1
|
Ao X, Ji G, Zhang B, Ding W, Wang J, Liu Y, Xue J. Role of apoptosis repressor with caspase recruitment domain in human health and chronic diseases. Ann Med 2024; 56:2409958. [PMID: 39351758 PMCID: PMC11445919 DOI: 10.1080/07853890.2024.2409958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly potent and multifunctional suppressor of various types of programmed cell death (PCD) (e.g. apoptosis, necroptosis, and pyroptosis) and plays a key role in determining cell fate. Under physiological conditions, ARC is predominantly expressed in terminally differentiated cells, such as cardiomyocytes and skeletal muscle cells. Its expression and activity are tightly controlled by a complicated system consisting of transcription factor (TF), non-coding RNA (ncRNA), and post-translational modification (PTM). ARC dysregulation has been shown to be closely associated with many chronic diseases, including cardiovascular disease, cancer, diabetes, and neurodegenerative disease. However, the detailed mechanisms of ARC involved in the progression of these diseases remain unclear to a large extent. In this review, we mainly focus on the regulatory mechanisms of ARC expression and activity and its role in PCD. We also discuss the underlying mechanisms of ARC in health and disease and highlight the potential implications of ARC in the clinical treatment of patients with chronic diseases. This information may assist in developing ARC-based therapeutic strategies for patients with chronic diseases and expand researchers' understanding of ARC.
Collapse
Affiliation(s)
- Xiang Ao
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, Shandong, P.R. China
| | - Bingqiang Zhang
- Institute for Restore Biotechnology, Qingdao Restore Biotechnology Co., Ltd, Qingdao, Shandong, P.R. China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao Restore Biotechnology Co., Ltd, Qingdao, P.R. China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ying Liu
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, P.R. China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
2
|
Qing Yan Li Ge Tang, a Chinese Herbal Formula, Induces Autophagic Cell Death through the PI3K/Akt/mTOR Pathway in Nasopharyngeal Carcinoma Cells In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9925684. [PMID: 34765012 PMCID: PMC8577896 DOI: 10.1155/2021/9925684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
Since a portion of patients with nasopharyngeal carcinoma (NPC) do not benefit much from current standard treatments, it is still needed to discover new therapeutic drugs to improve the prognosis of the patients. Considering that Chinese traditional medicine plays a role in inhibiting tumor progression, in this study, we aimed to investigate whether a Chinese herbal formula, Qing Yan Li Ge Tang (QYLGT), has the anticancer activity in NPC cells and explore the underlying mechanism as well. MTT assay, colony formation assay, immunoblotting assay, and DNA laddering assay were performed to assess cell viability, cell colony formation, protein expression, and DNA fragmentation, respectively. Results show that QYLGT was able to inhibit the cell viability and decrease colony formation ability in NPC cells. QYLGT could also increase the formation of intracellular vacuoles and induce the autophagy-related protein expressions, including Atg3, Atg6, and Atg12-Atg5 conjugate in NPC cells. Treatment with an autophagy inhibitor, 3-methyladenine, could significantly recover QYLGT-inhibited cell viability of NPC cells. In addition, QYLGT did not significantly induce apoptosis in NPC cells. We also found that QYLGT had the ability to activate phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway. Treatment with PI3K inhibitors, LY294002 and wortmannin, or mTOR inhibitors, rapamycin and Torin 1, could not only recover QYLGT-inhibited cell viability of NPC cells but also inhibit Atg3 expression. Taken together, our results demonstrated that QYLGT could induce autophagic cell death in NPC cells through the PI3K/Akt/mTOR pathway.
Collapse
|
3
|
Zhong Y, Bejjanki NK, Miao X, Weng H, Li Q, Zhang J, Liu T, Vannam R, Xie M. Synthesis and Photothermal Effects of Intracellular Aggregating Nanodrugs Targeting Nasopharyngeal Carcinoma. Front Bioeng Biotechnol 2021; 9:730925. [PMID: 34604188 PMCID: PMC8481884 DOI: 10.3389/fbioe.2021.730925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy for the treatment of nasopharyngeal carcinoma (NPC) is usually associated with many side effects; therefore, its treatment options have not yet been completely resolved. Improving distribution to the targeted tumor region and enhancing the cellular uptake of drugs can efficiently alleviate the above adverse medical effects. Near-infrared (NIR) laser light-mediated photothermal therapy (PTT) and photodynamic therapy (PDT) are promising strategies for cancer treatment. In the present study, we developed an efficient multifunctional nanocluster with enhanced targeting and aggregation efficiency for PTT and PDT that is composed of a biocompatible folic acid (FA), indocyanine green (ICG) and 2-cyanobenzothiazole (CBT)-functionalized peptide labeled with an aldehyde sodium alginate-modified magnetic iron oxide nanoparticle (ASA-MNP)-based nanocarrier. FA can bind to folate receptors on cancer cell membranes to enhance nanocluster uptake. CBT-modified peptide can react with glutathione (GSH), which is typically present at higher levels in cancer cells, to form intracellular aggregates and increase the local concentration of the nanodrug. In in vitro studies, these nanodrugs displayed the desired uptake capacity by NPC cells and the ability to suppress the growth of cancer cells under laser irradiation. Animal studies validated that these nanodrugs are safe and nontoxic, efficiently accumulate in NPC tumor sites following injection via the caudal vein, and shows superior inhibition of tumor growth in a tumor-bearing mouse model upon near-infrared laser irradiation. The results indicate the potential application of the multifunctional nanoparticles (NPs), which can be used as a new method for the treatment of folate receptor-positive NPC.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Naveen Kumar Bejjanki
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Xiangwan Miao
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huanhuan Weng
- Department of Thyroid Surgery, Shantou Central Hospital, Shantou, China
| | - Quanming Li
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Juan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Raghu Vannam
- Piramal Pharma Solutions, Riverview, MI, United States
| | - Minqiang Xie
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| |
Collapse
|
4
|
Li J, Hu C, Chao H, Zhang Y, Li Y, Hou J, Huang L. Exosomal transfer of miR-106a-5p contributes to cisplatin resistance and tumorigenesis in nasopharyngeal carcinoma. J Cell Mol Med 2021; 25:9183-9198. [PMID: 34469038 PMCID: PMC8500979 DOI: 10.1111/jcmm.16801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC), a subclass of cancers of the neck and head, is a predominant cause of cancer‐associated death worldwide. Hence, there is a critical need for research into NPC‐related treatment strategies. Cisplatin is a promising therapy option for NPCs and other cancers that is frequently utilized. Some patients acquire resistance to cisplatin therapy, which complicates the successful use of cisplatin treatment in NPCs. Although exosomal transfer of oncogenic miRNAs has been shown to improve recipient cell proliferation, metastasis and chemoresistance, the molecular mechanism behind this effect on NPC has yet to be fully understood. Exosomal microRNAs (miRNAs) from cisplatin‐resistant cells were identified as significant mediators of chemoresistance in NPC cells in this investigation. Initially, we found that exosomal miR‐106a‐5p levels in the serum of chemoresistant and last‐cycle patients were greater than in that of non‐resistant and first‐cycle patients. Also, exosomal miR‐106a‐5p enhanced the proliferative ability of NPC cells. Mechanistically, exosomal miR‐106a‐5p targets ARNT2, which further activates AKT phosphorylation, and thus promotes NPC cell proliferation, decreases apoptosis and in turn regulates tumorigenesis. We found similar results using in vivo NPC models, where exosomal miR‐106a‐5p through regulation of ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) promoted tumorigenesis. Taken together, these findings indicate that exosomal miR‐106a‐5p could be a promising diagnostic biomarker and drug target for patients with NPC.
Collapse
Affiliation(s)
- Jiaxing Li
- Guizhou university medical college, Guiyang, China
| | - Chaoquan Hu
- Department of Surgery, Affiliated Hospital, GuiZhou Medical University, Guiyang, China
| | - Hui Chao
- Department of Oncology, Guizhou Cancer Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu Zhang
- Department of Oncology, Guizhou Cancer Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yong Li
- Department of Oncology, Guizhou Cancer Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jing Hou
- Department of Oncology, Guizhou Cancer Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Limin Huang
- Guizhou university medical college, Guiyang, China.,Department of Oncology, Guizhou Cancer Center, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
5
|
Roser C, Tóth C, Renner M, Herpel E, Schirmacher P. Expression of apoptosis repressor with caspase recruitment domain (ARC) in familial adenomatous polyposis (FAP) adenomas and its correlation with DNA mismatch repair proteins, p53, Bcl-2, COX-2 and beta-catenin. Cell Commun Signal 2021; 19:15. [PMID: 33579312 PMCID: PMC7879509 DOI: 10.1186/s12964-020-00702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Colorectal familial adenomatous polyposis (FAP) adenomas exhibit a uniform pathogenetic basis caused by a germline mutation in the adenomatous polyposis gene (APC), but the molecular changes leading to their development are incompletely understood. However, dysregulated apoptosis is known to substantially affect the development of colonic adenomas. One of the key regulatory proteins involved in apoptosis is apoptosis repressor with caspase recruitment domain (ARC). Methods The expression of nuclear and cytoplasmic ARC in 212 adenomas from 80 patients was analyzed by immunohistochemistry. We also compared expression levels of ARC with the expression levels of p53, Bcl-2, COX-2, and MMR proteins. Statistical analyses were performed by Spearman’s rank correlation and linear regression test. Results ARC was overexpressed in the nuclei and cytoplasm of most FAP adenomas investigated. Cytoplasmic ARC staining was moderately stronger (score 2) in 49.1% (n = 104/212) and substantially stronger (score 3) in 32.5% (n = 69/212) of adenomas compared to non-tumorous colorectal mucosa. In 18.4% (n = 39/212) of adenomas, cytoplasmic ARC staining was equivalent to that in non-tumorous mucosa. Nuclear expression of ARC in over 75% of cells was present in 30.7% (n = 65/212) of investigated adenomas, and nuclear expression in 10–75% of cells was detected in 62.7% (n = 133/212). ARC expression in under 10% of nuclei was found in 6.6% (n = 14/212) of adenomas. The correlation between nuclear ARC expression and cytoplasmic ARC expression was highly significant (p = 0.001). Moreover, nuclear ARC expression correlated positively with overexpression of Bcl-2, COX-2 p53 and β-catenin. Cytoplasmic ARC also correlated with overexpression of Bcl-2. Sporadic MMR deficiency was detected in very few FAP adenomas and showed no correlation with nuclear or cytoplasmic ARC. Conclusions Our results demonstrated that both cytoplasmic and nuclear ARC are overexpressed in FAP adenomas, thus in a homogenous collective. The highly significant correlation between nuclear ARC and nuclear β-catenin suggested that ARC might be regulated by β-catenin in FAP adenomas. Because of its further correlations with p53, Bcl-2, and COX-2, nuclear ARC might play a substantial role not only in carcinomas but also in precursor lesions. Video Abstract
Collapse
Affiliation(s)
- Christoph Roser
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany. .,Department of Orthodontics and Dentofacial Orthopaedics, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Csaba Tóth
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Trier MVZ for Histology, Cytology and Molecular Diagnostics, Max-Planck-Straße 5, 54296, Trier, Germany
| | - Marcus Renner
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Zhou D, Ye C, Pan Z, Deng Y. SATB1 Knockdown Inhibits Proliferation and Invasion and Decreases Chemoradiation Resistance in Nasopharyngeal Carcinoma Cells by Reversing EMT and Suppressing MMP-9. Int J Med Sci 2021; 18:42-52. [PMID: 33390772 PMCID: PMC7738962 DOI: 10.7150/ijms.49792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Special AT-rich sequence binding protein 1 (SATB1) is a chromatin organizer and transcriptional regulator which regulate numerous cellular processes through effects on multiple gene expression. SATB1 is associated with drug resistance in several cancers. Whether SATB1 involves radiation resistance in nasopharyngeal carcinoma (NPC) and underlying mechanism of SATB1 to participate in chemoradiotherapy resistance in NPC have not been elaborated. Methods: Chemoradioresistant NPC cell lines 5-8F/DDP (cisplatin) and 5-8F/R (radiation) were developed from 5-8F cell line. The expressions of SATB1, MMP-9 and EMT markers (Vimentin and E-cadherin) in these cell lines were examined by reverse transcription-quantitative (RT-q) PCR and western blot (WB) analysis. Cell viabilities of 5-8F/DDP treated with various concentrations of DDP and 5-8F/R irradiated with various doses of X-ray at the indicated time were investigated by MTT test. SATB1 was silenced in 5-8F/DDP and 5-8F/R cells by short hairpin RNA, and then the expressions of SATB1, MMP-9, Vimentin and E-cadherin were evaluated by RT-qPCR and WB analysis; the abilities of cell proliferation and invasion were assessed using MTT and transwell assays, respectively. Drug and radiation resistance assays were performed after SATB1 knockdown and cell viability was detected by MTT method. Results: SATB1, MMP-9 and Vimentin were markedly upregulated in 5-8F/DDP and 5-8F/R cells compared with 5-8F cell, whereas E-cadherin was obviously downregulated. 5-8F/DDP and 5-8F/R cells displayed drug and radiation resistance to DDP or X-irradiation, respectively, while DDP or X-irradiation inhibited 5-8F cell viability in a time- and dose-dependent manner. Subsequently, knockdown of SATB1 resulted in decreased MMP-9 and Vimentin expression and increased E-cadherin expression in 5-8F/DDP and 5-8F/R. Furthermore, silencing of SATB1 suppressed proliferative and invasive abilities of 5-8F/DDP and 5-8F/R cells. Additionally, SATB1 knockdown reduced drug resistance of 5-8F/DDP cell to DDP and decreased radiation resistance of 5-8F/R cell to X-ray. Conclusion: These results suggest that high expression of SATB1 plays an important role in the malignant behavior of NPC and leads to X-radiation and drug resistance in NPC through promoting EMT process and enhancing MMP-9 expression. SATB1 may be a promising therapeutic target for aggressive and chemoradiation resistant NPC.
Collapse
Affiliation(s)
- Dongni Zhou
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Chunsheng Ye
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Zhiyong Pan
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yanfei Deng
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.,Union School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Zhang Z, Wang L, Wang Q, Zhang M, Wang B, Jiang K, Ye Y, Wang S, Shen Z. Molecular Characterization and Clinical Relevance of RNA Binding Proteins in Colorectal Cancer. Front Genet 2020; 11:580149. [PMID: 33193701 PMCID: PMC7597397 DOI: 10.3389/fgene.2020.580149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Abnormal expression of RNA binding proteins (RBPs) has been reported across various cancers. However, the potential role of RBPs in colorectal cancer (CRC) remains unclear. In this study, we performed a systematic bioinformatics analysis of RBPs in CRC. We downloaded CRC data from The Cancer Genome Atlas (TCGA) database. Our analysis identified 242 differentially expressed RBPs between tumor and normal tissues, including 200 upregulated and 42 downregulated RBPs. Next, we found eight RBPs (RRS1, PABPC1L, TERT, SMAD6, UPF3B, RP9, NOL3, and PTRH1) related to the prognoses of CRC patients. Among these eight prognosis-related RBPs, four RBPs (NOL3, PTRH1, UPF3B, and SMAD6) were selected to construct a prognostic risk score model. Furthermore, our results indicated that the prognostic risk score model accurately predicted the prognosis of CRC patients [area under the receiver operating characteristic curve (AUC)for 3- and 5-year overall survival (OS) and was 0.645 and 0.672, respectively]. Furthermore, we developed a nomogram based on a prognostic risk score model. The nomogram was able to demonstrate the wonderful performance in predicting 3- and 5-year OS. Additionally, we validated the clinical value of four risk genes in the prognostic risk score model and identified that these risk genes were associated with tumorigenesis, lymph node metastasis, distant metastasis, clinical stage, and prognosis. Finally, we used the TIMER and Human Protein Atlas (HPA)database to validate the expression of four risk genes at the transcriptional and translational levels, respectively, and used a clinical cohort to validate the roles of NOL3 and UPF3B in predicting the prognosis of CRC patients. In summary, our study demonstrated that RBPs have an effect on CRC tumor progression and might be potential prognostic biomarkers for CRC patients.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ling Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Mengmeng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| |
Collapse
|
8
|
Guan S, Wei J, Huang L, Wu L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem 2020; 207:112758. [PMID: 32858472 DOI: 10.1016/j.ejmech.2020.112758] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) and occurs frequently in the south of China and Southeast Asian countries. Concurrent chemo-radiotherapy is one of the main treatments for NPC. Although, the combined treatment of chemo-radiotherapy produces a satisfying survival rate, the chemo-resistance arises as a big obstacle in curing recurrent NPC patients. The acquirement of chemo-resistance is usually along with a poor prognosis. So far, the mechanism of chemo-resistance in NPC has not been fully elucidated and there have not been a comprehensive review on this issue. Thus, it is of great significance to summarize the mechanisms involved in NPC chemo-resistance. In this review, the importance and limitations of chemotherapy and the mechanisms of chemo-resistances in NPC were discussed.
Collapse
Affiliation(s)
- Shuzhen Guan
- Medical College of Guangxi University, Nanning, 530004, China
| | - Jinrui Wei
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, PR China
| | - Lingkun Huang
- Medical College of Guangxi University, Nanning, 530004, China
| | - Lichuan Wu
- Medical College of Guangxi University, Nanning, 530004, China.
| |
Collapse
|
9
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019; 18:5691-5698. [PMID: 31788041 PMCID: PMC6865693 DOI: 10.3892/ol.2019.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
10
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019. [PMID: 31788041 DOI: 10.3892/ol.2019.10981/abstract] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
11
|
Pu L, Su L, Kang X. The efficacy of cisplatin on nasopharyngeal carcinoma cells may be increased via the downregulation of fibroblast growth factor receptor 2. Int J Mol Med 2019; 44:57-66. [PMID: 31115494 PMCID: PMC6559331 DOI: 10.3892/ijmm.2019.4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cisplatin is one of the primary compounds used in the treatment of nasopharyngeal carcinoma (NPC), and fibroblast growth factor receptor 2 (FGFR2) has emerged to be a promising target for treatment in various tumors. Therefore, the present study aimed to explore whether the expression levels of FGFR2 in NPC tissues and cell lines were altered, and whether the efficiency of cisplatin was increased following the downregulation of FGFR2. The downregulation of FGFR2 was achieved by transfection with a small interfering RNA against FGFR2. Tissues of patients with NPC were analyzed by immunohistochemistry. Cell viability was examined using a Cell Counting Kit‑8 assay. Cell cycle analysis was performed using flow cytometry. mRNA and protein levels were measured by reverse transcription quantitative polymerase chain reaction and western blot analysis, respectively. FGFR2 was observed to be overexpressed in cancer tissues of patients with NPC and in the NPC SUNE1, C666‑1, 6‑10B and HNE‑3 cell lines, and resulted in an unfavorable prognosis. Cisplatin treatment decreased cell viability and increased FGFR2 expression. The silencing of FGFR2 was demonstrated to augment the effects of cisplatin treatment, including decreasing the cell viability and inducing cell cycle arrest, which involved the increase and decrease of the durations of G1 and S phases, respectively, and a decrease in the expression levels of cyclin D1 and CDC25A, and increasing the rate of apoptosis via the intrinsic apoptosis pathway, as demonstrated by the upregulation of cleaved caspase‑3 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein and downregulation of Bcl‑2, in SUNE1 and C666‑1 cell lines. FGFR2 was overexpressed in the cancer tissues of patients with NPC and in NPC cell lines, resulting in an unfavorable prognosis. The downregulation of FGFR2 decreased cell viability via cell cycle arrest at G1 phase, and increased the efficacy of the cisplatin‑based induction of apoptosis through the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Li Pu
- Department of Otolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Lizhong Su
- Department of Otolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xixun Kang
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| |
Collapse
|
12
|
Apoptosis repressor with caspase recruitment domain deficiency accelerates ischemia/reperfusion (I/R)-induced acute kidney injury by suppressing inflammation and apoptosis: The role of AKT/mTOR signaling. Biomed Pharmacother 2019; 112:108681. [PMID: 30970510 DOI: 10.1016/j.biopha.2019.108681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a significant medical problem worldwide. Ischemia-reperfusion (I/R) injury of the kidney is a major cause of AKI. However, the pathogenesis that contributes to renal I/R injury is still unclear. Apoptosis repressor with caspase recruitment domain (ARC) is abundantly expressed in various tissues, and has been reported to play a strong protective role during pathological processes. Our results indicated that ARC expression was decreased in the reperfused kidneys. ARC deficiency markedly accelerated renal dysfunction, promoted reperfusion-regulated tubular epithelial cell apoptosis, and enhanced the vulnerability of kidney to I/R damage. Furthermore, in the kidney samples of mice underwent renal I/R injury, ARC knockout significantly accelerated the expression levels of inflammatory factors, including interleukin (IL)-1β, IL-6, tumor necrosis factor a (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IL-2. In addition, renal I/R injury-induced apoptosis was further exacerbated in ARC-deficient mice through promoting the expression of cleaved Caspase-3 and poly (ADP-ribose) polymerase (PARP). From the molecular level, ARC deletion obviously accelerated mitochondrial injury, as evidenced by the further decreased adenosine triphosphate (ATP) levels and mitochondrial potential in hypoxia-reoxygenation (H/R)-treated cells. Moreover, ARC knockout exacerbated AKI through activating phosphorylated protein kinase B (AKT), mammalian target of Rapamycin (mTOR) and p53, whereas reducing phosphorylated glycogen synthase kinase 3β (GSK3β). Of note, blocking AKT/mTOR signaling markedly attenuated inflammation, mitochondrial damage and apoptosis stimulated by H/R in ARC knockdown cells. In summary, our results suggested that ARC played a pivotal role in the pathogenesis of AKI induced by renal I/R operation through regulating AKT/mTOR signaling.
Collapse
|
13
|
Shen W, Feng Z, Wang P, Zhang J. FAM172A controls endoplasmic reticulum (ER) stress related to NF-κB signaling pathway in hepatocellular carcinoma. RSC Adv 2017. [DOI: 10.1039/c7ra09918e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FAM172A is an anti-oncogene and plays a vital role in controlling cell proliferation and cell cycle by inducing the arrest of G1/S.
Collapse
Affiliation(s)
- Wenfeng Shen
- Department of Ultrasound
- The Affiliated Hospital of Inner Mongolia Medical University
- Hohhot
- China
| | - Zhiqiang Feng
- Department of Hepatobiliary Surgery
- Air Force General Hospital
- Beijing 100142
- China
| | - Ping Wang
- Department of Nuclear Magnetic Resonance
- Air Force General Hospital
- Beijing 100142
- China
| | - Jinqian Zhang
- Department of Laboratory Medicine
- Guangdong Second Provincial General Hospital
- Southern Medical University
- Guangzhou 510317
- China
| |
Collapse
|
14
|
McKimpson WM, Yuan Z, Zheng M, Crabtree JS, Libutti SK, Kitsis RN. The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth. PLoS One 2015; 10:e0145792. [PMID: 26709830 PMCID: PMC4692498 DOI: 10.1371/journal.pone.0145792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/08/2015] [Indexed: 01/09/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a genetic disorder characterized by tissue-specific tumors in the endocrine pancreas, parathyroid, and pituitary glands. Although tumor development in these tissues is dependent upon genetic inactivation of the tumor suppressor Men1, loss of both alleles of this gene is not sufficient to induce these cancers. Men1 encodes menin, a nuclear protein that influences transcription. A previous ChIP on chip analysis suggested that menin binds promoter sequences of nol3, encoding ARC, which is a cell death inhibitor that has been implicated in cancer pathogenesis. We hypothesized that ARC functions as a co-factor with Men1 loss to induce the tissue-restricted distribution of tumors seen in MEN1. Using mouse models that recapitulate this syndrome, we found that biallelic deletion of Men1 results in selective induction of ARC expression in tissues that develop tumors. Specifically, loss of Men1 in all cells of the pancreas resulted in marked increases in ARC mRNA and protein in the endocrine, but not exocrine, pancreas. Similarly, ARC expression increased in the parathyroid with inactivation of Men1 in that tissue. To test if ARC contributes to MEN1 tumor development in the endocrine pancreas, we generated mice that lacked none, one, or both copies of ARC in the context of Men1 deletion. Studies in a cohort of 126 mice demonstrated that, although mice lacking Men1 developed insulinomas as expected, elimination of ARC in this context did not significantly alter tumor load. Cellular rates of proliferation and death in these tumors were also not perturbed in the absence of ARC. These results indicate that ARC is upregulated by loss Men1 in the tissue-restricted distribution of MEN1 tumors, but that ARC is not required for tumor development in this syndrome.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
| | - Ziqiang Yuan
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
| | - Min Zheng
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States of America
| | - Steven K. Libutti
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
| | - Richard N. Kitsis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
- * E-mail:
| |
Collapse
|
15
|
Stefanucci A, Mosquera J, Vázquez E, Mascareñas JL, Novellino E, Mollica A. Synthesis, Characterization, and DNA Binding Profile of a Macrocyclic β-Sheet Analogue of ARC Protein. ACS Med Chem Lett 2015; 6:1220-4. [PMID: 26713108 DOI: 10.1021/acsmedchemlett.5b00363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
ARC repressor (apoptosis repressor with caspase recruitment domain) is a protein which binds selectively to a specific sequence of DNA. In humans, ARC is primarily expressed in striated muscle tissue, which normally does not undergo rapid cell turnover. This suggests that ARC may play a protective role in the prevention against Duchenne Muscular Dystrophy and several types of tumors. In this Letter we report the synthesis, characterization, and conformational analysis of a β-sheet ARC repressor mimetic, based on the amino acid sequence of the β-sheet domain in the ARC protein. The ability of this β-sheet macrocycle to bind to double-stranded DNA was also evaluated using spectroscopic methods. Our data show that the synthetic peptide has a defined conformation and is able to bind DNA with reasonable affinity. These initial results lay the groundwork for the design of novel β-sheets folded peptides as valuable substitutes of transcription factor proteins in drug therapy.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento
di Chimica, Sapienza, Università di Roma, P.le A. Moro
5, 00187 Rome, Italy
| | - Jesús Mosquera
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Eugènio Vázquez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - José L. Mascareñas
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|