1
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
2
|
Pillai U J, Ray A, Maan M, Dutta M. Repurposing drugs targeting metabolic diseases for cancer therapeutics. Drug Discov Today 2023; 28:103684. [PMID: 37379903 DOI: 10.1016/j.drudis.2023.103684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hurdles in the identification of new drugs for cancer treatment have made drug repurposing an increasingly appealing alternative. The approach involves the use of old drugs for new therapeutic purposes. It is cost-effective and facilitates rapid clinical translation. Given that cancer is also considered a metabolic disease, drugs for metabolic disorders are being actively repurposed for cancer therapeutics. In this review, we discuss the repurposing of such drugs approved for two major metabolic diseases, diabetes and cardiovascular disease (CVD), which have shown potential as anti-cancer treatment. We also highlight the current understanding of the cancer signaling pathways that these drugs target.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Anindita Ray
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Meenu Maan
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE; New York University-Abu Dhabi, Abu Dhabi, UAE.
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE.
| |
Collapse
|
3
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Pal S, Rahman J, Mu S, Rusch NJ, Stolarz AJ. Drug-Related Lymphedema: Mysteries, Mechanisms, and Potential Therapies. Front Pharmacol 2022; 13:850586. [PMID: 35308247 PMCID: PMC8930849 DOI: 10.3389/fphar.2022.850586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The lymphatic circulation is an important component of the circulatory system in humans, playing a critical role in the transport of lymph fluid containing proteins, white blood cells, and lipids from the interstitial space to the central venous circulation. The efficient transport of lymph fluid critically relies on the rhythmic contractions of collecting lymph vessels, which function to "pump" fluid in the distal to proximal direction through the lymphatic circulation with backflow prevented by the presence of valves. When rhythmic contractions are disrupted or valves are incompetent, the loss of lymph flow results in fluid accumulation in the interstitial space and the development of lymphedema. There is growing recognition that many pharmacological agents modify the activity of ion channels and other protein structures in lymph muscle cells to disrupt the cyclic contraction and relaxation of lymph vessels, thereby compromising lymph flow and predisposing to the development of lymphedema. The effects of different medications on lymph flow can be understood by appreciating the intricate intracellular calcium signaling that underlies the contraction and relaxation cycle of collecting lymph vessels. For example, voltage-sensitive calcium influx through long-lasting ("L-type") calcium channels mediates the rise in cytosolic calcium concentration that triggers lymph vessel contraction. Accordingly, calcium channel antagonists that are mainstay cardiovascular medications, attenuate the cyclic influx of calcium through L-type calcium channels in lymph muscle cells, thereby disrupting rhythmic contractions and compromising lymph flow. Many other classes of medications also may contribute to the formation of lymphedema by impairing lymph flow as an off-target effect. The purpose of this review is to evaluate the evidence regarding potential mechanisms of drug-related lymphedema with an emphasis on common medications administered to treat cardiovascular diseases, metabolic disorders, and cancer. Additionally, although current pharmacological approaches used to alleviate lymphedema are largely ineffective, efforts are mounting to arrive at a deeper understanding of mechanisms that regulate lymph flow as a strategy to identify novel anti-lymphedema medications. Accordingly, this review also will provide information on studies that have explored possible anti-lymphedema therapeutics.
Collapse
Affiliation(s)
- Soumiya Pal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jenat Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
5
|
Metabolomic Study on Nude Mice Models of Gastric Cancer Treated with Modified Si Jun Zi Tang via HILIC UHPLC-Q-TOF/MS Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3817879. [PMID: 31341492 PMCID: PMC6612382 DOI: 10.1155/2019/3817879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Recently, metabolomic methods have been used to explore the complex pathogenesis of cancer and the mechanism of action of traditional Chinese medicine (TCM) formulae. In this study, first, modified Si Jun Zi Tang (MSJZT) was prepared with strict quality control using the instrument method of ultra performance liquid chromatography and photodiode array detector (UPLC-PDA). Subsequently, in vivo experiments with tumour-bearing nude mice demonstrated that MSJZT exerted good antitumour effects. MSJZT not only significantly increased mouse body weight but also shrank the tumour volume. Then, the HILIC UHPLC-Q-TOF/MS-based metabolomics approach was used for exploring the pathogenesis of gastric cancer and the molecular mechanism of MSJZT. A total of 59 potential biomarkers in plasma were identified, and 6 pathways were found to be disturbed in gastric cancer. In contrast, after 3 weeks of MSJZT intervention, 32 potential biomarkers were identified, and 4 altered pathways were detected. The changes in glycolytic, amino acid, and lipid metabolisms could be partially regulated by MSJZT through decreasing the content of lactic dehydrogenase (LDH), glutamine synthetase (GS), phosphocholine cytidylyltransferase (PCYT2) mRNA, and protein level. In conclusion, we established a HILIC UHPLC-Q-TOF/MS metabolomic analysis method to demonstrate a complex metabolic profile of gastric cancer. The disordered metabolism could be partially regulated by MSJZT. These findings not only establish a solid foundation for TCM to treat gastric cancer but also provide a basis for further exploration of the precise mechanism of MSJZT activity.
Collapse
|
6
|
何 萍, 顾 霞, 曾 欣, 郑 咏, 林 晓. [Changes of lymphatic vessel density in lung adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma and the regulatory factors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1349-1353. [PMID: 30514684 PMCID: PMC6744127 DOI: 10.12122/j.issn.1673-4254.2018.11.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the changes in tumor lymphatic vessel density (LVD) in patients with lung adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA) and explore the regulatory factors of LVD. METHODS Complete clinicopathological data were collected form a total of 301 patients with lung adenocarcinoma, including 28 (9.3%) with AIS, 86 (28.6%) with MIA, and 187 (62.1%) with IA. The LVD of all the adenocarcinomas were calculated after D2-40 immunohistochemical staining, and MT1-MMP and VEGF-C expression levels were also evaluated. The differences in LVD among the groups and the correlations of tumor LVD with the expressions of MT1-MMP and VEGF-C and the clinicopathological factors were analyzed. RESULTS The LVD differed significantly among AIS, MIA, and IA groups (P= 0.000). The LVDs was significantly correlated with the level of VEGF-C protein expression (r=0.917, P=0.009), tumor size (r= 0.686, P=0.017), lymph node metastasis (r=0.739, P=0.000), and clinical stage (r=0.874, P=0.012) of the patients. CONCLUSIONS Tumor lymphangiogenesis plays an important role in lung adenocarcinoma progression, and VEGF-C may promote this process.
Collapse
Affiliation(s)
- 萍 何
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 霞 顾
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 欣 曾
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 咏玫 郑
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 晓东 林
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
7
|
Dang YF, Jiang XN, Gong FL, Guo XL. New insights into molecular mechanisms of rosiglitazone in monotherapy or combination therapy against cancers. Chem Biol Interact 2018; 296:162-170. [PMID: 30278161 DOI: 10.1016/j.cbi.2018.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023]
Abstract
Rosiglitazone (ROSI), a member of thiazolidinediones (TZDs) which act as high-affinity agonists of the nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARγ), is clinically used as an antidiabetic drug which could attenuate the insulin resistance associated with obesity, hypertension, and impaired glucose tolerance in humans. However, recent studies reported that ROSI had significant anticancer effects on various human malignant tumor cells. Mounting evidence indicated that ROSI could exert anticancer effects through PPARγ-dependent or PPARγ-independent ways. In this review, we summarized the PPARγ-dependent antitumor activities of ROSI, which included apoptosis induction, inhibition of cell proliferation and cancer metastasis, reversion of multidrug resistance, reduction of immune suppression, autophagy induction, and antiangiogenesis; and the PPARγ-independent antitumor activities of ROSI, which included inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, inhibition of prostaglandin E2 (PGE2), increasing MAPK phosphatase 1 (MKP-1) expression and regulation of other apoptosis-related cell factors. In addition, we discussed the anti-cancer application of ROSI by monotherapy or combination therapy with present chemotherapeutic drugs in vitro and in vivo. Moreover, we reviewed the phase I cancer clinical trials related to ROSI combined with chemotherapeutics and phase II trials about the anti-cancer effects of ROSI monotherapy and the radiotherapy sensitivity of ROSI.
Collapse
Affiliation(s)
- Yi-Fan Dang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiao-Ning Jiang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Fu-Lian Gong
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
8
|
Wei S, Sun T, Du J, Zhang B, Xiang D, Li W. Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro. Oncol Rep 2018; 40:3213-3222. [PMID: 30272303 PMCID: PMC6196606 DOI: 10.3892/or.2018.6723] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Xanthohumol (Xn), a prenylated flavonoid isolated from Hops (Humulus lupulus L.), has demonstrated potent anticancer activity in multiple types of cancer. However, the effect of Xn on gastric cancer (GC) remains unknown. The aim of the present study was to investigate the effect of Xn on GC cell proliferation, apoptosis and metastasis. It was observed that Xn decreased the viability of GC cells, with very low or no toxicity to normal gastric epithelial cells GES‑1 at a concentration of 1‑100 µM. The proliferation of AGS cells was inhibited by Xn, as indicated by the decreased number of EdU‑positive cells. Xn treatment increased the number of apoptotic cells, downregulated the expression of Bcl‑2 and upregulated the expression of Bax, suggesting induction of apoptosis. The results from the wound healing and Transwell assays indicated that Xn suppressed AGS cell metastasis. Moreover, Xn induced reactive oxygen species (ROS) overproduction and inhibited nuclear factor (NF)‑κB signaling in AGS cells, which was reversed by the ROS inhibitor N‑acetylcysteine (NAC). NAC suppressed the effect of Xn on the proliferation, apoptosis and metastasis of AGS cells. Taken together, these results suggest that Xn exerts anticancer effects against GC via induction of ROS production and subsequent inhibition of NF‑κB signaling. Therefore, Xn may be a promising candidate treatment against GC progression.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Taoli Sun
- Key Laboratory Breeding Base of Hu'nan Oriented Fundamental and Applied Research of Innovative Pharmaceutics, College of Pharmacy, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
9
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Lim J, Ryu JH, Kim EJ, Ham S, Kang D. Inhibition of Vascular Endothelial Growth Factor Receptor 3 Reduces Migration of Gastric Cancer Cells. Cancer Invest 2015; 33:398-404. [DOI: 10.3109/07357907.2015.1047509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Curcumin suppresses lymphatic vessel density in an in vivo human gastric cancer model. Tumour Biol 2015; 36:5215-23. [DOI: 10.1007/s13277-015-3178-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/27/2015] [Indexed: 01/18/2023] Open
|