1
|
Xie Y, Guan S, Li Z, Cai G, Liu Y, Li G, Huang P, Lin M. Identification of a metabolic-immune signature associated with prognosis in colon cancer and exploration of potential predictive efficacy of immunotherapy response. Clin Exp Med 2025; 25:46. [PMID: 39853414 PMCID: PMC11762008 DOI: 10.1007/s10238-025-01566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
The role of metabolic reprogramming of the tumor immune microenvironment in cancer development and immune escape has increasingly attracted attention. However, the predictive value of differences in metabolism-immune microenvironment on the prognosis of colon cancer (CC) and the response to immunotherapy have not been elucidated. The aim of this study was to investigate changes in metabolism and immune profile of CC and to identify a reliable signature for predicting prognosis and therapeutic response. The metabolism and immune-related differential genes in CC were screened out by differential gene expression analysis. A metabolism and immune related prognostic signature was established by the least absolute shrinkage and selection operator (LASSO) Cox algorithm. The training cohort with 417 patients from The Cancer Genome Atlas (TCGA) database and the validation cohort of 232 patients from GSE17538 were used to confirm the robustness of the prognostic signature. Immunohistochemical staining scores were used to assess gene expression levels in our clinical samples. Gene ontology (GO) analysis, gene set enrichment analysis (GSEA), single nucleotide variation (SNV) analysis, immune infiltration and immune factors analysis were used to explore the characteristics of patients with different subtypes. Multiple cancer immunotherapy datasets were used to assess the response of patients with different subtypes to immune checkpoint inhibitors. We established the Metabolism and Immune-Related Prognostic Score (MIRPS) based on six genes (CD36, PCOLCE2, SCG2, CALB2, STC2, CLDN23) to predict the prognosis of CC patients. We found a correlation between MIRPS and the malignant phenotype, microsatellite subtype, mutation load, and immune escape in CC. Tumors with high MIRPS presented a higher tumor mutation load and a more prominent immunosuppressive microenvironment. This subset of patients may potentially respond well to immune checkpoint inhibitor therapy. MIRPS may be used as a novel prognostic tool for CC and have potential value for immunotherapy response prediction.
Collapse
Affiliation(s)
- Yuwen Xie
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Shenyuan Guan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guohao Cai
- Department of Anorectal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Ping Huang
- Department of Anorectal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Mingdao Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Anorectal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| |
Collapse
|
2
|
Bu Q, Deng Y, Wang Q, Deng R, Hu S, Pei Z, Zhang Y. STC2 is a potential biomarker of hepatocellular carcinoma with its expression being upregulated in Nrf1α-deficient cells, but downregulated in Nrf2-deficient cells. Int J Biol Macromol 2023; 253:127575. [PMID: 37866563 DOI: 10.1016/j.ijbiomac.2023.127575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Nrf1 (encoded by Nfe2l1) and Nrf2 (encoded by Nfe2l2), as two key members of the CNC-bZIP transcription factor, exhibit significant functional differences in their pathophysiology. Our previous findings demonstrated that loss of Nrf1α (i.e., a full-length isoform of Nrf1) promotes HepG2-derived tumor growth in xenograft mice, but malgrowth of the xenograft tumor is significantly suppressed by knockout of Nrf2. To gain insights into the mechanism underlying such marked distinctions in their pathologic phenotypes, we mined transcriptome data from liver cancer in the TCGA database to establish a prognostic model and calculate predicted risk scores for each cell line. The results revealed that knockout of Nrf1α markedly increased the risk score in HepG2 cells, whereas the risk score was reduced by knockout of Nrf2. Notably, stanniocalcin 2 (STC2), a biomarker associated with liver cancer, that is upexpressed in hepatocellular carcinoma (HCC) tissues with a reduction in the overall survival ratio of those patients. We observed increased expression levels of STC2 in Nrf1α-/- cells but decreased expression in Nrf2-/- cells. These findings suggested that STC2 may play a role in mediating the distinction between Nrf1α-/- and Nrf2-/-. Such potential function of STC2 was further corroborated through a series of experiments combined with transcriptomic sequencing. The results revealed that STC2 functions as a dominant tumor-promoter, because the STC2-leading increases in clonogenicity of hepatoma cells and malgrowth of relevant xenograft tumor were almost completely abolished in STC2-/- cells. Together, these demonstrate that STC2 could be paved as a potential therapeutic target, albeit as a diagnostic marker, for HCC.
Collapse
Affiliation(s)
- Qiqi Bu
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yangxu Deng
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Qing Wang
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Rongzhen Deng
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Zhigang Pei
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
3
|
Deng Q, Jiang B, Yan H, Wu J, Cao Z. Circulating tumor cells in gastric cancer: developments and clinical applications. Clin Exp Med 2023; 23:4385-4399. [PMID: 37548815 DOI: 10.1007/s10238-023-01158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Circulating tumor cells (CTCs), which are shed from primary tumor or metastatic sites into the bloodstream and subsequently seed into distant tissues, are considered as the precursors of metastases. Gastric cancer (GC) is a highly heterogeneous malignant tumor. With regard to the diagnosis of GC, secondary pathological biopsy is difficult, while invasive examination is harmful to patients. In recent years, CTCs have made great progress in tumor diagnosis, prognosis prediction, efficacy detection and treatment guidance, but the research on the role of CTCs in GC remains limited. The following sections review the landmark studies demonstrating the technical approaches of CTCs monitoring in the field of GC. Moreover, we highlight the clinical application of CTCs numbers and phenotypes in monitoring the therapeutic efficacy and judging patient prognosis by sequential blood analyses.
Collapse
Affiliation(s)
- Qian Deng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Bo Jiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Haijiao Yan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenzhen Cao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Nanou A, Lorenzo-Moldero I, Gazouleas KD, Cortese B, Moroni L. 3D Culture Modeling of Metastatic Breast Cancer Cells in Additive Manufactured Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28389-28402. [PMID: 35687666 PMCID: PMC9227707 DOI: 10.1021/acsami.2c07492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cancer biology research is increasingly moving toward innovative in vitro 3D culture models, as conventional and current 2D cell cultures fail to resemble in vivo cancer biology. In the current study, porous 3D scaffolds, designed with two different porosities along with 2D tissue culture polystyrene (TCP) plates were used with a model breast cancer human cell line. The 3D engineered system was evaluated for the optimal seeding method (dynamic versus static), adhesion, and proliferation rate of MDA-MB-231 breast cancer cells. The expression profiles of proliferation-, stemness-, and dormancy-associated cancer markers, namely, ki67, lamin A/C, SOX2, Oct3/4, stanniocalcin 1 (STC1), and stanniocalcin 2 (STC2), were evaluated in the 3D cultured cells and compared to the respective profiles of the cells cultured in the conventional 2D TCP. Our data suggested that static seeding was the optimal seeding method with porosity-dependent efficiency. Moreover, cells cultured in 3D scaffolds displayed a more dormant phenotype in comparison to 2D, which was manifested by the lower proliferation rate, reduced ki67 expression, increased lamin A/C expression, and overexpression of STCs. The possible relationship between the cell affinity to different extracellular matrix (ECM) proteins and the RANK expression levels was also addressed after deriving collagen type I (COL-I) and fibronectin (FN) MDA-MB-231 filial cell lines with enhanced capacity to attach to the respective ECM proteins. The new derivatives exhibited a more mesenchymal like phenotype and higher RANK levels in relation to the parental cells, suggesting a relationship between ECM cell affinity and RANK expression. Therefore, the present 3D cell culture model shows that cancer cells on printed scaffolds can work as better representatives in cancer biology and drug screening related studies.
Collapse
Affiliation(s)
- Afroditi Nanou
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
- Medical
Cell BioPhysics Department, Faculty of Science and Technology, University of Twente, Dienstweg 1, 7522 ND Enschede, The Netherlands
| | - Ivan Lorenzo-Moldero
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
- Complex
Tissue Regeneration Department, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Kyriakos D. Gazouleas
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
| | - Barbara Cortese
- National
Research Council-Nanotechnology Institute (CNR Nanotec), 00185 Rome, Italy
- Email for B.C.:
| | - Lorenzo Moroni
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
- Complex
Tissue Regeneration Department, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
- National
Research Council-Nanotechnology Institute (CNR Nanotec), 00185 Rome, Italy
- Email for L.M.:
| |
Collapse
|
5
|
Stanniocalcin 2 (STC2): a universal tumour biomarker and a potential therapeutical target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:161. [PMID: 35501821 PMCID: PMC9063168 DOI: 10.1186/s13046-022-02370-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
Stanniocalcin 2 (STC2) is a glycoprotein which is expressed in a broad spectrum of tumour cells and tumour tissues derived from human breast, colorectum, stomach, esophagus, prostate, kidney, liver, bone, ovary, lung and so forth. The expression of STC2 is regulated at both transcriptional and post-transcriptional levels; particularly, STC2 is significantly stimulated under various stress conditions like ER stress, hypoxia and nutrient deprivation. Biologically, STC2 facilitates cells dealing with stress conditions and prevents apoptosis. Importantly, STC2 also promotes the development of acquired resistance to chemo- and radio- therapies. In addition, multiple groups have reported that STC2 overexpression promotes cell proliferation, migration and immune response. Therefore, the overexpression of STC2 is positively correlated with tumour growth, invasion, metastasis and patients' prognosis, highlighting its potential as a biomarker and a therapeutic target. This review focuses on discussing the regulation, biological functions and clinical importance of STC2 in human cancers. Future perspectives in this field will also be discussed.
Collapse
|
6
|
Li S, Huang Q, Li D, Lv L, Li Y, Wu Z. The significance of Stanniocalcin 2 in malignancies and mechanisms. Bioengineered 2021; 12:7276-7285. [PMID: 34612765 PMCID: PMC8806499 DOI: 10.1080/21655979.2021.1977551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human stanniocalcin 2 (STC2) is an ortholog of fish stanniocalcins (STCs) and is widely expressed in various organs and tissues. The gene is localized on chromosome 5q33 or 5q35. STC2 has been implicated in glucose homeostasis and phosphorus metabolism. It is also reported to be implicated in various malignancies. STC2 was found to be implicated in breast cancer and gynecologic cancers, suggesting hormone-specific or -dependent activities in these malignancies. Moreover, it was reported to be involved in gastrointestinal tumors, including esophageal, gastric, colorectal, and liver cancers, and respiratory cancers, including laryngeal and lung cancers. It also influenced renal carcinoma and prostate cancer. Notably, as a secreted phosphoprotein, STC2 was detectable in serum and possessed promising predictive value in several malignancies. This review aims to improve the understanding of the role of STC2 in patient diagnosis and prognosis, and tumor development and progression, as well as the mechanisms involved.
Collapse
Affiliation(s)
- Shasha Li
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Qian Huang
- Department of Hepatobiliary Disease, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Dongliang Li
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China.,Department of Hepatobiliary Disease, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Lizhi Lv
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China.,Department of Hepatobiliary Disease, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Zhixian Wu
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China.,Department of Hepatobiliary Disease, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Panagiotou G, Ghaly W, Upadhyay J, Pazaitou-Panayiotou K, Mantzoros CS. Serum Follistatin Is Increased in Thyroid Cancer and Is Associated With Adverse Tumor Characteristics in Humans. J Clin Endocrinol Metab 2021; 106:e2137-e2150. [PMID: 33493282 DOI: 10.1210/clinem/dgab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 01/23/2023]
Abstract
CONTEXT Obesity and classical growth factors are associated with thyroid cancer (TC). However, less is known regarding novel hormones such as follistatins and activins. We hypothesized that serum follistatin but not activins would be increased in TC. OBJECTIVE This work aimed to assess circulating levels of follistatins, activins, and growth factors in patients with a history of TC vs patients with nonmalignant thyroid diseases. METHODS A hospital-based, unmatched case-control study was conducted with 170 thyroidectomized patients due to well-differentiated TC and 106 thyroidectomized patients without history of malignancy. Anthropometric, biochemical, and histological parameters were recorded. Serum samples were collected in the steady state 45 days after surgery. Multivariate models were used to adjust for baseline differences of the unmatched variables. Serum levels of follistatin (FST), follistatin like-3, activin A, activin B, bioactive insulin-like growth factor-1, and stanniocalcin-2 were assayed with novel, highly specific ELISA kits. RESULTS In unmatched univariate models, TC patients had higher FST serum levels compared to cancer-free individuals, independently of histological subtype. In multivariate models adjusting for covariates, individuals in the highest tertile of FST levels were associated with an increased risk for the presence of any type of TC or specific histological subtypes, including papillary, follicular and Hürthle-cell carcinoma, and medullary TC. Higher postoperative FST concentrations were found in patients with vascular invasion and distant metastases and associated with TNM staging at diagnosis. CONCLUSION FST serum levels are increased in TC patients and correlate with advanced tumor aggressiveness. Future longitudinal studies are needed to confirm and extend our observations.
Collapse
Affiliation(s)
- Grigorios Panagiotou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Wael Ghaly
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jagriti Upadhyay
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Joshi AD. New Insights Into Physiological and Pathophysiological Functions of Stanniocalcin 2. Front Endocrinol (Lausanne) 2020; 11:172. [PMID: 32296395 PMCID: PMC7136389 DOI: 10.3389/fendo.2020.00172] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stanniocalcin, a glycosylated peptide hormone, first discovered in a bony fish has originally been shown to play critical role in calcium and phosphate homeostasis. Two paralogs of stanniocalcin (STC1 and STC2) identified in mammals are widely expressed in variety of tissues. This review provides historical perspective on the discovery of fish and mammalian stanniocalcin, describes molecular regulation of STC2 gene, catalogs distribution as well as expression of STC2 in tissues, and provides key structural information known till date regarding mammalian STC2. Additionally, this mini review summarizes pivotal functions of STC2 in calcium and phosphate regulation, cytoprotection, cell development, and angiogenesis. Finally, STC2's role as a novel marker for human cancers has also been outlined. Reviewing these studies will provide an opportunity to understand STC2's structure, biological functions as well as key molecular pathways involving STC2, which will help us design innovative therapeutic interventions using this novel hormone.
Collapse
Affiliation(s)
- Aditya D. Joshi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Zhang C, Cao W, Wang J, Liu J, Liu J, Wu H, Li S, Zhang C. A prognostic long non-coding RNA-associated competing endogenous RNA network in head and neck squamous cell carcinoma. PeerJ 2020; 8:e9701. [PMID: 32983633 PMCID: PMC7500352 DOI: 10.7717/peerj.9701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to develop multi-RNA-based models using a competing endogenous RNA (ceRNA) regulatory network to provide survival risk prediction in head and neck squamous cell carcinoma (HNSCC). METHODS All long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA expression data and clinicopathological features related to HNSCC were derived from The Cancer Genome Atlas. Differentially expressed RNAs were calculated using R. Prognostic factors were identified using univariate Cox regression analysis. Functional analysis was performed using GO, KEGG pathways, and PPI network. Based on the results, we derived a risk signature and compared high- and low-risk subgroups using LASSO regression analysis. Survival analysis and the relationship between risk signature and clinicopathological features were performed using log-rank tests and Cox regression analysis. A ceRNA regulatory network was constructed, and prognostic lncRNAs and miRNA expression levels were validated in vitro and in vivo. RESULTS A list of 207 lncRNAs, 18 miRNAs and 362 mRNAs related to overall survival was established. Five lncRNAs (HOTTIP, LINC00460, RMST, SFTA1P, and TM4SF19-AS1), one miRNA (hsa-miR-206), and one mRNA (STC2) were used to construct the ceRNA network. Three prognostic models contained 13 lncRNAs, eight miRNAs, and 17 mRNAs, which correlated with the patient status, disease-free survival (DFS), stage, grade, T stage, N stage, TP53 mutation status, angiolymphatic invasion, HPV status, and extracapsular spread. KEGG pathway analysis revealed significant enrichment of "Transcriptional misregulation in cancer" and "Neuroactive ligand-receptor interaction." In addition, HOTTIP, LINC00460, miR-206 and STC2 were validated in GTEx data, GEO microarrays and six HNSCC cell lines. CONCLUSIONS Our findings clarify the interaction of ceRNA regulatory networks and crucial clinicopathological features. These results show that prognostic biomarkers can be identified by constructing multi-RNA-based prognostic models, which can be used for survival risk prediction in patients with HNSCC.
Collapse
Affiliation(s)
- Chengyao Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, Chongqing, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Jiawu Wang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Jiannan Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Jialiang Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Hao Wu
- College of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Siyi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Fengcheng Hospital & Shanghai Ninth People’s Hospital (Fengcheng Branch Hospital), College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| |
Collapse
|
10
|
Abstract
BACKGROUND Several studies have explored the prognostic value of stanniocalcin 2 (STC2) in various cancers, but obtained inconsistent results. Therefore, this meta-analysis was performed to determine the prognostic and clinicopathologic significance of STC2 in various cancers. METHODS Eligible studies were identified by searching the online databases PubMed, Embase, Web of Science, and the China National Knowledge Infrastructure up to March 2019. Hazard ratios (HRs) with 95% confidence intervals (CIs) and were calculated to clarify the correlation between STC2 expression and prognosis of different cancers. Odds ratios (ORs) with 95% CI were selected to appraise the correlation between STC2 with clinicopathologic characteristics of patients with cancer. RESULTS A total of 16 eligible studies with 4074 patients with cancer were included in our meta-analysis. The results showed that high STC2 expression can predict poor overall survival (OS) for cancer (HR = 1.48, 95% CI: 1.15-1.90, P = .002). Subgroup analysis found that high STC2 expression was associated with worse OS in Asian (HR = 1.85, 95% CI: 1.35-2.55), the reported directly from articles group (HR = 1.39, 95% CI: 1.05-1.84), survival curves group (HR = 1.93, 95% CI: 1.36-2.74), and gastric cancer (HR = 1.43, 95% CI: 1.04-1.95). Furthermore, high STC2 expression was significantly related to advanced T stage (OR = 1.83, 95% CI: 1.17-2.86, P = .008), lymph node metastasis (OR = 2.29, 95% CI: 1.51-3.45, P < .001), lymphatic invasion (OR = 2.15, 95% CI: 1.53-3.02, P < .001), venous invasion (OR = 1.97, 95% CI: 1.30-2.99, P = .001), and more advanced clinical stage (OR = 2.36, 95% CI: 1.74-3.19, P < .001) CONCLUSION:: Elevated expression of STC2 suggested a poor prognosis in patients with cancer and may serve as a new tumor marker to monitor cancer development and progression.
Collapse
Affiliation(s)
- Lixia Hu
- Department of Oncology, The Second People's Hospital of Hefei
| | - Yanyan Zha
- Department of Oncology, The Second People's Hospital of Hefei
| | - Fanliang Kong
- Department of Oncology, The Second People's Hospital of Hefei
| | - Yueyin Pan
- Department of Oncology, Anhui Province Hospital, Hefei, Anhui, China
| |
Collapse
|
11
|
Li Q, Zhou X, Fang Z, Pan Z. Effect of STC2 gene silencing on colorectal cancer cells. Mol Med Rep 2019; 20:977-984. [PMID: 31173256 PMCID: PMC6625197 DOI: 10.3892/mmr.2019.10332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Stanniocalcin 2 (STC2), a secretory glycoprotein hormone, regulates many biological processes including cell proliferation, apoptosis, tumorigenesis and atherosclerosis. However, the effect of STC2 on proliferation, migration and epithelial‑mesenchymal transition (EMT) progression in human colorectal cancer (CRC) cells remains poorly understood. The expression level of STC2 was determined by quantitative real‑time polymerase chain reaction (qPCR) and western blot analysis. Cell Counting Kit‑8 (CCK‑8) was used to detect the viability of SW480 cells. The invasion and migration of cells were identified by wound healing and Transwell assays. The mRNA and protein expression levels of β‑catenin, matrix metalloproteinase (MMP)‑2, MMP‑9, E‑cadherin and vimentin were assessed by qPCR and western blot analysis. In the present study, it was demonstrated that STC2 was highly expressed in the CRC cell lines. After silencing of STC2, the cell viability, migration and invasion were significantly reduced. Silencing of STC2 in the CRC Sw480 cells increased the expression of E‑cadherin and decreased the expression of vimentin, MMP‑2 and MMP‑9, compared to those in the normal and empty vector group. Furthermore, the expression of β‑catenin in the STC2 gene silenced group was suppressed, and the expression of β‑catenin was reversed by Wnt activator, SB216763. These results demonstrated that STC2 participates in the development and progression of CRC by promoting CRC cell proliferation, survival and migration and activating the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Qianyuan Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiukou Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhengyu Fang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhiyun Pan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
12
|
STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and Invasion by Inducing Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8042489. [PMID: 32258098 PMCID: PMC7099867 DOI: 10.1155/2019/8042489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023]
Abstract
Aberrant expression of stanniocalcin 2 (STC2) is implicated in cancer development. STC2 acts as a tumor promoter to drive some cancers. However, its contribution to the development of pancreatic cancer remains unclear. This study showed that the expression of STC2 was significantly upregulated in pancreatic cancer tissues. Moreover, its expression was positively correlated with tumor size and lymph node metastasis and negatively correlated with 5-year survival rate of pancreatic cancer patients. Additionally, the expression levels of STC2 were a novel biomarker for predicting overall survival rate after surgery. Furthermore, overexpression of STC2 could promote the proliferation, migration, and invasion of pancreatic cancer cell lines, while knocking down of STC2 led to antiproliferation and antimetastasis activities. Further mechanistic investigations revealed that the expression of STC2 could significantly promote the epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. These data indicated that the overexpression of STC2 in pancreatic cancer contributes to the metastasis through the promotion of EMT, suggesting that STC2 is a potential prognostic biomarker and therapeutic target for pancreatic cancer.
Collapse
|
13
|
Liu Y, Tsai M, Wu S, Chang T, Tsai T, Gow C, Chang Y, Shih J. Acquired resistance to EGFR tyrosine kinase inhibitors is mediated by the reactivation of STC2/JUN/AXL signaling in lung cancer. Int J Cancer 2019; 145:1609-1624. [DOI: 10.1002/ijc.32487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Yi‐Nan Liu
- Department of Internal MedicineNational Taiwan University Hospital Taipei Taiwan
| | - Meng‐Feng Tsai
- Department of Molecular BiotechnologyDa‐Yeh University Changhua Taiwan
| | - Shang‐Gin Wu
- Department of Internal MedicineNational Taiwan University Hospital Taipei Taiwan
- Department of Internal MedicineNational Taiwan University Cancer Center Taipei Taiwan
| | - Tzu‐Hua Chang
- Department of Internal MedicineNational Taiwan University Hospital Taipei Taiwan
| | - Tzu‐Hsiu Tsai
- Department of Internal MedicineNational Taiwan University Hospital Taipei Taiwan
| | - Chien‐Hung Gow
- Department of Internal MedicineFar Eastern Memorial Hospital New Taipei City Taiwan
| | - Yih‐Leong Chang
- Department of PathologyNational Taiwan University Hospital Taipei Taiwan
- Graduate Institute of Pathology, College of MedicineNational Taiwan University Taipei Taiwan
| | - Jin‐Yuan Shih
- Department of Internal MedicineNational Taiwan University Hospital Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan University Taipei Taiwan
| |
Collapse
|
14
|
Zhang C, Chen S, Ma X, Yang Q, Su F, Shu X, Xie W, Feng M, Xiong B. Upregulation of STC2 in colorectal cancer and its clinicopathological significance. Onco Targets Ther 2019; 12:1249-1258. [PMID: 30863092 PMCID: PMC6389002 DOI: 10.2147/ott.s191609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Stanniocalcin 2 (STC2) is a glycoprotein hormone involved in many biological processes and a secretory protein that regulates malignant tumor progression. The aim of the present study was to further explore the clinicopathological significance and prognostic role of STC2 in colorectal cancer (CRC). Methods In this study, STC2 expression was first investigated in Gene Expression Omnibus and The Cancer Genome Atlas, and then validated with the data from our medical center. Univariate and multivariate analyses were performed to assess the association between prognostic factors and survival outcome. Results In Gene Expression Omnibus and The Cancer Genome Atlas databases, bioinformatics analysis confirmed that STC2 was significantly increased in CRC compared with that in normal tissues (P<0.01), and CRC patients with high STC2 expression had a shorter overall survival. By analyzing data from our medical center, the results also showed that STC2 expression of CRC tissues was higher than that in normal tissues, whether the transcriptional or protein levels. In the CRC tissues, high STC2 expression was significantly correlated with lymph node metastasis (P=0.047), distant metastasis (P=0.040), and advanced clinical stage (P=0.047). Moreover, Kaplan–Meier analyses indicated that high STC2 expression predicted a worse prognosis, and multivariate Cox regression analysis revealed that STC2 was an independent prognostic factor for overall survival (HR =1.976, 95% CI: 1.092–3.576, P=0.024) in patients with CRC. Conclusion Our results suggested that STC2 played an important role in CRC progression and prognosis, and could be a useful biomarker for survival prediction.
Collapse
Affiliation(s)
- Chunxiao Zhang
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| | - Shuangqian Chen
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| | - Xiang Ma
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| | - Qian Yang
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| | - Fei Su
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| | - Xiang Shu
- Department of Technology, Wuhan Hesheng Medical Technological Company, Wuhan 430071, China
| | - Wei Xie
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| | - Maohui Feng
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| | - Bin Xiong
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratoryof Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang District, Wuhan 430071, China, ;
| |
Collapse
|
15
|
Aydin HA, Toptas T, Bozkurt S, Aydin A, Erdogan G, Pestereli E, Simsek T. Stanniocalcin-2 May Be a Potentially Valuable Prognostic Marker in Endometrial Cancer: a Preliminary Study. Pathol Oncol Res 2019; 25:751-757. [DOI: 10.1007/s12253-018-00576-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
|
16
|
Wang J, Sahengbieke S, Xu X, Zhang L, Xu X, Sun L, Deng Q, Wang D, Chen D, Pan Y, Liu Z, Yu S. Gene expression analyses identify a relationship between stanniocalcin 2 and the malignant behavior of colorectal cancer. Onco Targets Ther 2018; 11:7155-7168. [PMID: 30425508 PMCID: PMC6203107 DOI: 10.2147/ott.s167780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the main causes of cancer-related death worldwide. Stanniocalcin 2 (STC2), a secreted glycoprotein, has been suggested to exert various functions in progression of many cancers. However, the precise biological role in CRC is not fully understood. Therefore, this study based on several public datasets aims at investigating the roles of STC2 in CRC. Methods We used The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to evaluate the STC2 expression and its clinical significance in CRC. Cell migration and invasion by STC2 overexpression and knockdown were assessed using Transwell migration and Matrigel invasion assays. We next performed RNAseq analysis on SW480 cells with or without STC2 overexpression. Differentially expressed genes were selected by using fold-change >5 and P-value <0.05. Results In this study, we found that STC2 level was significantly higher in CRC than that in adjacent noncancerous tissues from TCGA and GEO. Tumors with high mRNA levels of STC2 were more common in patients with rectal cancer, left-sided CRC, advanced T-stage (T3-T4), positive lymph node involvement and advanced AJCC-stage (III-IV) from TCGA. STC2 displayed the negative correlation with the expressions of epithelial cell markers, while it was positively correlated with the expressions of mesenchymal cell markers, MMPs and the epithelial-mesenchymal transition (EMT)-related transcriptional factors. Furthermore, we found that STC2 promoted cell migration and invasion in vitro. And a group of differentially expressed genes, which were modulated by STC2, were identified from RNAseq analyses. Conclusion Our study demonstrates that STC2 is overexpressed in CRC compared with normal tissues, and promotes CRC cell migration and invasion. Our data suggest that STC2 may be used as a potential biomarker for clinical application and target therapy in future.
Collapse
Affiliation(s)
- Jian Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Sana Sahengbieke
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaoping Xu
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lei Zhang
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaoming Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lifeng Sun
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Qun Deng
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Da Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Dong Chen
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuan Pan
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhaohui Liu
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shaojun Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| |
Collapse
|
17
|
Feng L, Ma J, Ji H, Liu Y, Hu W. MiR-184 Retarded the Proliferation, Invasiveness and Migration of Glioblastoma Cells by Repressing Stanniocalcin-2. Pathol Oncol Res 2018; 24:853-860. [PMID: 28887636 DOI: 10.1007/s12253-017-0298-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
Abstract
To investigate the repression of miR-184 on Stanniocalcin-2 (STC2) and how this axis affects the propagation, invasiveness and migration ability of glioblastoma cells. RT-PCR was employed to determine the miR-184 and STC2 mRNA expression both in tissues and cells. Western blot was employed to determine the protein expression levels. The cells were transfected via lipofection. MTT, colony formation, invasion and scratch healing assays were conducted to study the propagation, invasiveness and migratory ability of glioblastoma cells, respectively. The dual luciferase reporter gene assay was conducted to determine whether miR-184 could directly bind to STC2 mRNA 3'UTR. MiR-184 was under-expressed whereas STC2 was over-expressed in glioblastoma tissues and cell line. The up-regulation of miR-184 significantly suppressed the propagation, migratory ability and invasion of glioblastoma cells, whereas the over-expression of STC2 restored this effect. MiR-184 was confirmed to directly target STC2. MiR-184 could retard the propagation, invasiveness and migratory ability of glioblastoma cells by suppressing STC2.
Collapse
Affiliation(s)
- Linsen Feng
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jianhua Ma
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
| | - Haiming Ji
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
| | - Yichun Liu
- Department of Neurosurgery, Taixing People's Hospital, Taizhou, Jiangsu, 225400, China
| | - Weixing Hu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
18
|
Coulson-Gilmer C, Humphries MP, Sundara Rajan S, Droop A, Jackson S, Condon A, Cserni G, Jordan LB, Jones LJ, Kanthan R, Di Benedetto A, Mottolese M, Provenzano E, Kulka J, Shaaban AM, Hanby AM, Speirs V. Stanniocalcin 2 expression is associated with a favourable outcome in male breast cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 4:241-249. [PMID: 29956502 PMCID: PMC6174618 DOI: 10.1002/cjp2.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 11/11/2022]
Abstract
Breast cancer can occur in either gender; however, it is rare in men, accounting for <1% of diagnosed cases. In a previous transcriptomic screen of male breast cancer (MBC) and female breast cancer (FBC) occurrences, we observed that Stanniocalcin 2 (STC2) was overexpressed in the former. The aim of this study was to confirm the expression of STC2 in MBC and to investigate whether this had an impact on patient prognosis. Following an earlier transcriptomic screen, STC2 gene expression was confirmed by RT‐qPCR in matched MBC and FBC samples as well as in tumour‐associated fibroblasts derived from each gender. Subsequently, STC2 protein expression was examined immunohistochemically in tissue microarrays containing 477 MBC cases. Cumulative survival probabilities were calculated using the Kaplan–Meier method and multivariate survival analysis was performed using the Cox hazard model. Gender‐specific STC2 gene expression showed a 5.6‐fold upregulation of STC2 transcripts in MBC, also supported by data deposited in Oncomine™. STC2 protein expression was a positive prognostic factor for disease‐free survival (DFS; Log‐rank; total p = 0.035, HR = 0.49; tumour cells p = 0.017, HR = 0.44; stroma p = 0.030, HR = 0.48) but had no significant impact on overall survival (Log‐rank; total p = 0.23, HR = 0.71; tumour cells p = 0.069, HR = 0.59; stroma p = 0.650, HR = 0.87). Importantly, multivariate analysis adjusted for patient age at diagnosis, node staging, tumour size, ER, and PR status revealed that total STC2 expression as well as expression in tumour cells was an independent prognostic factor for DFS (Cox regression; p = 0.018, HR = 0.983; p = 0.015, HR = 0.984, respectively). In conclusion, STC2 expression is abundant in MBC where it is an independent prognostic factor for DFS.
Collapse
Affiliation(s)
| | - Matthew P Humphries
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | | | - Alastair Droop
- MRC Medical Bioinformatics Centre, University of Leeds, Leeds, UK
| | - Sharon Jackson
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Alexandra Condon
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Gabor Cserni
- Department of Pathology, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
| | | | | | - Rani Kanthan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Anna Di Benedetto
- Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Elena Provenzano
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Abeer M Shaaban
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Andrew M Hanby
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Zhao J, Jiao Y, Song Y, Liu J, Li X, Zhang H, Yang J, Lu Y. Stanniocalcin 2 Ameliorates Hepatosteatosis Through Activation of STAT3 Signaling. Front Physiol 2018; 9:873. [PMID: 30038584 PMCID: PMC6046442 DOI: 10.3389/fphys.2018.00873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Stanniocalcin 2 (STC2), a secreted glycoprotein hormone, regulates many biological processes, including cell proliferation, apoptosis, tumorigenesis, and atherosclerosis. However, its role in hepatic triglyceride metabolism remains unknown. In the present study, we found that expression levels of STC2 were significantly reduced in the livers of leptin-deficient and high fat diet-induced obese mice. Systemic administration of STC2 recombinant protein or adenovirus-mediated overexpression of STC2 markedly attenuated hepatosteatosis and hypertriglyceridemia in obese mice. At the molecular level, we found that STC2 activated the STAT3 signaling pathway to inhibit lipogenic gene expression. Consistently, in vitro studies further showed that inhibition of STAT3 signaling abolished the anti-steatotic effects of STC2. Together, our results revealed an important role of STC2 in the regulation of hepatic triglyceride metabolism, which might provide a potential therapeutic target for the treatment of fatty liver and related metabolic disorders.
Collapse
Affiliation(s)
- Jiejie Zhao
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Jiao
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuping Song
- Department of Endocrinology and Metabolism, Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| | - Jianmin Liu
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialin Yang
- Department of Endocrinology and Metabolism, Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Huang H, Chen Q, Sun W, Lu M, Yu Y, Zheng Z, Li P. Expression signature of ten genes predicts the survival of patients with estrogen receptor positive-breast cancer that were treated with tamoxifen. Oncol Lett 2018; 16:573-579. [PMID: 29928444 DOI: 10.3892/ol.2018.8663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/09/2018] [Indexed: 12/20/2022] Open
Abstract
Although tamoxifen is the most frequently used drug for the treatment of estrogen receptor positive (ER+)-breast cancer (BRCA), its efficacy varies between patients. In the present study, Cox multivariate regression of the relative mRNA expression levels in two microarray-based datasets (GSE17005 and GSE26971) was employed to develop a risk score model to evaluate the outcome of patients with BRCA in the GSE17005 dataset. A total of ten genes were used to develop the prediction model for the survival of tamoxifen-treated patients with breast cancer. The survival time of patients in the low risk score group was significantly longer compared with patients in the high risk score group. This observation was validated in three other datasets (GSE26971, GSE22219 and GSE56884). The prognostic effect of the clinicopathological indicators and the risk score were tested with the 5-year event receiving operating characteristic curve, and the risk score had an improved prognostic value in patients with ER+-BRCA with an area under the curve value of 0.733 compared with the factors of age, tumor stage, tumor grade, chemotherapy, lymph invasion and tumor size. The risk score was significantly associated with the tumor-node-metastasis stage and grade, but was independent of age, sex, lymph invasion and tumor size. In summary, the risk model for breast cancer using the expression signature of ten genes may be an important indicator for predicting the survival of patients with ER+-breast cancer and treated with tamoxifen.
Collapse
Affiliation(s)
- He Huang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qiyu Chen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Weijian Sun
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yaojun Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhiqiang Zheng
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Pihong Li
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
21
|
Deng X, Xiao Q, Liu F, Zheng C. A gene expression-based risk model reveals prognosis of gastric cancer. PeerJ 2018; 6:e4204. [PMID: 29441228 PMCID: PMC5807894 DOI: 10.7717/peerj.4204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background The prognosis of gastric cancer is difficult to determine, although clinical indicators provide valuable evidence. Methods In this study, using screened biomarkers of gastric cancer in combination with random forest variable hunting and multivariable Cox regression, a risk score model was developed to predict the survival of gastric cancer. Survival difference between high/low-risk groups were compared. The relationship between risk score and other clinicopathological indicators was evaluated. Gene set enrichment analysis (GSEA) was used to identify pathways associated with risk scores. Results The patients with high risk scores (median overall survival: 20.2 months, 95% CI [16.9–26.0] months) tend to exhibit early events compared with those with low risk scores (median survival: 70.0 months, 95% CI [46.9–101] months, p = 1.80e–5). Further validation was implemented in another three independent datasets (GSE15459, GSE26253, GSE62254). Correlation analyses between clinical observations and risk scores were performed, and the results indicated that the risk score was not significantly associated with gender, age and primary tumor size but was significantly associated with grade and tumor stage. In addition, the risk score was also not influenced by radiation therapy. Cox multivariate regression and three-year survival nomogram suggest that the risk score is an important indicator of gastric cancer prognosis. GSEA was used to identified KEGG pathways significantly associated with risk score, and signaling pathways involved in focal adhesion and the TGF-beta signaling pathway were identified. Conclusion The risk score model successfully predicted the survival of 1,294 gastric cancer samples from four independent datasets and is among the most important indicators in clinical clinicopathological information for the prognosis of gastric cancer. To our knowledge, it is the first report to predict the survival of gastric cancer using optimized expression panel.
Collapse
Affiliation(s)
- Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qun Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan, China
| | - Feng Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cihua Zheng
- Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Jiao Y, Zhao J, Shi G, Liu X, Xiong X, Li X, Zhang H, Ma Q, Lu Y. Stanniocalcin2 acts as an anorectic factor through activation of STAT3 pathway. Oncotarget 2017; 8:91067-91075. [PMID: 29207625 PMCID: PMC5710906 DOI: 10.18632/oncotarget.19412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The regulation of food intake and body weight has been hotly investigated. In the present study, we show that stanniocalcin2 (STC2), a cytokine ubiquitously expressed and especially upregulated in many types of human cancers, has a regulatory role in food intake and weight loss. Systemic treatment of C57BL/6 mice with recombinant STC2 protein resulted in decreased food intake and body weight, whereas energy expenditure was not affected. Similarly, STC2 treatment also induced anorexia in hyperphagic leptin-deficient mice, leading to a significant reduction in body weight and improvement of blood glucose levels. Furthermore, intracerebroventricular administration of STC2 to mice led to an acute decrease in food intake, which was mediated, at least in part, by activation of STAT3 pathway. Taken together, our results revealed the importance of STC2 in the regulation of feeding behavior as well as body weight.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiejie Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guojun Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing Liu
- Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xuelian Xiong
- Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoying Li
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qinyun Ma
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Lu
- Department of Endocrinology, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Arigami T, Uenosono Y, Yanagita S, Okubo K, Kijima T, Matsushita D, Amatatsu M, Kurahara H, Maemura K, Natsugoe S. Clinical significance of circulating tumor cells in blood from patients with gastric cancer. Ann Gastroenterol Surg 2017; 1:60-68. [PMID: 29863113 PMCID: PMC5881297 DOI: 10.1002/ags3.12005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 12/19/2022] Open
Abstract
Circulating tumor cells (CTC) have been focused on as a target for detecting occult tumors, predicting therapeutic responses and prognoses, and monitoring postoperative recurrence in the clinical management of patients with various malignancies, including gastric cancer. Recent advances in molecular diagnostic tools have contributed to high sensitivity and specificity for the detection of CTC. A conspicuous disparity exists in the incidence of CTC among studies. However, a close relationship has been reported between positivity for CTC and well‐known prognostic clinicopathological factors including depth of tumor invasion, lymph node metastasis, stage, and lymphatic and venous invasion in patients with gastric cancer. According to most studies published on the clinical impact of CTC, the presence of CTC negatively affects the prognosis of patients with gastric cancer. Moreover, the study of CTC based on a meta‐analysis demonstrated their importance as a poor prognostic indicator. In clinical management, pre‐ and post‐therapeutic monitoring of CTC using liquid biopsy may be useful for early detection of subclinical patients or disease recurrence, prediction of tumor progression, and administrative control of adjuvant chemotherapy. Although their functional properties remain unclear, molecular profiling of CTC may contribute to the development of personalized treatment that effectively inhibits tumor progression in patients with advanced gastric cancer. We herein review the clinical significance of CTC as a promising blood marker and therapeutic target in patients with gastric cancer.
Collapse
Affiliation(s)
- Takaaki Arigami
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan.,Molecular Frontier Surgery Course of Advanced Therapeutics Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Yoshikazu Uenosono
- Molecular Frontier Surgery Course of Advanced Therapeutics Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Shigehiro Yanagita
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Keishi Okubo
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Takashi Kijima
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Daisuke Matsushita
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Masahiko Amatatsu
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Kosei Maemura
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery Breast and Thyroid Surgery Field of Oncology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan.,Molecular Frontier Surgery Course of Advanced Therapeutics Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| |
Collapse
|
24
|
Yokoi K, Yamashita K, Ishii S, Tanaka T, Nishizawa N, Tsutsui A, Miura H, Katoh H, Yamanashi T, Naito M, Sato T, Nakamura T, Watanabe M. Comprehensive molecular exploration identified promoter DNA methylation of the CRBP1 gene as a determinant of radiation sensitivity in rectal cancer. Br J Cancer 2017; 116:1046-1056. [PMID: 28291773 PMCID: PMC5396119 DOI: 10.1038/bjc.2017.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (NCRT) for advanced rectal cancer (RC) is a well-evidenced therapy; however, some RC patients have no therapeutic response. Patient selection for NCRT so that non-responsive patients are excluded has been subjective. To date, no molecular markers indicating radiation sensitivity have been reported. METHODS We irradiated six colorectal cancer (CRC) cell lines and identified HCT116 cells as radiation-sensitive and HCT15 and DLD-1 cells as radiation resistant. Using a microarray, we selected candidate radiation sensitivity marker genes by choosing genes whose expression was consistent with a radiation-resistant or sensitive cell phenotype. RESULTS Among candidate genes, cellular retinol binding protein 1 (CRBP1) was of particular interest because it was not only induced in HCT116 cells by tentative 10 Gy radiation treatments, but also its expression was increased in HCT116-derived radiation-resistant cells vs parental cells. Forced expression of CRBP1 decreased the viability of both HCT15 and DLD-1 cells in response to radiation therapy. We also confirmed that CRBP1 was epigenetically silenced by hypermethylation of its promoter DNA, and that the quantitative methylation value of CRBP1 significantly correlated with histological response in RC patients with NCRT (P=0.031). CONCLUSIONS Our study identified CRBP1 as a radiation-sensitive predictor in RC.
Collapse
Affiliation(s)
- K Yokoi
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - K Yamashita
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - S Ishii
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - T Tanaka
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - N Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - A Tsutsui
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - H Miura
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - H Katoh
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - T Yamanashi
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - M Naito
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - T Sato
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - T Nakamura
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - M Watanabe
- Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
25
|
Zhou J, Li Y, Yang L, Wu Y, Zhou Y, Cui Y, Yang G, Hong Y. Stanniocalcin 2 improved osteoblast differentiation via phosphorylation of ERK. Mol Med Rep 2016; 14:5653-5659. [DOI: 10.3892/mmr.2016.5951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/14/2016] [Indexed: 11/06/2022] Open
|
26
|
Wang Y, Gao Y, Cheng H, Yang G, Tan W. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer. Biochem Biophys Res Commun 2015; 466:362-8. [PMID: 26361149 DOI: 10.1016/j.bbrc.2015.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 12/14/2022]
Abstract
Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yuxia Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Ying Gao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Hairong Cheng
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Guichun Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Wenhua Tan
- Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China.
| |
Collapse
|
27
|
Fang Z, Tian Z, Luo K, Song H, Yi J. Clinical significance of stanniocalcin expression in tissue and serum of gastric cancer patients. Chin J Cancer Res 2014; 26:602-10. [PMID: 25400427 DOI: 10.3978/j.issn.1000-9604.2014.10.08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Stanniocalcin (STC) has been recognized as a potential biomarker in a variety of cancers. The aim of this study was to examine STC1 and STC2 expression in tumor and serum samples from gastric cancer (GC) patients. METHODS A total of 83 GC patients treated with radical resection were enrolled in this study. Immunohistochemistry was used to detect STC protein expression in paired tumor and adjacent normal tissues. Serum STC levels were determined by enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristics (ROC) curve was constructed to describe diagnostic specificity and sensitivity. RESULTS Both of STC1 and STC2 protein expression were upregulated in GC tissues compared with that in normal ones. Moreover, the high/moderate of STC1 protein was significantly associated with lymph metastasis, clinical stage and adverse 3-year progression-free survival (PFS). In addition, serum STC1 and STC2 expression in GC patients were much higher than that in patients with benign gastric disease, which decreased at postoperative 7-10 days. The sensitivity of serum STC protein also showed superiority over CEA and CA19-9. CONCLUSIONS STC upregulation plays an important role in GC development, and serum STC1 and STC2 might function as promising tumor markers for GC diagnosis and prognosis.
Collapse
Affiliation(s)
- Zheng Fang
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhiqiang Tian
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Kunlun Luo
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Haizhu Song
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jun Yi
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
28
|
ZHANG ZHENHAI, WU YAGUANG, QIN CHENGKUN, RONG ZHONGHOU, SU ZHONGXUE, XIAN GUOZHE. Stanniocalcin 2 expression predicts poor prognosis of hepatocellular carcinoma. Oncol Lett 2014; 8:2160-2164. [PMID: 25289096 PMCID: PMC4186577 DOI: 10.3892/ol.2014.2520] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that the expression level of stanniocalcin 2 (STC2) is associated with tumor progression. However, to date, the association between STC2 and clinicopathological factors in hepatocellular carcinoma (HCC) has not been investigated. The clinical significance of STC2 was investigated in 30 fresh HCC samples using western blot analysis and in 240 HCC tissues using immunohistochemical analysis. The level of STC2 in cancerous tissue was higher than in the matched non-cancerous tissues. Using immunohistochemistry, the STC2-positive group exhibited a higher incidence of lymph node metastasis and venous invasion compared with the STC2-negative group. Kaplan-Meier survival analysis revealed that the positive expression of STC2 correlated with poor overall survival (OS) and disease-free survival of HCC patients (P<0.01). STC2 expression was observed to be an independent prognostic factor for OS in HCC patients by multivariate analysis (hazard ratio, 2.39; 95% confidence interval, 1.04-5.89; P=0.013). These data suggest that STC2 expression may be a useful indicator of poor prognosis in HCC patients.
Collapse
Affiliation(s)
- ZHEN-HAI ZHANG
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - YA-GUANG WU
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - CHENG-KUN QIN
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - ZHONG-HOU RONG
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - ZHONG-XUE SU
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - GUO-ZHE XIAN
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
29
|
Zhang ZY, Dai ZL, Yin XW, Li SH, Li SP, Ge HY. Meta-analysis shows that circulating tumor cells including circulating microRNAs are useful to predict the survival of patients with gastric cancer. BMC Cancer 2014; 14:773. [PMID: 25330717 PMCID: PMC4210594 DOI: 10.1186/1471-2407-14-773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are metastatic cells disseminated into the bloodstreams. They have been proposed to monitor disease progression for decades. However, the prognostic value of CTCs in gastric cancer (GC) remains controversial. We performed a meta-analysis to investigate the topic. Methods A systematic search was made for relevant studies in academic data bases, involving the Medline, Embase, and Science Citation Index. Data on prognosis of GC patients, such as recurrence-free survival (RFS) and overall survival (OS), were extracted when possible. The meta-analysis was performed with the random effects model and the pooled hazard ratios (HRs) and their associated 95% confident intervals (95%CIs) were computed as effect measures. Results Twenty six studies (including 40 subgroups) with peripheral blood samples of 1950 cases from 10 countries were included in the final analysis. The pooled results showed that GC patients with detectable CTCs (including circulating miRNAs) had a tendency to experience shortened RFS (HR = 2.91, 95% CI [1.84-4.61], I2 = 52.18%, n = 10). As for patient deaths, we found a similar association of CTC (including circulating miRNAs) presence with worse OS (HR = 1.78, 95% CI [1.49-2.12], I2 = 30.71%, n = 30). Additionally, subgroup analyses indicated strong prognostic powers of CTCs, irrespective of geographical, methodological, detection time and sample size differences of the studies. Conclusions Our meta-analysis shows that CTCs (including circulating miRNAs) can predict the survival of GC patients. Large prospective studies are warranted to determine the best sampling time points, detection methods in homogeneous patients with GC in the future. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-773) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai-yan Ge
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Pudong New District, No, 150, Jimo Road, Shanghai 200120, China.
| |
Collapse
|
30
|
Wang S, Zheng G, Cheng B, Chen F, Wang Z, Chen Y, Wang Y, Xiong B. Circulating tumor cells (CTCs) detected by RT-PCR and its prognostic role in gastric cancer: a meta-analysis of published literature. PLoS One 2014; 9:e99259. [PMID: 24901848 PMCID: PMC4047117 DOI: 10.1371/journal.pone.0099259] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 05/12/2014] [Indexed: 12/27/2022] Open
Abstract
Objective The prognostic significance of circulating tumor cells (CTCs) is controversial in gastric cancer (GC). We performed a meta-analysis of available studies to assess its prognostic value detected by RT-PCR for patients diagnosed with GC. Methods EMBase, PubMed, Ovid, Web of Science, Cochrane library and Google Scholar database search was conducted on all studies reporting the outcomes of interest. The studies were set up according to the inclusion/exclusion criteria. Meta-analysis was performed by using a random-effects model; hazard ratio (HR), risk ratio (RR) and their 95% confidence intervals (95% CIs) were set as effect measures. The information about trial design, results from the data was independently extracted. Heterogeneity of the studies was tested for each pooled analysis. Results Nineteen studies published matched the selection criteria and were included in this meta-analysis. CTCs positivity was significantly associated with poor relapse free survival (RFS) (HR 2.42, 95% CI: [1.94–3.02]; P<0.001) and poor overall survival (OS) (HR 2.42, 95% CI: [1.94–3.02]; P<0.001). CTCs positivity were also significantly associated with regional lymph nodes (RLNs) metastasis (RR 1.42, 95% CI: [1.20–1.68]; p<0.0001), depth of infiltration (RR 1.51, 95% CI: [1.27–1.79]; p<0.0001), vascular invasion (RR = 1.43, 95% CI: [1.18–1.74], p = 0.0002) and TNM stage(I,II versus III) (RR 0.63, 95% CI [0.48–0.84]; p = 0.001). Conclusion Preoperative CTCs positivity indicates poor prognosis in patients with gastric cancer, and associated with poor clinicopathological prognostic factors.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, P. R. China
| | - Gang Zheng
- Department of General Surgery, The 5 Hospital of Wuhan, Wuhan, Hubei, P. R. China
| | - Boran Cheng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, P. R. China
| | - Fangfang Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, P. R. China
| | - Zhenmeng Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, P. R. China
| | - Yuanyuan Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, P. R. China
| | - You Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, P. R. China
| | - Bin Xiong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
31
|
Ren J, Huang HJ, Gong Y, Yue S, Tang LM, Cheng SY. MicroRNA-206 suppresses gastric cancer cell growth and metastasis. Cell Biosci 2014; 4:26. [PMID: 24855559 PMCID: PMC4030529 DOI: 10.1186/2045-3701-4-26] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/15/2014] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer death world-wide and carries a high rate of metastatic risk. In addition to other protein-coding oncogenes and tumor suppressor genes, microRNAs play an important role in gastric cancer tumorigenic progression. Here, we show that miR-206 is expressed at markedly low levels in a cohort of gastric tumors compared to their matching normal tissues, and in a number of gastric cancer cell lines. Down-regulation of miR-206 was particularly significant in tumors with lymphatic metastasis, local invasion, and advanced TNM staging. We find that forced expression of miR-206 suppressed the proliferation, colony-formation, and xenograft tumorigenesis of SCG-7901 cells, a line of gastric cancer cells. Forced expression of miR-206 also suppressed SCG-7901 cell migration and invasion, as well as metastasis in cell culture or tail-vein injected mouse models, respectively. The anti-metastatic effect of miR-206 is likely mediated by targeting metastasis regulatory genes STC2, HDAC4, KLF4, IGF1R, FRS2, SFRP1, BCL2, BDNF, and K-ras, which were drastically down-regulated by stable expression of exogenous miR-206 in SCG-7901 cells. Taken together, our results indicate that miR-206 is a tumor suppressor of gastric cancer acting at steps that regulate metastasis.
Collapse
Affiliation(s)
- Jun Ren
- Department of General Surgery, Nanjing Medical University affiliated Changzhou No. 2 Hospital, 213000 Changzhou, Jiangsu, PR. China.,Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| | - Hui-Jie Huang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| | - Yu Gong
- Department of General Surgery, Nanjing Medical University affiliated Changzhou No. 2 Hospital, 213000 Changzhou, Jiangsu, PR. China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| | - Li-Ming Tang
- Department of General Surgery, Nanjing Medical University affiliated Changzhou No. 2 Hospital, 213000 Changzhou, Jiangsu, PR. China
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| |
Collapse
|