, MI, USA
| | - Michele Donato
- Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Computer Science, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Tan Q, Wang Z, Wang Q, Wang Y, Huang Z, Su N, Jin M, Kuang L, Qi H, Ni Z, Li C, Zhu Y, Jiang W, Chen H, Deng C, Du X, Xie Y, Chen L. A novel FGFR1-binding peptide exhibits anti-tumor effect on lung cancer by inhibiting proliferation and angiogenesis. Int J Biol Sci 2018; 14:1389-1398. [PMID: 30123084 PMCID: PMC6097486 DOI: 10.7150/ijbs.24739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
It has been reported that overactivation of fibroblast growth factor receptor 1 (FGFR1) is an important characteristic found in most non-small cell lung cancer (NSCLC) samples. Here, we identified a FGFR1 inhibitory peptide R1-P2 and investigated its effects on the lung cancer cells growth and angiogenesis in vitro and in vivo. Our results demonstrate that R1-P2 bound to human FGFR1 protein, and efficiently blocked the binding of FGF2 to FGFR1 in A549 and NCI-H460 cells. Moreover, this peptide significantly decreased the proliferation, migration and invasion, but promoted the apoptosis in both cell lines. In addition, R1-P2 treatment effectively inhibited the tumor growth and neovascularization in nude mice with xenografted A549 cells, and R1-P2 also significantly inhibited the FGF2-induced angiogenesis in tube formation experiment and CAM model. We further demonstrated that R1-P2 suppressed lung tumor growth through anti-angiogenic and anti-proliferative activity. Our data may provide a novle leading molecule with potential application in the treatment of FGFR1 activation related lung cancers.
Collapse
Affiliation(s)
- Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuanqiang Wang
- College of Bioengineering, Chongqing Institute of Technology, Chongqing, China
| | - Zhifeng Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Nan Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Can Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wanling Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
32
|
Hu P, Chen H, McGowan EM, Ren N, Xu M, Lin Y. Assessment of FGFR1 Over-Expression and Over-Activity in Lung Cancer Cells: A Toolkit for Anti-FGFR1 Drug Screening. Hum Gene Ther Methods 2018; 29:30-43. [PMID: 29281903 DOI: 10.1089/hgtb.2017.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Penghui Hu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Eileen M McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Nina Ren
- Guangdong Online Hospital Clinic, Guangdong 2nd Provincial People's Hospital, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
33
|
Ai N, Chong CM, Chen W, Hu Z, Su H, Chen G, Lei Wong QW, Ge W. Ponatinib exerts anti-angiogenic effects in the zebrafish and human umbilical vein endothelial cells via blocking VEGFR signaling pathway. Oncotarget 2018; 9:31958-31970. [PMID: 30174789 PMCID: PMC6112840 DOI: 10.18632/oncotarget.24110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a hallmark for cancer development because it is essential for cancer growth and provides the route for cancer cell migration (metastasis). Understanding the mechanism of angiogenesis and developing drugs that target the process has therefore been a major focus for research on cancer therapy. In this study, we screened 114 FDA-approved anti-cancer drugs for their effects on angiogenesis in the zebrafish. Among those with positive effects, we chose to focus on Ponatinib (AP24534; Iclusig®) for further investigation. Ponatinib is an inhibitor of the tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), and its clinical trial has been approved by FDA for the treatment of the disease. In recent clinical trials, however, some side effects have been reported for Ponatinib, mostly on blood vessel disorders, raising the possibility that this drug may influence angiogenesis. In this study, we demonstrated that Ponatinib was able to suppress the formation of intersegmental vessels (ISV) and subintestinal vessels (SIV) in the zebrafish larvae. The anti-angiogenic effect of Ponatinib was further validated by other bioassays in human umbilical vein endothelial cells (HUVECs), including cell proliferation and migration, tube formation, and wound healing. Further experiments showed that Ponatinib inhibited VEGF-induced VEGFR2 phosphorylation and its downstream signaling pathways including Akt/eNOS/NO pathway and MAPK pathways (ERK and p38MAPK). Taken together, these results suggest that inhibition of VEGF signaling at its receptor level and downstream pathways may likely be responsible for the antiangiogenic activity of Ponatinib.
Collapse
Affiliation(s)
- Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Cheong-Meng Chong
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Huanxing Su
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Queenie Wing Lei Wong
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
34
|
Zhou C, Chen T, Xie Z, Qin Y, Ou Y, Zhang J, Li S, Chen R, Zhong N. RACK1 forms a complex with FGFR1 and PKM2, and stimulates the growth and migration of squamous lung cancer cells. Mol Carcinog 2017; 56:2391-2399. [PMID: 28418088 DOI: 10.1002/mc.22663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022]
Abstract
Phosphorylation of Pyruvate Kinase M2 (PKM2) on Tyr105 by fibroblast growth factor receptor 1 (FGFR1) has been shown to promote its nuclear localization as well as cell growth in lung cancer. Better understanding the regulation of this process would benefit the clinical treatment for lung cancer. Here, it has been found that the adaptor protein receptor for activated PKC kinase (RACK1) formed a complex with FGFR1 and PKM2, and activated the FGFR1/PKM2 signaling. Knocking down the expression of RACK1 impaired the phosphorylation on Tyr105 of PKM2 and inhibited the growth and migration of lung cancer cells, while over-expression of RACK1 in lung cancer cells led to the resistance to Erdafitinib. Moreover, knocking down the expression of RACK1 impaired the tumorigenesis of lung cancer driven by LKB loss and mutated Ras (KrasG12D). Taken together, our study demonstrated the pivotal roles of RACK1 in FGFR1/PKM2 signaling, suggesting FGFR1/RACK1/PKM2 might be a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Yangming Ou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiexia Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
35
|
Rijavec E, Genova C, Barletta G, Biello F, Rossi G, Tagliamento M, Dal Bello MG, Coco S, Vanni I, Boccardo S, Alama A, Grossi F. Investigational drugs targeting fibroblast growth factor receptor in the treatment of non-small cell lung cancer. Expert Opin Investig Drugs 2017; 26:551-561. [PMID: 28388262 DOI: 10.1080/13543784.2017.1316714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Fibroblast growth factor receptor (FGFR) due to its central role in regulating cell survival, is a promising target for cancer therapeutics. Dysregulation of the FGFR pathway has been observed in several malignancies, including non-small cell lung cancer (NSCLC) particularly in patients with squamous histology. Areas covered: The aim of this article is to review the most relevant findings of clinical trials investigating drugs targeting FGFR pathway: such as FGFR tyrosine kinase inhibitors (TKIs), FGFR monoclonal antibodies and FGF ligand traps in NSCLC patients. Expert opinion: At present, clinical activity of drugs targeting FGFR in NSCLC is disappointing. Further studies are needed in order to better identify patients who might benefit from these drugs and to clarify the mechanisms of resistance to these compounds.
Collapse
Affiliation(s)
- Erika Rijavec
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Carlo Genova
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy.,b Dipartimento di Medicina Interna e Specialità Mediche (DIMI) , Università di Genova , Genova , Italy
| | - Giulia Barletta
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Federica Biello
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Giovanni Rossi
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Marco Tagliamento
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Maria Giovanna Dal Bello
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Simona Coco
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Irene Vanni
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Simona Boccardo
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Angela Alama
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Francesco Grossi
- a UOS Tumori Polmonari , IRCCS AOU San Martino IST- Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| |
Collapse
|
36
|
Tsyba NN, Turkina AG, Chelysheva EY, Nemchenko IS, Kovrigina AM, Obukhova TN, Urnova ES, Kuzmina LA, Savchenko VG. [A rare case of myeloproliferative disease with t(8;13)(p11;q12) associated with eosinophilia and lymphadenopathy]. TERAPEVT ARKH 2016; 88:98-103. [PMID: 27459622 DOI: 10.17116/terarkh201688798-103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myeloproliferative disease associated with FGFR1 rearrangement (8p11), which is included in the 2008 WHO Classification of Myeloid Neoplasms, is a rare and extremely aggressive abnormality. The paper describes a clinical case of a 39-year-old female patient who was detected to have leukocytosis (as high as 47.2·109/l), absolute eosinophilia (as high as 3.1·109/l), and enlarged peripheral lymph nodes during her visit to a doctor. The bone marrow (BM) showed the changes typically encountered in myeloproliferative disease with eosinophilia. The patient was found to have t(8;13)(p11;q12) translocation associated with the rearrangement of the FGFR1 gene located at the 8p11 locus. Molecular and cytogenetic examinations failed to reveal BCR-ABL chimeric transcript, Jak2 V617F mutation, and deletions and translocations involving PDGFRA (4q12) and PDGFRB (5q32-33). The similar changes in the karyotype were also found in the lymph node cells. The undertaken treatment with hydroxyurea and the tyrosine kinase inhibitor dasatinib turned out to be ineffective. The patient underwent allogeneic BM transplantation from a HLA-identical sibling. Graft rejection occurred 6 months later. Allogeneic BM transplantation from the same donor (100% donor chimerism; FGFR1/8р11 translocation was not detected), which was complicated by the development of chronic graft-versus-host reaction, was performed again in March 2015. The patient is being followed up and continues to receive immunosuppressive therapy.
Collapse
Affiliation(s)
- N N Tsyba
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A G Turkina
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - E Yu Chelysheva
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - I S Nemchenko
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A M Kovrigina
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - T N Obukhova
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - E S Urnova
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - L A Kuzmina
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - V G Savchenko
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
37
|
Abstract
Non-small cell lung carcinoma is a leading cause of cancer death worldwide. Understanding the molecular biology of survival and proliferation of cancer cells led to a new molecular classification of lung cancer and the development of targeted therapies with promising results. With the advances of image-guided biopsy techniques, tumor samples are becoming smaller, and the molecular testing techniques have to overcome the challenge of integrating the characterization of a panel of abnormalities including gene mutations, copy-number changes, and fusions in a reduced number of assays using only a small amount of genetic material. This article reviews the current knowledge about the most frequent actionable molecular abnormalities in non-small cell lung carcinoma, the new approaches of molecular analysis, and the implications of these findings in the context of clinical practice.
Collapse
|
38
|
Sousa V, Reis D, Silva M, Alarcão AM, Ladeirinha AF, d'Aguiar MJ, Ferreira T, Caramujo-Balseiro S, Carvalho L. Amplification of FGFR1 gene and expression of FGFR1 protein is found in different histological types of lung carcinoma. Virchows Arch 2016; 469:173-82. [PMID: 27194548 DOI: 10.1007/s00428-016-1954-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 01/01/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
Although lung cancer continues to be the leading cause of cancer-related death, accurate diagnosis followed by personalized treatment is expected to raise the 5-year survival rate. Targeted therapies are now in routine clinical use, in particular for lung adenocarcinoma (ADC). Fibroblast growth factor receptor 1 (FGFR1) has recently emerged as a molecular target, especially in squamous cell/epidermoid carcinoma (SQC) of the lung. This paper evaluates FGFR1 expression and gene copy number in adenocarcinomas, squamous cell carcinomas, pleomorphic carcinomas (PLEOMC) and adenosquamous carcinomas (ADSQC) of the lung and also explores the epithelial-mesenchymal transition (EMT) pathway. We studied 76 lung carcinomas: 34 ADC, 24 SQC, 10 PLEOMC and 8 ADSQC. FGFR1 expression was evaluated by immunohistochemistry and gene amplification by fluorescence in situ hybridization (FISH). Higher FGFR1 protein expression was observed in all tumour types compared to non-tumour tissue. FGFR1 expression was higher in ADC and PLEOMC than in SQC. We found a tendency to higher expression in ADC than in SQC and significantly higher expression in PLEOMC than in other histological subtypes. FISH-based amplification of FGFR1 was identified in 15 (20 %) lung carcinomas: 5 (15 %) ADC, 5 (21 %) SQC, 3 (30 %) PLEOMC and 2 (25 %) ADSQC. Amplification was more frequent in SQC without significant differences. FGFR1 protein is expressed in the majority of lung carcinomas, though it is higher in ADC and PLEOMC (the latter may reflect the importance of FGFR1 control of the EMT pathway). FGFR1 amplification was identified in all types of lung carcinoma. Although FGFR1 is most frequently amplified in SQC, other histological types merit assessment of FGFR1 amplification, in order to select patients that might benefit from targeted therapy.
Collapse
Affiliation(s)
- Vitor Sousa
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- CIMAGO-Research Center for Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Centre of Pulmonology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Service of Anatomical Pathology, University Hospital of Coimbra, Coimbra, Portugal.
- Vitor Manuel Leitão de Sousa, Instituto de Anatomia Patológica, Faculdade de Medicina, Universidade de Coimbra, 3000-054, Coimbra, Portugal.
| | - Diana Reis
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Silva
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIMAGO-Research Center for Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Pulmonology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Maria Alarcão
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIMAGO-Research Center for Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Pulmonology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Filipa Ladeirinha
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria João d'Aguiar
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Ferreira
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra Caramujo-Balseiro
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIMAGO-Research Center for Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Castelo Branco, Superior Health Science School, Castelo Branco, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIMAGO-Research Center for Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Pulmonology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Service of Anatomical Pathology, University Hospital of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Gryshchenko A, Tarnavskiy S, Levchenko K, Bdzhola V, Volynets G, Golub A, Ruban T, Vygranenko K, Lukash L, Yarmoluk S. Design, synthesis and biological evaluation of 5-amino-4-(1H-benzoimidazol-2-yl)-phenyl-1,2-dihydro-pyrrol-3-ones as inhibitors of protein kinase FGFR1. Bioorg Med Chem 2016; 24:2053-9. [DOI: 10.1016/j.bmc.2016.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 01/27/2023]
|
40
|
Zhou W, Zhu Y, Chen S, Xu R, Wang K. Fibroblast growth factor receptor 1 promotes MG63 cell proliferation and is associated with increased expression of cyclin-dependent kinase 1 in osteosarcoma. Mol Med Rep 2015; 13:713-9. [PMID: 26648125 PMCID: PMC4686061 DOI: 10.3892/mmr.2015.4597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumor in adolescents and young adults. However, current understanding of osteosarcomagenesis remains limited. In the present study, the role of fibroblast growth factor receptor 1 (FGFR1) in human osteosarcoma cell proliferation was investigated, and the possible pathways that contribute to FGFR1‑mediated osteosarcoma cell proliferation were examined using microarray analysis. The expression of FGFR1 in osteosarcoma tissues was assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. The results demonstrated that FGFR1 was markedly increased in osteosarcoma tissues, and that the overexpression of FGFR1 in MG63 cells significantly promoted cell proliferation, as observed using the cell viability assay. In addition, FGFR1‑mediated cell proliferation was closely associated with cell cycle re‑distribution, as determined by microarray analysis. Western blotting identified that the expression of cyclin-dependent kinase 1 (CDK1) was correspondingly increased in response to the overexpression of FGFR1. These results indicated that FGFR1 contributes to cell proliferation in osteosarcoma MG63 cells, and FGFR1 mediated cell proliferation may be attributed to the regulation of the cell cycle regulator, CDK1. These findings provide evidence to support the potential use of molecule target therapy against FGFR1 as a promising strategy in osteosarcoma treatment and prevention.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Orthopaedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Yue Zhu
- Department of Orthopaedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Song Chen
- Department of Orthopaedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Ruijun Xu
- Department of Orthopaedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Kunzheng Wang
- Department of Orthopaedics, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
41
|
Li CM, Chu WY, Wong DL, Tsang HF, Tsui NBY, Chan CML, Xue VWW, Siu PMF, Yung BYM, Chan LWC, Wong SCC. Current and future molecular diagnostics in non-small-cell lung cancer. Expert Rev Mol Diagn 2015; 15:1061-74. [DOI: 10.1586/14737159.2015.1063420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Increased gene copy number of HER2 and concordant protein overexpression found in a subset of eyelid sebaceous gland carcinoma indicate HER2 as a potential therapeutic target. J Cancer Res Clin Oncol 2015; 142:125-33. [PMID: 26141290 DOI: 10.1007/s00432-015-2009-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE To identify crucial molecular alterations of receptor tyrosine kinases that can be used as potential therapeutic targets for eyelid sebaceous gland carcinoma (SbGC). METHODS The expression levels of HER2, EGFR, C-MET, and FGFR1 were determined by immunohistochemistry (IHC). The copy numbers of the HER2, EGFR, C-MET, and FGFR1 genes were assessed by fluorescence in situ hybridization. The IHC and molecular results were correlated with the clinical parameters. RESULTS A total of 49 patients with eyelid SbGC were included in this study. HER2, EGFR, C-MET, and FGFR1 protein expression was detected in 8 of 44 (16.3 %), 8 of 45 (17.8 %), 3 of 35 (8.6 %), and 0 of 45 patient samples, respectively. Increased copy numbers of the HER2 gene were found in 5 of 42 patient samples (11.9 %), including two with amplification (4.7 %) and three with polysomy (7.2 %). EGFR amplification was found in 2 of 33 (6.1 %) and FGFR1 amplification in 4 of 33 patient samples (12.1 %; high-level amplification in one and low-level amplification in three). None of the samples examined exhibited C-MET amplification. Gene copy number of the HER2 gene was correlated with its protein expression (p < 0.0001), whereas copy number of EGFR, C-MET, or FGFR1 was not correlated with protein expression. However, samples with EGFR amplification also exhibited a high level of expression of this protein. CONCLUSIONS Extra copies of the HER2, EGFR, and FGFR1 genes were identified in a 6-12 % of eyelid SbGCs. A high level of concordant HER2 expression detected by immunohistochemistry can be predictive of a copy number gain of the HER2 gene. Our data suggest that the therapeutic targeting of HER2 might benefit for a subset of patients with periocular SbGCs.
Collapse
|
43
|
Kwak Y, Nam SK, Seo AN, Kim DW, Kang SB, Kim WH, Lee HS. Fibroblast Growth Factor Receptor 1 Gene Copy Number and mRNA Expression in Primary Colorectal Cancer and Its Clinicopathologic Correlation. Pathobiology 2015; 82:76-83. [PMID: 26088290 DOI: 10.1159/000398807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Fibroblast growth factor receptor 1 (FGFR1) has been reported to be overexpressed in colorectal cancer (CRC) and suggested to be a therapeutic target. In this study, we investigated FGFR1 expression and amplification in CRC and its correlation with clinicopathologic parameters. METHODS FGFR1 dual-color fluorescence in situ hybridization and mRNA in situ hybridization were performed on tissue array blocks composed of 291 consecutive primary CRCs. RESULTS Of the 291 CRC cases, FGFR1 gene amplification was found in 11 (3.8%) cases, high FGFR1 polysomy in 4 (1.4%) cases, and FGFR1 gene copy number (GCN) gain (GCN >2) in 77 (26.5%) cases. FGFR1 GCN gain was significantly associated with left-sided location, lymph node metastasis, distant metastasis, and higher TNM stage (p < 0.05). FGFR1 GCN gain also correlated with poor patient survival (p = 0.015). FGFR1 mRNA overexpression (score 3-4) was present in 11.7% (34/291) of the patients and was significantly associated with FGFR1 GCN alteration (Pearson correlation coefficient, r = 0.463; p < 0.001). CONCLUSION FGFR1 GCN gain was more frequently found (26.5%) than gene amplification (3.8%) and correlated with aggressive clinical behavior in consecutive CRC patients. FGFR1 GCN alteration was associated with a high FGFR1 mRNA level.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Huang HP, Feng H, Qiao HB, Ren ZX, Zhu GD. The prognostic significance of fibroblast growth factor receptor 4 in non-small-cell lung cancer. Onco Targets Ther 2015; 8:1157-64. [PMID: 26045670 PMCID: PMC4447177 DOI: 10.2147/ott.s81659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Fibroblast growth factor receptor 4 (FGFR4) has been proved to be correlated with progression and prognosis in many cancers. However, the significance of FGFR4 in non-small-cell lung cancer (NSCLC) is still not well elucidated. METHODS In our experiment, we detected FGFR4 expression in 237 samples of NSCLC with immunohistochemistry, and further analyzed the correlation between FGFR4 and clinicopathologic features of NSCLC with chi-square test. Moreover, we evaluated the prognostic value of FGFR4 by Kaplan-Meier survival curve and Cox regression model. By regulating the expression of FGFR4 by overexpression or knockdown, we assessed the role of FGFR4 on NSCLC cell proliferation. RESULTS FGFR4 expression was high in NSCLC (46.8%, 111/237). FGFR4 expression was significantly associated with tumor diameter (P=0.039). With univariate (P=0.009) and multivariate (P=0.002) analysis, FGFR4 was identified as an independent prognostic factor in NSCLC (P=0.009). Moreover, FGFR4 can promote the proliferation of NSCLC cell lines. CONCLUSION FGFR4 is an independent prognostic biomarker in NSCLC. FGFR4 can accelerate the proliferation of NSCLC cell lines, indicating FGFR4 could be a potential drug target of NSCLC.
Collapse
Affiliation(s)
- Hong-Ping Huang
- Department of General Medicine, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| | - Hui Feng
- Department of General Medicine, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| | - Hong-Bo Qiao
- Department of General Medicine, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| | - Ze-Xiang Ren
- Department of General Medicine, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| | - Ge-Dong Zhu
- Department of General Medicine, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| |
Collapse
|
45
|
Wu J, Ji J, Weng B, Qiu P, Kanchana K, Wei T, Wang Y, Cai Y, Li X, Liang G. Discovery of novel non-ATP competitive FGFR1 inhibitors and evaluation of their anti-tumor activity in non-small cell lung cancer in vitro and in vivo. Oncotarget 2015; 5:4543-53. [PMID: 24980830 PMCID: PMC4147344 DOI: 10.18632/oncotarget.2122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that high expression of FGFR1 is closely related to the development of lung cancer especially in non-small cell lung cancers (NSCLC), to which non-ATP competitive inhibitors represent an effective therapeutical approach due to their good specificity. Herein, a series of NDGA analogues with the framework of bisaryl-1,4-dien-3-one as novel FGFR1 inhibitors have been designed and screened. Among them Aea4 and Aea25 showed strong FGFR1 ‵inhibition and high selectivity over other receptor kinases. The kinase inhibitory assay in different ATP concentrations and computer-assistant molecular docking showed that the FGFR1 inhibition mode of both Aea4 and Aea25 was non-ATP-competitive. The in vitro and in vivo study on anticancer efficacy of Aea4 and Aea25 against non-small cell lung cancer involves inhibition of cell proliferation, apoptosis induction and cell cycle arrest with no toxicity. Thus, these two novel non-ATP competitive inhibitors derived from NDGA may have a great therapeutic potential in the treatment of NSCLC. This work also provides a structural lead for the design of new non-ATP-competitive FGFR1 inhibitors.
Collapse
Affiliation(s)
- Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China. These Authors contributed equally to this work
| | - Jiansong Ji
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China. These Authors contributed equally to this work
| | - Bixia Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Karvannan Kanchana
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Tao Wei
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Yuepiao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| |
Collapse
|
46
|
Wu J, Wei T, Tang Q, Weng B, Li W, Jiang X, Ding T, Li X, Liang G, Cai Y, Ji J. Discovery and anti-cancer evaluation of two novel non-ATP-competitive FGFR1 inhibitors in non-small-cell lung cancer. BMC Cancer 2015; 15:276. [PMID: 25880284 PMCID: PMC4410475 DOI: 10.1186/s12885-015-1307-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor 1 (FGFR1) is correlated closely with the occurrence and development of lung cancer. FGFR1 kinase inhibitors have exhibited significant therapeutic effects against non-small-cell lung cancer. Recently, non-ATP competitive FGFR1 inhibitors have attracted extensive attention due to their low side effects. METHODS Caliper Mobility Shift Assay was used for FGFR1 inhibition test and kinase inhibitory mode study. Hoechst staining and Annexin V/PI staining were used to evaluate the cell apoptosis induction. Western blot were then performed to confirm the intracellular FGFR1 inhibition and apoptotic protein expression. Finally, the anti-tumor effect and mechanism of Af23 and Ad23 was evaluated in vivo. RESULTS In this study, we designed, synthesized and discovered two novel non-ATP competitive FGFR1 inhibitors, Af23 and Ad23, using NDGA as a leading compound. They had IC50 values of 0.6 μM and 1.4 μM against FGFR1 kinase, respectively. The kinase inhibitory assay carried at different ATP concentrations showed that the FGFR1 inhibition mode of both Ad23 and Af23 was non-ATP-competitive. Further, Af23 and Ad23 significantly suppressed FGFR1 phosphorylation and cell proliferation in non-small-cell lung cancer (NSLCLC) H460 cells and induced cell apoptosis. Af23 and Ad23 also showed significant anti-tumor activity in the H460 xenograft mouse model, accompanied with the inhibition of FGFR1, ERK, and AKT phosphorylation without exhibiting toxicity. CONCLUSIONS These results indicate that Ad23 and Af23 are potential agents for the treatment of non-small-cell lung cancer. This work also provides a structural lead for the design of new non-ATP-competitive FGFR1 inhibitors.
Collapse
Affiliation(s)
- Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Tao Wei
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Qinqin Tang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Bixia Weng
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Wulan Li
- College of Information Science and Computer Engineering, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Xin Jiang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Ting Ding
- Department of Pharmacy, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
| | - Xiaokun Li
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yuepiao Cai
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jiansong Ji
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
47
|
Richer AL, Friel JM, Carson VM, Inge LJ, Whitsett TG. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2015; 8:63-79. [PMID: 25897257 PMCID: PMC4397718 DOI: 10.2147/pgpm.s52845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC). A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR) have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer.
Collapse
Affiliation(s)
- Amanda L Richer
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jacqueline M Friel
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vashti M Carson
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Landon J Inge
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Timothy G Whitsett
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
48
|
Zhao D, Lu Y, Yang C, Zhou X, Xu Z. Activation of FGF receptor signaling promotes invasion of non-small-cell lung cancer. Tumour Biol 2015; 36:3637-42. [PMID: 25566961 DOI: 10.1007/s13277-014-3001-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/18/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular regulation of metastasis of non-small-cell lung cancer (NSCLC) remains not completely defined. Here we showed significant higher MMP26 in the resected NSCLC than adjacent healthy tissue from the patients. Moreover, a strong correlation between MMP26 and the phosphorylated fibroblast growth factor receptor 1 (FGFR1) was detected. To examine the causal relationship between activated FGFR signaling and MMP26, we studied a human NSCLC cell line, A549. We found that FGF1-induced FGFR1 phosphorylation in A549 cells activated MMP26, resulting in an increase in cancer invasiveness. Inhibition of FGFR1 phosphorylation abolished FGF1-stimulated MMP26 activation, suggesting that activation of FGFR signaling pathway in NSCLC promotes cancer metastasis through MMP26. To define the signal transduction cascades downstream of FGFR1 activation for MMP26 activation, we used specific inhibitors for PI3K, ERK/MAPK, and JNK, respectively, to the FGF1-stimulated A549 cells. We found that only inhibition of JNK significantly decreased the activation of MMP26 in response to FGF1 stimulation, suggesting that activation of FGFR1 signaling may activate JNK to activate MMP26 in NSCLC. Our study thus highlights FGFR signaling pathway and MMP26 as novel therapeutic targets for NSCLC therapy.
Collapse
Affiliation(s)
- Deping Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200433, China,
| | | | | | | | | |
Collapse
|
49
|
Jiang T, Gao G, Fan G, Li M, Zhou C. FGFR1 amplification in lung squamous cell carcinoma: a systematic review with meta-analysis. Lung Cancer 2014; 87:1-7. [PMID: 25433983 DOI: 10.1016/j.lungcan.2014.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/09/2014] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Current targeted therapy proves no effective outcomes in lung squamous cell carcinoma (SQCC). Recent studies suggested that FGFR1 would be promising. This systematic review elaborated FGFR1 amplification in lung SQCC. METHODS An electronic search was conducted on PubMed, EMBASE, Web of SCI, Google Scholar and Cochrane Library. Eligible studies regarding incidence of FGFR1 amplification in lung SQCC and correlation between FGFR1 amplification and clinicopathological features or survival were extracted and analyzed. RESULTS We identified 13 eligible studies with a total of 1798 patients. The results showed about 19% of FGFR1 amplification (95% CI: 0.15-0.24; I(2)=84.5%; p=0.000). Using the same test method: FISH, definition and ethnicity, the rates were 17% (95% CI: 0.14-0.20; I(2)=53.1%; p=0.037), 21% (95% CI: 0.18-0.24; I(2)=0; p=0.615), and 16% (95% CI: 0.13-0.19; I(2)=72.1%; p=0.028), respectively. Pearson's correlation analysis suggested that smoking status was highly correlated with FGFR1 amplification (coefficient=0.961, p<0.001). FGFR1 amplification was significantly correlated with lymph node metastasis (OR: 2.27; 95% CI: 1.62-3.20; p=0.000), but not correlated with gender (OR: 1.12; 95% CI: 0.90-1.38; p=0.91), differentiation (OR: 1.02; 95% CI: 0.76-1.38; p=0.959) and stage (OR: 0.93; 95% CI: 0.73-1.19; p=0.877) in lung SQCC patients. With respect to survival, FGFR1 amplification had no influence on PFS (HR: 1.57; 95% CI: 0.85-2.30; p=0.259) and OS (HR: 1.40; 95% CI: 0.90-1.89; p=0.416) for SQCC patients. CONCLUSION FGFR1 amplification is about 19%. Gender, stage, differentiation, ethnicities and test methods have no influence on FGFR1 amplification. FGFR1 amplification trends to correlate with lymph node metastasis and smoking. Whether FGFR1 amplification has effect on survival remains controversial.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Tongji University Medical School Cancer Institute, Shanghai, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Tongji University Medical School Cancer Institute, Shanghai, China
| | - Guoxin Fan
- Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Tongji University Medical School Cancer Institute, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Tongji University Medical School Cancer Institute, Shanghai, China.
| |
Collapse
|
50
|
Kilday JP, Bartels UK, Bouffet E. Targeted therapy in pediatric low-grade glioma. Curr Neurol Neurosci Rep 2014; 14:441. [PMID: 24604059 DOI: 10.1007/s11910-014-0441-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Collectively, pediatric low-grade gliomas account for most brain tumors reported in children. Surgery is typically curable for operable lesions. However, more effective therapies are required for inaccessible tumors, both to overcome refractory disease and to minimize the toxicity associated with conventional adjuvant chemotherapy and radiotherapy regimens. Recent years have witnessed rapid improvements in our understanding of the molecular pathogenesis of several childhood tumors, including low-grade gliomas. As a result, several novel compounds targeting and inhibiting critical components of molecular signaling pathways purported to be overactive in the disease have been developed. This article summarizes the most recent literature evaluating such novel targeted agents in childhood low-grade gliomas.
Collapse
Affiliation(s)
- John-Paul Kilday
- Department of Haematology/Oncology, Royal Manchester Children's Hospital, Oxford Road, Manchester, M13 9WL, UK,
| | | | | |
Collapse
|