1
|
Zhang Y, Yang H, Liu W, Song Q, Li Y, Zhang J, Zhou D, Li A. Comprehensive pan-cancer analysis of expression profiles and prognostic significance for NUMB and NUMBL in human tumors. Medicine (Baltimore) 2023; 102:e34717. [PMID: 37657045 PMCID: PMC10476719 DOI: 10.1097/md.0000000000034717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 09/03/2023] Open
Abstract
NUMB has been initially identified as a critical cell fate determinant that modulates cell differentiation via asymmetrical partitioning during mitosis, including tumor cells. However, it remains absent that a systematic assessment of the mechanisms underlying NUMB and its homologous protein NUMBLIKE (NUMBL) involvement in cancer. This study aimed to investigate the prognostic significance for NUMB and NUMBL in pan-cancer. In this study, using the online databases TIMER2.0, gene expression profiling interactive analysis, cBioPortal, the University of ALabama at Birmingham CANcer data analysis Portal, SearchTool for the Retrieval of Interacting Genes/Proteins, and R software, we focused on the relevance between NUMB/NUMBL and oncogenesis, progression, mutation, phosphorylation, function and prognosis. This study demonstrated that abnormal expression of NUMB and NUMBL were found to be significantly associated with clinicopathologic stages and the prognosis of survival. Besides, genetic alternations of NUMB and NUMBL focused on uterine corpus endometrial carcinoma, and higher genetic mutations of NUMBL were correlated with more prolonged overall survival and disease-free survival in different cancers. Moreover, S438 locus of NUMB peptide fragment was frequently phosphorylated in 4 cancer types and relevant to its phosphorylation sites. Furthermore, endocytosis processing and neurogenesis regulation were involved in the functional mechanisms of NUMB and NUMBL separately. Additionally, the pathway enrichment suggested that NUMB was implicated in Hippo, Neurotrophin, Thyroid hormone, and FoxO pathways, while MAPK, Hippo, Rap1, mTOR, and Notch pathways were related to the functions of NUMBL. This study highlights the predictive roles of NUMB and NUMBL in pan-cancer, suggesting NUMB and NUMBL might be served as potential biomarkers for diagnosis and prognosis in various malignant tumors.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Hongxia Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Department of Clinical Foundation of Chinese Medicine, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Weizhe Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, China
| | - Qiuhang Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Yunfeng Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Juanjuan Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Dingyan Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Puca F, Tosti N, Federico A, Kuzay Y, Pepe A, Morlando S, Savarese T, D’Alessio F, Colamaio M, Sarnataro D, Ziberi S, De Martino M, Fusco A, Battista S. HMGA1 negatively regulates NUMB expression at transcriptional and post transcriptional level in glioblastoma stem cells. Cell Cycle 2019; 18:1446-1457. [PMID: 31116627 PMCID: PMC6592240 DOI: 10.1080/15384101.2019.1618541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a lethal, fast-growing brain cancer, affecting 2-3 per 100,000 adults per year. It arises from multipotent neural stem cells which have reduced their ability to divide asymmetrically and hence divide symmetrically, generating increasing number of cancer stem cells, fostering tumor growth. We have previously demonstrated that the architectural transcription factor HMGA1 is highly expressed in brain tumor stem cells (BTSCs) and that its silencing increases stem cell quiescence, reduces self-renewal and sphere-forming efficiency in serial passages, suggesting a shift from symmetric to asymmetric division. Since NUMB expression is fundamental for the fulfillment of asymmetric division in stem cells, and is lost or reduced in many tumors, including GBM, we have investigated the ability of HMGA1 to regulate NUMB expression. Here, we show that HMGA1 negatively regulates NUMB expression at transcriptional level, by binding its promoter and counteracting c/EBP-β and at posttranscriptional level, by regulating the expression of MSI1 and of miR-146a. Finally, we report that HMGA1 knockdown-induced NUMB upregulation leads to the downregulation of the NOTCH1 pathway. Therefore, the data reported here indicate that HMGA1 negatively regulates NUMB expression in BTSCs, further supporting HMGA1 targeting as innovative and effective anti-cancer therapy.
Collapse
Affiliation(s)
- Francesca Puca
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Nadia Tosti
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Yalçın Kuzay
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Anna Pepe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sonia Morlando
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Teresa Savarese
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Federica D’Alessio
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Marianna Colamaio
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Daniela Sarnataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Dynamic Imaging and Microscopy Facility, CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Sihana Ziberi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche dell’Università “G. d’Annunzio” di Chieti, Chieti, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sabrina Battista
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
4
|
Liu Z, Qi S, Fu Y, Shen L, Li M, Lu J, Zhao X, Zhang H. NUMB knockdown enhanced the anti-tumor role of cisplatin on ovarian cancer cells by inhibiting cell proliferation and epithelial-mesenchymal transition. Transl Cancer Res 2019; 8:379-388. [PMID: 35116770 PMCID: PMC8798962 DOI: 10.21037/tcr.2019.01.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 11/23/2022]
Abstract
Background NUMB is an inhibitory regulator of NOTCH signaling, which is critical for the induction of epithelial-mesenchymal transition (EMT). Loss of NUMB expression is correlated with the genesis and development of multiple tumors. Recent studies reported that NUMB expression was upregulated in human ovarian cancer. However, the role of NUMB in ovarian cancer is still unclear. Here, we invested the effect of NUMB knockdown on the proliferation and EMT in ovarian cancer cells and explored the role of NUMB in the effect of cisplatin. Methods Two ovarian cancer cells (OVCAR-3 and SK-OV-3) were used in the experiments. The proliferation and apoptosis of ovarian cancer cells was examined using methyl thiazolyl tetrazolium (MTT) test and flow cytometry assays. The invasion and migration of ovarian cancer cells were examined using Transwell assays. The expression of EMT markers were examined using Simple Western analysis. Results NUMB knockdown inhibited cell proliferation, invasion, and migration in both ovarian cancer cells. NUMB knockdown enhanced cisplatin-induced cell growth inhibiting and apoptosis in both ovarian cancer cells. NUMB knockdown enhanced cisplatin-induced cell invasion in SK-OV-3 cells. NUMB knockdown also decreased the expression of N-cadherin and Vimentin in SK-OV-3 cells. Conclusions NUMB acted as an oncogene in ovarian cancer and NUMB knockdown enhanced the anti-tumor role of cisplatin on ovarian carcinoma cells by inhibiting cell proliferation and EMT.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shasha Qi
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China.,The Key laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan 250021, China
| | - Yibing Fu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Mingjiang Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xingbo Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
5
|
Liu W, Wu Y, Yu F, Hu W, Fang X, Hao W. The implication of Numb-induced Notch signaling in endothelial-mesenchymal transition of diabetic nephropathy. J Diabetes Complications 2018; 32:889-899. [PMID: 30097225 DOI: 10.1016/j.jdiacomp.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 01/03/2023]
Abstract
AIM This study was purposed to figure out the contribution of Numb-induced Notch signaling to the development of diabetic nephropathy (DN). METHODS Two hundred and twenty six DN patients were included, and human glomerular endothelial cells (RGEC) were cultured. MSCV-Numb-IRES-GFP, MSCV-Notch1-IRES-GFP and MSCV-Hes1-IRES-GFP were transfected to construct the recombinant retroviral vectors. RESULT The over-expressed Numb and Notch1, as well as the under-expressed Hes-1 were correlated with the undesirable prognosis of DN patients (P < 0.05). Within the cell lines transfection with si-Numb would cut down E-cadherin and CD31 expressions (P < 0.05), yet elevated α-SMA and vimentin expressions (P < 0.05). The apoptotic rate of si-Numb cell lines underperformed ones categorized into the hyperglucose group (P < 0.05), whereas the lowly-expressed Notch1 and Hes1 were observably associated with inhibited proliferation of myofibroblasts (P < 0.05). Addition of ADPT caused under-expressed α-SMA and vimentin, along with the over-expressed E-cadherin and CD31 (P < 0.05). Silencing of Notch1 and Hes1 reversed the epithelial-mesenchymal transition (EMT) process that was triggered by high glucose (P < 0.05). CONCLUSION Numb negatively regulated Notch signaling pathway in EMT of DN, implying that they had great potentials to serve as therapeutic targets or diagnostic biomarkers for DN.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Yanhua Wu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Feng Yu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Wenxue Hu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Xiaowu Fang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China
| | - Wenke Hao
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Institute of Geriatric Medicine of Guangdong Province, Guangzhou City, 510080, Guangdong Province, China.
| |
Collapse
|
6
|
Ma L, Shan Y, Ma H, Elshoura I, Nafees M, Yang K, Yin W. Identification of a novel splice variant of the human musashi-1 gene. Oncol Lett 2018; 16:5441-5448. [PMID: 30250616 DOI: 10.3892/ol.2018.9300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
Musashi-1 (Msi1) is an evolutionarily conserved RNA-binding protein that has been reported to be the key regulator in malignancies and with involvement in cancer stemness. In the present study, a novel Msi1 transcript variant generated by alternative splicing was identified and termed Msi1 variant 2. This variant was observed to be ubiquitously expressed in cancerous and non-cancerous cells compared with its wild-type variant, which is preferentially expressed in cancer cells. Notably, the expression levels of Msi1 variant 2 were inversely associated with the protein expression levels of Msi1 in various cancer cells. This naturally truncated variant contains 899 nucleotides and a skipping event of exons 3 and 4, which leads to the emergence of a premature TGA stop codon in exon 5. The present results also demonstrated that hypoxia increased the resistance of H460 cells to cisplatin by suppressing the exon 3 and 4 skipping event of Msi1. In summary, the present study identified a novel splice variant of Msi1 lacking two complete RNA recognition motifs, and revealed the role of exon 3 and 4 skipping of Msi1 pre-mRNA in regulating cisplatin resistance under hypoxia. These observations indicate that targeting Msi1 alternative splicing could represent a valuable strategy to repress Msi1 signaling in tumors overexpressing this RNA-binding protein.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Yating Shan
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Heliang Ma
- Department of Radiology, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Ihab Elshoura
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Muhammad Nafees
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Kaiyong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
7
|
García-Heredia JM, Verdugo Sivianes EM, Lucena-Cacace A, Molina-Pinelo S, Carnero A. Numb-like (NumbL) downregulation increases tumorigenicity, cancer stem cell-like properties and resistance to chemotherapy. Oncotarget 2018; 7:63611-63628. [PMID: 27613838 PMCID: PMC5325389 DOI: 10.18632/oncotarget.11553] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/12/2016] [Indexed: 12/23/2022] Open
Abstract
NumbL, or Numb-like, is a close homologue of Numb, and is part of an evolutionary conserved protein family implicated in some important cellular processes. Numb is a protein involved in cell development, in cell adhesion and migration, in asymmetric cell division, and in targeting proteins for endocytosis and ubiquitination. NumbL exhibits some overlapping functions with Numb, but its role in tumorigenesis is not fully known. Here we showed that the downregulation of NumbL alone is sufficient to increase NICD nuclear translocation and induce Notch pathway activation. Furthermore, NumbL downregulation increases epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-related gene transcripts and CSC-like phenotypes, including an increase in the CSC-like pool. These data suggest that NumbL can act independently as a tumor suppressor gene. Furthermore, an absence of NumbL induces chemoresistance in tumor cells. An analysis of human tumors indicates that NumbL is downregulated in a variable percentage of human tumors, with lower levels of this gene correlated with worse prognosis in colon, breast and lung tumors. Therefore, NumbL can act as an independent tumor suppressor inhibiting the Notch pathway and regulating the cancer stem cell pool.
Collapse
Affiliation(s)
- José M García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain.,Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| | - Eva M Verdugo Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain.,Present address: Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| |
Collapse
|
8
|
Heterogeneous Contributing Factors in MPM Disease Development and Progression: Biological Advances and Clinical Implications. Int J Mol Sci 2018; 19:ijms19010238. [PMID: 29342862 PMCID: PMC5796186 DOI: 10.3390/ijms19010238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) tumors are remarkably aggressive and most patients only survive for 5–12 months; irrespective of stage; after primary symptoms appear. Compounding matters is that MPM remains unresponsive to conventional standards of care; including radiation and chemotherapy. Currently; instead of relying on molecular signatures and histological typing; MPM treatment options are guided by clinical stage and patient characteristics because the mechanism of carcinogenesis has not been fully elucidated; although about 80% of cases can be linked to asbestos exposure. Several molecular pathways have been implicated in the MPM tumor microenvironment; such as angiogenesis; apoptosis; cell-cycle regulation and several growth factor-related pathways predicted to be amenable to therapeutic intervention. Furthermore, the availability of genomic data has improved our understanding of the pathobiology of MPM. The MPM genomic landscape is dominated by inactivating mutations in several tumor suppressor genes; such as CDKN2A; BAP1 and NF2. Given the complex heterogeneity of the tumor microenvironment in MPM; a better understanding of the interplay between stromal; endothelial and immune cells at the molecular level is required; to chaperone the development of improved personalized therapeutics. Many recent advances at the molecular level have been reported and several exciting new treatment options are under investigation. Here; we review the challenges and the most up-to-date biological advances in MPM pertaining to the molecular pathways implicated; progress at the genomic level; immunological progression of this fatal disease; and its link with developmental cell pathways; with an emphasis on prognostic and therapeutic treatment strategies.
Collapse
|
9
|
Abstract
NUMB, and its close homologue NUMBL, behave as tumor suppressor genes by regulating the Notch pathway. The downregulation of these genes in tumors is common, allowing aberrant Notch pathway activation and tumor progression. However, some known differences between NUMB and NUMBL have raised unanswered questions regarding the redundancy and/or combined regulation of the Notch pathway by these genes during the tumorigenic process. We have found that NUMB and NUMBL exhibit mutual exclusivity in human tumors, suggesting that the associated tumor suppressor role is regulated by only one of the two proteins in a specific cell, avoiding duplicate signaling and simplifying the regulatory network. We have also found differences in gene expression due to NUMB or NUMBL downregulation. These differences in gene regulation extend to pathways, such as WNT or Hedgehog. In addition to these differences, the downregulation of either gene triggers a cancer stem cell-like related phenotype. These results show the importance of both genes as an intersection with different effects over cancer stem cell signaling pathways.
Collapse
|
10
|
Abballe L, Mastronuzzi A, Miele E, Carai A, Besharat ZM, Moretti M, De Smaele E, Giangaspero F, Locatelli F, Ferretti E, Po A. Numb Isoforms Deregulation in Medulloblastoma and Role of p66 Isoform in Cancer and Neural Stem Cells. Front Pediatr 2018; 6:315. [PMID: 30443541 PMCID: PMC6221942 DOI: 10.3389/fped.2018.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Numb is an intracellular protein with multiple functions. The two prevalent isoforms, Numb p66 and Numb p72, are regulators of differentiation and proliferation in neuronal development. Additionally, Numb functions as cell fate determinant of stem cells and cancer stem cells and its abnormal expression has been described in several types of cancer. Involvement of deregulated Numb expression has been described in the malignant childhood brain tumor medulloblastoma, while Numb isoforms in these tumors and in cancer stem-like cells derived from them, have not been studied to date. Here we show that medulloblastoma stem-like cells and cerebellar neuronal stem cells (NSCs) express Numb p66 where its expression tampers stemness features. Furthermore, medulloblastoma samples evaluated in this study express decreased levels of Numb p66 while overexpressed Numb p72 compared with normal tissues. Our results uncover different roles for the two major Numb isoforms examined in medulloblastoma and a critical role for Numb p66 in regulating stem-like cells and NSCs maintenance.
Collapse
Affiliation(s)
- Luana Abballe
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Marta Moretti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Pathological Science, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Paediatrics, University of Pavia, Pavia, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
11
|
Guo Y, Zhang K, Cheng C, Ji Z, Wang X, Wang M, Chu M, Tang DG, Zhu HH, Gao WQ. Numb -/low Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling. Clin Cancer Res 2017; 23:6744-6756. [PMID: 28751447 DOI: 10.1158/1078-0432.ccr-17-0913] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: To elucidate the role and molecular mechanism of Numb in prostate cancer and the functional contribution of Numb-/low prostate cancer cells in castration resistance.Experimental Design: The expression of Numb was assessed using multiple Oncomine datasets and prostate cancer tissues from both humans and mice. The biological effects of the overexpression and knockdown of Numb in human prostate cancer cell lines were investigated in vitro and in vivo In addition, we developed a reliable approach to distinguish between prostate cancer cell populations with a high or low endogenous expression of Numb protein using a Numb promoter-based lentiviral reporter system. The difference between Numb-/low and Numbhigh prostate cancer cells in the response to androgen-deprivation therapy (ADT) was then tested. The likely downstream factors of Numb were analyzed using luciferase reporter assays, immunoblotting, and quantitative real-time PCR.Results: We show here that Numb was downregulated and negatively correlated with prostate cancer advancement. Functionally, Numb played an inhibitory role in xenograft prostate tumor growth and castration-resistant prostate cancer development by suppressing Notch and Hedgehog signaling. Using a Numb promoter-based lentiviral reporter system, we were able to distinguish Numb-/low prostate cancer cells from Numbhigh cells. Numb-/low prostate cancer cells were smaller and quiescent, preferentially expressed Notch and Hedgehog downstream and stem-cell-associated genes, and associated with a greater resistance to ADT. The inhibition of the Notch and Hedgehog signaling pathways significantly increased apoptosis in Numb-/low cells in response to ADT.Conclusions: Numb-/low enriches a castration-resistant prostate cancer cell subpopulation that is associated with unregulated Notch and Hedgehog signaling. Clin Cancer Res; 23(21); 6744-56. ©2017 AACR.
Collapse
Affiliation(s)
- Yanjing Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Minglei Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingliang Chu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Moody HL, Lind MJ, Maher SG. MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:317-329. [PMID: 28918032 PMCID: PMC5537169 DOI: 10.1016/j.omtn.2017.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022]
Abstract
Malignant pleural mesothelioma (MPM) is associated with an extremely poor prognosis, and most patients initially are or rapidly become unresponsive to platinum-based chemotherapy. MicroRNA-31 (miR-31) is encoded on a genomic fragile site, 9p21.3, which is reportedly lost in many MPM tumors. Based on previous findings in a variety of other cancers, we hypothesized that miR-31 alters chemosensitivity and that miR-31 reconstitution may influence sensitivity to chemotherapeutics in MPM. Reintroduction of miR-31 into miR-31 null NCI-H2452 cells significantly enhanced clonogenic resistance to cisplatin and carboplatin. Although miR-31 re-expression increased chemoresistance, paradoxically, a higher relative intracellular accumulation of platinum was detected. This was coupled to a significantly decreased intranuclear concentration of platinum. Linked with a downregulation of OCT1, a bipotential transcriptional regulator with multiple miR-31 target binding sites, we subsequently identified an indirect miR-31-mediated upregulation of ABCB9, a transporter associated with drug accumulation in lysosomes, and increased uptake of platinum to lysosomes. However, when overexpressed directly, ABCB9 promoted cellular chemosensitivity, suggesting that miR-31 promotes chemoresistance largely via an ABCB9-independent mechanism. Overall, our data suggest that miR-31 loss from MPM tumors promotes chemosensitivity and may be prognostically beneficial in the context of therapeutic sensitivity.
Collapse
Affiliation(s)
- Hannah L Moody
- School of Life Sciences, University of Hull, Hull HU6 7RX, UK; Hull York Medical School, Hull HU6 7RX, UK
| | - Michael J Lind
- Hull York Medical School, Hull HU6 7RX, UK; Centre for Oncology and Haematology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, Cottingham HU16 5JQ, UK
| | - Stephen G Maher
- School of Life Sciences, University of Hull, Hull HU6 7RX, UK; Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
13
|
Kikuchi H, Sakakibara-Konishi J, Furuta M, Yokouchi H, Nishihara H, Yamazaki S, Uramoto H, Tanaka F, Harada M, Akie K, Sugaya F, Fujita Y, Takamura K, Kojima T, Harada T, Higuchi M, Honjo O, Minami Y, Watanabe N, Oizumi S, Suzuki H, Ishida T, Dosaka-Akita H, Isobe H, Munakata M, Nishimura M. Expression of Notch1 and Numb in small cell lung cancer. Oncotarget 2017; 8:10348-10358. [PMID: 28060745 PMCID: PMC5354663 DOI: 10.18632/oncotarget.14411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Notch signaling in tumorigenesis functions as an oncogene or tumor suppressor according to the type of malignancy. Numb represses intracellular Notch signaling. Previous studies have demonstrated that Notch signaling suppresses the proliferation of small cell lung cancer (SCLC) cell lines. However, in SCLC, the association between Notch1 and Numb expression and clinicopathological factors or prognosis has remained unclear. In this study, we evaluated the expression of Notch1 and Numb in SCLC. We immunohistochemically assessed 125 SCLCs that were surgically resected at 16 institutions participating in either the Hokkaido Lung Cancer Clinical Study Group Trial (HOT) or the Fukushima Investigative Group for Healing Thoracic Malignancy (FIGHT) between 2003 and 2013. Correlations between Notch1 or Numb expression and various clinicopathological features were evaluated. Notch1 expression was associated with ECOG performance status. Numb expression was associated with age, sex, and pathological histology (SCLC or Combined SCLC). Analysis of cellular biological expression did not demonstrate a significant correlation between the expression of Notch1 and of Numb. Multivariate Cox regression analysis showed that high Notch1 expression was an independent favorable prognostic factor for SCLC(hazard ratio = 0.503, P = 0.023). High Notch1 expression, but not Numb expression, is associated with favorable prognosis in SCLC.
Collapse
Affiliation(s)
- Hajime Kikuchi
- Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | - Megumi Furuta
- Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Hiroshi Yokouchi
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shigeo Yamazaki
- Department of Thoracic Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Hidetaka Uramoto
- Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu, Japan
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Fumihiro Tanaka
- Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu, Japan
| | - Masao Harada
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Kenji Akie
- Department of Respiratory Disease, Sapporo City General Hospital, Sapporo, Japan
| | - Fumiko Sugaya
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yuka Fujita
- Department of Respiratory Medicine, National Hospital Organization Asahikawa Medical Center, Asahikawa, Japan
| | - Kei Takamura
- Department of Medicine, Obihiro Kosei Hospital, Obihiro, Japan
| | - Tetsuya Kojima
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Toshiyuki Harada
- Center for Respiratory Diseases, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Mitsunori Higuchi
- Department of Thoracic Surgery, Fukushima Red Cross Hospital, Fukushima, Japan
- Department of Thoracic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Osamu Honjo
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo, Japan
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Yoshinori Minami
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Naomi Watanabe
- Department of Internal Medicine, Sunagawa City Medical Center, Sunagawa, Japan
| | - Satoshi Oizumi
- Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Hiroyuki Suzuki
- Department of Thoracic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ishida
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
- Clinical Oncology Center, Fukushima Medical University Hospital, Fukushima, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Isobe
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Mitsuru Munakata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masaharu Nishimura
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
14
|
Zhang J, Shao X, Sun H, Liu K, Ding Z, Chen J, Fang L, Su W, Hong Y, Li H, Li H. NUMB negatively regulates the epithelial-mesenchymal transition of triple-negative breast cancer by antagonizing Notch signaling. Oncotarget 2016; 7:61036-61053. [PMID: 27506933 PMCID: PMC5308634 DOI: 10.18632/oncotarget.11062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer with higher rates of early relapse and metastasis, is frequently associated with aberrant activation of epithelial-mesenchymal transition (EMT). Nonetheless, how EMT is initiated and regulated during TNBC progression is not well understood. Here, we report that NUMB is a negative regulator of EMT in both human mammary epithelial cells and breast cancer cells. Reduced NUMB expression was significantly associated with elevated EMT in TNBC. Conversely, overexpression of NUMB strongly attenuated the EMT program and metastasis of TNBC cell lines. Interestingly, we showed that NUMB employs different molecular mechanisms to regulate EMT. In normal mammary epithelial cells and breast cancer cells expressing wild-type p53, NUMB suppressed EMT by stabilizing p53. However, in TNBC cells, loss of NUMB facilitated the EMT program by activating Notch signaling. Consistent with these findings, low NUMB expression and high Notch activity were significantly correlated with the TNBC subtype in patients. Collectively, these findings reveal novel molecular mechanisms of NUMB in the regulation of breast tumor EMT, especially in TNBC.
Collapse
Affiliation(s)
- Jianchao Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ximing Shao
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haiyan Sun
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ke Liu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhihao Ding
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Juntao Chen
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Lijing Fang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wu Su
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yang Hong
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Huashun Li
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine and Advanced Institute of Translational Medicine, Shanghai 200123, China
- ATCG Corporation, BioBay, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Shan GP, Zhang P, Li P, Du FL, Yang YW. Numb Gene Enhances Radiation Sensitivity of Nonsmall Cell Lung Cancer Stem Cells. Cancer Biother Radiopharm 2016; 31:180-8. [PMID: 27310305 DOI: 10.1089/cbr.2016.2053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To study the effects of Numb gene expression on radiation sensitivity of nonsmall cell lung cancer (NSCLC) stem cells. MATERIALS AND METHODS The side population (SP) cells A549-SP were transfected with pcDNA3.1 (pcDNA3.1 group), pcDNA-Numb (pcDNA-Numb group) and shRNA-Numb (shRNA-Numb group). Real-time quantitative polymerase chain reaction and Western blot were performed to determine Numb expression; MTT method was used to measure the proliferation activity change of the NSCLC stem cells both before and after irradiation with different doses of 60Coγ ray; Hoechst staining and Annexin V-FITC/PI were used to detect the apoptosis of the NSCLC stem cells; and colony-forming assay was used to determine the effect of Numb expression on radiation sensitivity of the NSCLC stem cells. RESULTS Increased mRNA and protein expressions of the A549-SP cells were found in the pcDNA-Numb group, and decreased mRNA and protein expressions were found in the shRNA-Numb group. The optical density value of the cells decreased in the pcDNA-Numb group but increased in the shRNA-Numb group. The cells with over-expressed Numb showed obvious nuclear condensation and fragmentation; the apoptosis rate increased significantly. The cells with knockdown Numb showed less nuclear damage; the apoptosis rate significantly decreased. After irradiation, the cells in the pcDNA-Numb group showed decreased survival rate, clonality, and the values of D0, Dq, N, and SF2; whereas the cells in the shRNA-Numb group showed the opposite trend. CONCLUSIONS Radiation sensitivity of NSCLC stem cells was enhanced with the increase of Numb expression. Determination of Numb expression helped to evaluate the response of lung cancer to radiotherapy, which was important for guiding tumor treatment clinically.
Collapse
Affiliation(s)
- Guo-Ping Shan
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Peng Zhang
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Pu Li
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Feng-Lei Du
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Yi-Wei Yang
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| |
Collapse
|
16
|
Wang C, Feng W, Zhang C. The Expression and Function of NUMB in Endometrial Cancer and the Interaction with HDM2 and P53. J Cancer 2015; 6:1030-40. [PMID: 26366217 PMCID: PMC4565853 DOI: 10.7150/jca.11970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Since more and more evidences support that NUMB orchestrates many cell physiological and pathological processes of diseases including cancer, based on our previous work, we studied deeply the function of NUMB in endometrial cancer (EC) and tried to understand the mechanism of NUMB's nucleus translocation which might be relative to the occurrence of EC and will contribute to find a new targeting therapeutic strategy for EC. Methods: Immunohistochemistry was employed to test NUMB and HDM2 expression in endometrial cancer tissue from clinical patients. CCK-8 assay, cell cycle tested by Flow cytometer and PCNA determined by RT-PCR were employed to test the effects of NUMB on cell proliferation and apoptosis. In order to investigate the mechanism how NUMB, HDM2 and p53 interact in EC cell, western blot, Co-IP and immunofluorescent were used to observe the combination and location of NUMB, HDM2 and p53 as well as the interaction among them. Results: Both NUMB and HDM2 expressed greater in endometrial cancer tissues than in normal endometrial tissues. Overexpression of NUMB induced apoptosis in Ishikawa cell while inhibition of NUMB increased cell proliferation. NUMB could combine HDM2 and p53, moreover the PTB domain of NUMB is the main site combining with p53. The effects of NUMB in cell was closely associated with p53. Not only NUMB regulated P53 expression level but also NUMB acts depending on P53, in turn p53 impacted the NUMB level as a feedback. Overexpression of NUMB could not bring itself into nuclear. Both siHDM2 and siP53 didn't bring NUMB into nucleus, However overexpression of HDM2 and p53 increased the NUMB level in nucleus, and the NUMB nuclear location induced by overexpression of HDM2 was stronger than that of p53 overexpression. Conclusions: Based on present data, we think NUMB acts as an anti-oncogene role and could regulate p53 level and function in endometrial cancer like in other cancers, meanwhile, the function of NUMB depend on P53. On the other hand, the location of NUMB could be regulated mainly by HDM2. So far we are not able to explain why endometrial cancer patients had high NUMB expression level since NUMB was regarded as a tumor suppressor, which is worthy studying further to explore underlying mechanism.
Collapse
Affiliation(s)
- Chao Wang
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology hospital of Fu Dan University, Shang Hai, China
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology hospital of Fu Dan University, Shang Hai, China
| | - Chuyao Zhang
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology hospital of Fu Dan University, Shang Hai, China
| |
Collapse
|
17
|
Bajaj J, Zimdahl B, Reya T. Fearful symmetry: subversion of asymmetric division in cancer development and progression. Cancer Res 2015; 75:792-7. [PMID: 25681272 DOI: 10.1158/0008-5472.can-14-2750] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asymmetric division is an evolutionarily conserved process that generates daughter cells with different fates through the unequal partitioning of fate determinants. While asymmetric division is critically important in generating diversity during development, its dysregulation can also promote oncogenesis. In particular, signals that shift the normal balance of symmetric and asymmetric division can lead to a differentiation arrest and trigger cancer progression. Here, we discuss the studies that have provided increasing support for this idea. Beginning with original work carried out in Drosophila, we trace more recent work in mammalian systems that suggest that the subversion of asymmetric division can contribute significantly to the development and progression of both hematologic malignancies and solid cancers.
Collapse
Affiliation(s)
- Jeevisha Bajaj
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, California. Sanford Consortium for Regenerative Medicine, La Jolla, California. Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California
| | - Bryan Zimdahl
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, California. Sanford Consortium for Regenerative Medicine, La Jolla, California. Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California
| | - Tannishtha Reya
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, California. Sanford Consortium for Regenerative Medicine, La Jolla, California. Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
18
|
Belle VA, McDermott N, Meunier A, Marignol L. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol 2014; 11:499-507. [PMID: 25134838 PMCID: PMC5240474 DOI: 10.1038/nrurol.2014.195] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is among the most prevalent life-threatening cancers diagnosed in the male population today. Various methods have been exploited in an attempt to treat this disease but these treatments, alongside preventative tactics, have been insufficient to control mortality rates and have usually resulted in detrimental adverse events. An opportunity to devise more-specific and potentially more-effective approaches for the eradication of prostate tumours can be found by targeting specific biological pathways. NUMB (protein numb homologue), a key regulator of cell fate, represents an attractive, actionable target in prostate cancer. NUMB participates in the observed deregulation of NOTCH (neurogenic locus notch homologue protein) signalling in prostate tumours, and the NUMB-NOTCH interaction regulates cell fate. NUMB has potential both as a target for control of prostate tumorigenesis and as a biomarker for identification of patients with prostate cancer who are likely to benefit from NOTCH inhibition.
Collapse
Affiliation(s)
| | - Niamh McDermott
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin 8, Ireland
| | - Armelle Meunier
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin 8, Ireland
| | - Laure Marignol
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin 8, Ireland
| |
Collapse
|