1
|
Liu N, Wang S, Li M, Zhao N, Wang D, Zhang R, Yu M, Zhao L, Zhang S, Han F, Zhao Y, Liu Q. BET degrader exhibits lower antiproliferative activity than its inhibitor via EGR1 recruiting septins to promote E2F1-3 transcription in triple-negative breast cancer. Pharmacol Res 2024; 208:107377. [PMID: 39209080 DOI: 10.1016/j.phrs.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The bromodomain and extraterminal domain (BET) family proteins serve as primary readers of acetylated lysine residues and play crucial roles in cell proliferation and differentiation. Dysregulation of BET proteins has been implicated in tumorigenesis, making them important therapeutic targets. BET-bromodomain (BD) inhibitors and BET-targeting degraders have been developed to inhibit BET proteins. In this study, we found that the BET inhibitor MS645 exhibited superior antiproliferative activity than BET degraders including ARV771, AT1, MZ1 and dBET1 in triple-negative breast cancer (TNBC) cells. Treatment with MS645 led to the dissociation of BETs, MED1 and RNA polymerase II from the E2F1-3 promoter, resulting in the suppression of E2F1-3 transcription and subsequent inhibition of cell growth in TNBC. In contrast, while ARV771 displaced BET proteins from chromatin, it did not significantly alter E2F1-3 expression. Mechanistically, ARV771 induced BRD4 depletion at protein level, which markedly increased EGR1 expression. This elevation of EGR1 subsequently recruited septin 2 and septin 9 to E2F1-3 promoters, enhancing E2F1-3 transcription and promoting cell proliferation rate in vitro and in vivo. Our findings provide valuable insights into differential mechanisms of BET inhibition and highlight potential of developing BET-targeting molecules as therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Munan Li
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Rui Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Mingxin Yu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Luoyi Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Fangbin Han
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Ying Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| |
Collapse
|
2
|
Wen X, Qin J, Zhang X, Ye L, Wang Y, Yang R, Di Y, He W, Wang Z. MEK-mediated CHPF2 phosphorylation promotes colorectal cancer cell proliferation and metastasis by activating NF-κB signaling. Cancer Lett 2024; 584:216644. [PMID: 38253217 DOI: 10.1016/j.canlet.2024.216644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
The cytokine tumor necrosis factor (TNF) plays a crucial role in the proliferation and metastasis of colorectal cancer (CRC) cells, but the underlying mechanisms remain poorly understood. Here, we report that chondroitin polymerizing factor 2 (CHPF2) promotes CRC cell proliferation and metastasis mediated by TNF, independently of its enzymatic activity. CHPF2 is highly expressed in CRC, and its elevated expression is associated with poor prognosis of CRC patients. Mechanistically, upon TNF stimulation, CHPF2 is phosphorylated at the T588 residue by MEK, enabling CHPF2 to interact with both TAK1 and IKKα. This interaction enhances the binding of TAK1 and IKKα, leading to increased phosphorylation of the IKK complex and activation of NF-κB signaling. As a result, the expression of early growth factors (EGR1) is upregulated to promote CRC cell proliferation and metastasis. In contrast, introduction of a phospho-deficient T588A mutation in CHPF2 weakened the interaction between CHPF2 and TAK1, thus impairing NF-κB signaling. CHPF2 T588A mutation reduced the ability of CHPF2 to promote the proliferation and metastasis of CRC in vitro and in vivo. Furthermore, the NF-κB RELA subunit promotes CHPF2 expression, further amplifying TNF-induced NF-κB signaling activation. These findings identify a moonlighting function of CHPF2 in promoting tumor cell proliferation and metastasis and provide insights into the mechanism by which CHPF2 amplifies TNF-mediated NF-κB signaling activation. Our study provides a molecular basic for the development of therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Youpeng Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ranran Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
3
|
Yang Z, Chen F, Wei D, Chen F, Jiang H, Qin S. EGR1 mediates MDR1 transcriptional activity regulating gemcitabine resistance in pancreatic cancer. BMC Cancer 2024; 24:268. [PMID: 38408959 PMCID: PMC10895816 DOI: 10.1186/s12885-024-12005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Gemcitabine is a cornerstone drug for the treatment of all stages of pancreatic cancer and can prolong the survival of patients with pancreatic cancer, but resistance to gemcitabine in pancreatic cancer patients hinders its efficacy. The overexpression of Early growth response 1(EGR1) in pancreatic ductal adenocarcinoma as a mechanism of gemcitabine chemoresistance in pancreatic cancer has not been explored. The major mechanisms of gemcitabine chemoresistance are related to drug uptake, metabolism, and action. One of the common causes of tumor multidrug resistance (MDR) to chemotherapy in cancer cells is that transporter proteins increase intracellular drug efflux and decrease drug concentrations by inducing anti-apoptotic mechanisms. It has been reported that gemcitabine binds to MDR1 with high affinity. The purpose of this research was to investigate the potential mechanisms by which EGR1 associates with MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. METHODS The following in vitro and in vivo techniques were used in this research to explore the potential mechanisms by which EGR1 binds to MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. Cell culture; in vitro and in vivo study of EGR1 function by loss of function analysis. Binding of EGR1 to the MDR1 promoter was detected using the ChIP assay. qRT-PCR, Western blot assays to detect protein and mRNA expression; use of Annexin V apoptosis detection assay to test apoptosis; CCK8, Edu assay to test cell proliferation viability. The animal model of pancreatic cancer subcutaneous allograft was constructed and the tumours were stained with hematoxylin eosin and Ki-67 expression was detected using immunohistochemistry. FINDINGS We revealed that EGR1 expression was increased in different pancreatic cancer cell lines compared to normal pancreatic ductal epithelial cells. Moreover, gemcitabine treatment induced upregulation of EGR1 expression in a dose- and time-dependent manner. EGR1 is significantly enriched in the MDR1 promoter sequence.Upon knockdown of EGR1, cell proliferation was impaired in CFPAC-1 and PANC-1 cell lines, apoptosis was enhanced and MDR1 expression was decreased, thereby partially reversing gemcitabine chemoresistance. In animal experiments, knockdown of EGR1 enhanced the inhibitory effect of gemcitabine on tumor growth compared with the sh-NC group. CONCLUSIONS Our study suggests that EGR1 may be involved in the regulation of MDR1 to enhance gemcitabine resistance in pancreatic cancer cells. EGR1 could be a novel therapeutic target to overcome gemcitabine resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Gastroenterology, Guangxi Medical University Cancer Hospital, No 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Feiran Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dafu Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Fengping Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
4
|
Hu J, Hameed MR, Agaram NP, Whiting KA, Qin LX, Villano AM, O'Connor RB, Rozenberg JM, Cohen S, Prendergast K, Kryeziu S, White RL, Posner MC, Socci ND, Gounder MM, Singer S, Crago AM. PDGFRβ Signaling Cooperates with β-Catenin to Modulate c-Abl and Biologic Behavior of Desmoid-Type Fibromatosis. Clin Cancer Res 2024; 30:450-461. [PMID: 37943631 PMCID: PMC10792363 DOI: 10.1158/1078-0432.ccr-23-2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE This study sought to identify β-catenin targets that regulate desmoid oncogenesis and determine whether external signaling pathways, particularly those inhibited by sorafenib (e.g., PDGFRβ), affect these targets to alter natural history or treatment response in patients. EXPERIMENTAL DESIGN In vitro experiments utilized primary desmoid cell lines to examine regulation of β-catenin targets. Relevance of results was assessed in vivo using Alliance trial A091105 correlative biopsies. RESULTS CTNNB1 knockdown inhibited hypoxia-regulated gene expression in vitro and reduced levels of HIF1α protein. ChIP-seq identified ABL1 as a β-catenin transcriptional target that modulated HIF1α and desmoid cell proliferation. Abrogation of either CTNNB1 or HIF1A inhibited desmoid cell-induced VEGFR2 phosphorylation and tube formation in endothelial cell co-cultures. Sorafenib inhibited this activity directly but also reduced HIF1α protein expression and c-Abl activity while inhibiting PDGFRβ signaling in desmoid cells. Conversely, c-Abl activity and desmoid cell proliferation were positively regulated by PDGF-BB. Reduction in PDGFRβ and c-Abl phosphorylation was commonly observed in biopsy samples from patients after treatment with sorafenib; markers of PDGFRβ/c-Abl pathway activation in baseline samples were associated with tumor progression in patients on the placebo arm and response to sorafenib in patients receiving treatment. CONCLUSIONS The β-catenin transcriptional target ABL1 is necessary for proliferation and maintenance of HIF1α in desmoid cells. Regulation of c-Abl activity by PDGF signaling and targeted therapies modulates desmoid cell proliferation, thereby suggesting a reason for variable biologic behavior between tumors, a mechanism for sorafenib activity in desmoids, and markers predictive of outcome in patients.
Collapse
Affiliation(s)
- Jia Hu
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera R. Hameed
- Bone and Soft Tissue Pathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Narasimhan P. Agaram
- Bone and Soft Tissue Pathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Karissa A. Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony M. Villano
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachael B. O'Connor
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julian M. Rozenberg
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonia Cohen
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine Prendergast
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara Kryeziu
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard L. White
- Department of Surgery, Levine Cancer Center, Atrium Health, Carolinas Medical Center, Charlotte, North Carolina
| | | | - Nicholas D. Socci
- Bioinformatics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mrinal M. Gounder
- Sarcoma Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Samuel Singer
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Aimee M. Crago
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| |
Collapse
|
5
|
Pasquereau-Kotula E, du Merle L, Sismeiro O, Pietrosemoli N, Varet H, Legendre R, Trieu-Cuot P, Dramsi S. Transcriptome profiling of human col\onic cells exposed to the gut pathobiont Streptococcus gallolyticus subsp. gallolyticus. PLoS One 2023; 18:e0294868. [PMID: 38033043 PMCID: PMC10688619 DOI: 10.1371/journal.pone.0294868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Streptococcus gallolyticus sp. gallolyticus (SGG) is a gut pathobiont involved in the development of colorectal cancer (CRC). To decipher SGG contribution in tumor initiation and/or acceleration respectively, a global transcriptome was performed in human normal colonic cells (FHC) and in human tumoral colonic cells (HT29). To identify SGG-specific alterations, we chose the phylogenetically closest relative, Streptococcus gallolyticus subsp. macedonicus (SGM) as control bacterium. We show that SGM, a bacterium generally considered as safe, did not induce any transcriptional changes on the two human colonic cells. The transcriptional reprogramming induced by SGG in normal FHC and tumoral HT29 cells was significantly different, although most of the genes up- and down-regulated were associated with cancer disease. Top up-regulated genes related to cancer were: (i) IL-20, CLK1, SORBS2, ERG1, PIM1, SNORD3A for normal FHC cells and (ii) TSLP, BHLHA15, LAMP3, ZNF27B, KRT17, ATF3 for cancerous HT29 cells. The total number of altered genes were much higher in cancerous than in normal colonic cells (2,090 vs 128 genes being affected, respectively). Gene set enrichment analysis reveals that SGG-induced strong ER- (endoplasmic reticulum) stress and UPR- (unfolded protein response) activation in colonic epithelial cells. Our results suggest that SGG induces a pro-tumoral shift in human colonic cells particularly in transformed cells potentially accelerating tumor development in the colon.
Collapse
Affiliation(s)
- Ewa Pasquereau-Kotula
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
| | - Laurence du Merle
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
| |
Collapse
|
6
|
Dobre M, Trandafir B, Milanesi E, Salvi A, Bucuroiu I, Vasilescu C, Niculae AM, Herlea V, Hinescu ME, Constantinescu G. Molecular profile of the NF-κB signalling pathway in human colorectal cancer. J Cell Mol Med 2022; 26:5966-5975. [PMID: 36433652 PMCID: PMC9753446 DOI: 10.1111/jcmm.17545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The development and progression of colorectal cancer (CRC) have been associated with inflammation processes that involve the overactivation of the NF-κB signalling pathway. The characterization of the NF-κB expression profile in CRC is an important topic since the suppression of NF-κB represents a potential therapeutic approach. In this study, we assessed the expression levels of 84 NF-κB-related genes in paired tumoral (T) and peritumoral (PT) tissues from 18 CRC patients and 18 normal colonic mucosae, and the expression levels of three miRNAs targeting the most dysregulated genes revealed by the case-control analysis. Comparing the gene expression profile of T and controls, 60 genes were dysregulated. The comparison of T and PT revealed 17 dysregulated genes in the tumoral tissues, with IL1B, CXCL8, IL1A, and CSF2 being the most upregulated. Notably, through a bioinformatics analysis, the differential gene expression of 11 out of the 17 genes was validated on a larger cohort of 308 CRC patients compared with 41 controls. Moreover, a decrease in the levels of RELA, NOD1, CASP8, BCL2L1, ELK1, and IKBKB was identified in poorly differentiated tumours compared to moderately differentiated tumours. The analysis of the three miRNAs targeting IL1B, CXCL8, IL1A, and CSF2 showed that miR-182-5p was upregulated in T compared with PT, whereas miR-10b-5p was downregulated in T compared with PT and control tissues. Our results may contribute to the design of new experimental therapeutic strategies based on endogenous molecules, such as miRNAs, to target the genetic key players of the NF- κB pathway.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of PathologyBucharestRomania
| | - Bogdan Trandafir
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Fundeni Clinical InstituteBucharestRomania
| | - Elena Milanesi
- Victor Babes National Institute of PathologyBucharestRomania
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Ioana Alina Bucuroiu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Catalin Vasilescu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Fundeni Clinical InstituteBucharestRomania
| | - Andrei Marian Niculae
- Victor Babes National Institute of PathologyBucharestRomania,Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | | | - Mihail Eugen Hinescu
- Victor Babes National Institute of PathologyBucharestRomania,Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Gabriel Constantinescu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Clinical Emergency Hospital BucharestBucharestRomania
| |
Collapse
|
7
|
Qi F, Wang X, Zhao S, Wang C, Sun R, Wang H, Du P, Wang J, Wang X, Jiang G. miR‑let‑7c‑3p targeting on Egr‑1 contributes to the committed differentiation of leukemia cells into monocyte/macrophages. Oncol Lett 2022; 24:273. [PMID: 35782903 PMCID: PMC9247672 DOI: 10.3892/ol.2022.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
In preliminary experiments, it was found that the expression of early growth response-1 (Egr-1) was upregulated during the committed differentiation of leukemia cells into monocytes/macrophages. The cross-analysis of gene chip detection and database prediction indicated that Egr-1 was associated with upstream microRNA (miR)-let-7c-3p, thus the present study focused on the role of the miR-let-7c-3p/Egr-1 signaling axis in the committed differentiation of leukemia cells into monocytes/macrophages. Phorbol 12-myristate 13-acetate (PMA) was used to induce the directed differentiation of human K562 leukemia cells into monocytes/macrophages and the differentiation of K562 leukemia cells was determined by cell morphology observation and expression of differentiation antigens CD11b and CD14 by flow cytometry. The expression levels of Egr-1 and miR-let-7c-3p were detected by reverse transcription-quantitative PCR and the protein expression of Egr-1 was detected by western blotting. The effect of Egr-1 on the differentiation of K562 cells was detected by short interfering (si)RNA interference assay. A dual-luciferase reporter assay was used to detect target binding of miR-let-7c-3p on the 3′UTR of Egr-1. Cell transfection of miR-let-7c-3p mimics and inhibitors was used to modulate the expression of miR-let-7c-3p, as indicated by RT-qPCR assays. Western blotting was also used to examine the effect of miR-let-7c-3p on Egr-1 expression. The PMA-induced differentiation of K562 cells was transfected with miR-let-7c-3p and the expression of differentiation antigen was detected by flow cytometry. A differentiation model of K562 leukemia cells into monocytes/macrophages was induced by PMA, which was indicated by morphological observations and upregulation of CD11b and CD14 antigens. The gene or protein expression of Egr-1 was significantly higher compared with that of the control group, while the expression of miR-let-7c-3p was significantly lower compared with that of the control group. siRNA interference experiments showed that the expression of cell differentiation antigen CD14 in the 100 µg/ml PMA + si-Egr-1 group was significantly lower compared with that in the 100 µg/ml PMA + si-ctrl group. The dual luciferase reporter gene results showed that the luciferase activity of the co-transfected mimic and Egr-1 WT groups was significantly lower than that of the NC control group, while the luciferase activity of the co-transfected mimic and Egr-1 MUT groups was comparable to that of the NC control group. Therefore, the dual-luciferase reporter gene assay confirmed that miR-let-7c-3p can target Egr-1. Western blotting showed that the expression of Egr-1 following transfection with miR-let-7c-3p inhibitor was significantly higher compared with that of the negative control and the expression of Egr-1 after transfection with miR-let-7c-3p mimic was significantly lower than that of the negative control. Following exposure to PMA, the expressions of CD11b and CD14 in the miR-let-7c-3p inhibitor group were significantly higher than those in the miR-let-7c-3p NC group, as indicated by CD11b and CD14 respectively. In conclusion, miR-let-7c-3p could bind to the 3′UTR of Egr-1 and negatively regulated Egr-1 expression. The miR-let-7c-3p/Egr-1 signaling axis was closely associated with the committed differentiation of K562 cells from leukemia cells to monocytes/macrophages.
Collapse
Affiliation(s)
- Fu Qi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xinping Wang
- Department of Laboratory Medicine, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Shouzhen Zhao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chaozhe Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Ruijing Sun
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Pengchao Du
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jing Wang
- Department of Cellular Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250109, P.R. China
| | - Xidi Wang
- Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan Affiliated to Jining Medical University, Jinan, Shandong 250200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
8
|
Saliani M, Jalal R, Javadmanesh A. Differential expression analysis of genes and long non-coding RNAs associated with KRAS mutation in colorectal cancer cells. Sci Rep 2022; 12:7965. [PMID: 35562390 PMCID: PMC9106686 DOI: 10.1038/s41598-022-11697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
KRAS mutation is responsible for 40–50% of colorectal cancers (CRCs). RNA-seq data and bioinformatics methods were used to analyze the transcriptional profiles of KRAS mutant (mtKRAS) in comparison with the wild-type (wtKRAS) cell lines, followed by in-silico and quantitative real-time PCR (qPCR) validations. Gene set enrichment analysis showed overrepresentation of KRAS signaling as an oncogenic signature in mtKRAS. Gene ontology and pathway analyses on 600 differentially-expressed genes (DEGs) indicated their major involvement in the cancer-associated signal transduction pathways. Significant hub genes were identified through analyzing PPI network, with the highest node degree for PTPRC. The evaluation of the interaction between co-expressed DEGs and lncRNAs revealed 12 differentially-expressed lncRNAs which potentially regulate the genes majorly enriched in Rap1 and RAS signaling pathways. The results of the qPCR showed the overexpression of PPARG and PTGS2, and downregulation of PTPRC in mtKRAS cells compared to the wtKRAS one, which confirming the outputs of RNA-seq analysis. Further, significant upregualtion of miR-23b was observed in wtKRAS cells. The comparison between the expression level of hub genes and TFs with expression data of CRC tissue samples deposited in TCGA databank confirmed them as distinct biomarkers for the discrimination of normal and tumor patient samples. Survival analysis revealed the significant prognostic value for some of the hub genes, TFs, and lncRNAs. The results of the present study can extend the vision on the molecular mechanisms involved in KRAS-driven CRC pathogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| |
Collapse
|
9
|
Saha SK, Islam SMR, Saha T, Nishat A, Biswas PK, Gil M, Nkenyereye L, El-Sappagh S, Islam MS, Cho SG. Prognostic role of EGR1 in breast cancer: a systematic review. BMB Rep 2021. [PMID: 34488929 PMCID: PMC8560464 DOI: 10.5483/bmbrep.2021.54.10.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
EGR1 (early growth response 1) is dysregulated in many cancers and exhibits both tumor suppressor and promoter activities, making it an appealing target for cancer therapy. Here, we used a systematic multiomics analysis to review the expression of EGR1 and its role in regulating clinical outcomes in breast cancer (BC). EGR1 expression, its promoter methylation, and protein expression pattern were assessed using various publicly available tools. COSMIC-based somatic mutations and cBioPortal-based copy number alterations were analyzed, and the prognostic roles of EGR1 in BC were determined using Prognoscan and Kaplan-Meier Plotter. We also used bc-GenEx-Miner to investigate the EGR1 co-expression profile. EGR1 was more often downregulated in BC tissues than in normal breast tissue, and its knockdown was positively correlated with poor survival. Low EGR1 expression levels were also associated with increased risk of ER+, PR+, and HER2-BCs. High positive correlations were observed among EGR1, DUSP1, FOS, FOSB, CYR61, and JUN mRNA expression in BC tissue. This systematic review suggested that EGR1 expression may serve as a prognostic marker for BC patients and that clinicopathological parameters influence its prognostic utility. In addition to EGR1, DUSP1, FOS, FOSB, CYR61, and JUN can jointly be considered prognostic indicators for BC.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - S. M. Riazul Islam
- Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea
| | - Tripti Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Afsana Nishat
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Lewis Nkenyereye
- Department of Computer and Information Security, Sejong University, Seoul 05006, Korea
| | - Shaker El-Sappagh
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Md. Saiful Islam
- School of Information and Communication Technology, Griffith University, QLD 4222, Australia
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Shao S, Ju M, Lei J, Lu X, Li H, Wang D, Xia C. Egr‑1 inhibits colon cancer cell proliferation, migration and invasion via regulating CDKL1 at the transcriptional level. Oncol Rep 2021; 46:169. [PMID: 34165179 DOI: 10.3892/or.2021.8120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is one of the most common malignant tumors worldwide, and the molecular mechanisms involved in the oncogenesis and progression of colon cancer remain unclear. Early growth response 1 (Egr‑1) is a transcription factor that is closely associated with several tumor processes; however, its role in colon cancer is unknown. The present study aimed to explore the function and mechanism of transcription factor Egr‑1 in colon cancer progression. The association between Egr‑1 expression and the survival of patients with colon cancer was analyzed. Transwell assay was used to measure the migration and invasion of colon cancer cells. Cell Counting Kit‑8 assay was used to evaluate the cell proliferative ability. Reverse transcription‑quantitative PCR and western blot assays were used to identify whether Egr‑1 could regulate cyclin‑dependent kinase‑like 1 (CDKL1). Luciferase and chromatin immunoprecipitation assays were used to detect the mechanism by which Egr‑1 regulated CDKL1. Based on The Cancer Genome Atlas database, it was found that low Egr‑1 expression was associated with a poor prognosis in patients with colon cancer. Furthermore, overexpression of Egr‑1 inhibited colon cancer cell proliferation, migration, and invasion, whereas knockdown of Egr‑1 increased colon cancer cell proliferation, migration and invasion. Additionally, overexpression of Egr‑1‑induced cell proliferation, migration and invasion were reversed by overexpression of CDKL1. Furthermore, it was demonstrated that Egr‑1 regulated CDKL1 expression at the transcriptional level. The present study illustrated the mechanism of Egr‑1 regulating CDKL1, by which Egr‑1 affected colon cancer cell proliferation, migration and invasion. The current findings suggested that Egr‑1/CDKL1 may be a new promising target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Shanshan Shao
- Department of Oncology, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu 225300, P.R. China
| | - Man Ju
- Department of Anus and Intestine Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jiayun Lei
- Department of Oncology, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiangqian Lu
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Hongzhi Li
- Department of Oncology, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu 225300, P.R. China
| | - Darui Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Chaofeng Xia
- Department of Anus and Intestine Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
11
|
Evaluation of probiotics for inhibiting hyperproliferation and inflammation relevant to psoriasis in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
|
12
|
Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y, Zhang Q. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol 2021; 14:19. [PMID: 33472669 PMCID: PMC7816340 DOI: 10.1186/s13045-020-01016-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND TNBC is the most aggressive breast cancer with higher recurrence and mortality rate than other types of breast cancer. There is an urgent need for identification of therapeutic agents with unique mode of action for overcoming current challenges in TNBC treatment. METHODS Different inhibitors were used to study the cell death manner of DMOCPTL. RNA silencing was used to evaluate the functions of GPX4 in ferroptosis and apoptosis of TNBC cells and functions of EGR1 in apoptosis. Immunohistochemical assay of tissue microarray were used for investigating correlation of GPX4 and EGR1 with TNBC. Computer-aided docking and small molecule probe were used for study the binding of DMOCPTL with GPX4. RESULTS DMOCPTL, a derivative of natural product parthenolide, exhibited about 15-fold improvement comparing to that of the parent compound PTL for TNBC cells. The cell death manner assay showed that the anti-TNBC effect of DMOCPTL mainly by inducing ferroptosis and apoptosis through ubiquitination of GPX4. The probe of DMOCPTL assay indicated that DMOCPTL induced GPX4 ubiquitination by directly binding to GPX4 protein. To the best of our knowledge, this is the first report of inducing ferroptosis through ubiquitination of GPX4. Moreover, the mechanism of GPX4 regulation of apoptosis is still obscure. Here, we firstly reveal that GPX4 regulated mitochondria-mediated apoptosis through regulation of EGR1 in TNBC cells. Compound 13, the prodrug of DMOCPTL, effectively inhibited the growth of breast tumor and prolonged the lifespan of mice in vivo, and no obvious toxicity was observed. CONCLUSIONS These findings firstly revealed novel manner to induce ferroptosis through ubiquitination of GPX4 and provided mechanism for GPX4 inducing mitochondria-mediated apoptosis through up-regulation of EGR1 in TNBC cells. Moreover, compound 13 deserves further studies as a lead compound with novel mode of action for ultimate discovery of effective anti-TNBC drug.
Collapse
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Xiaoping Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Can Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Weizhi Ge
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Qin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Xin Hao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Mengmeng Wang
- Accendatech Company, Ltd., Tianjin, 300384, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
13
|
Expression and prognostic value of the transcription factors EGR1 and EGR3 in gliomas. Sci Rep 2020; 10:9285. [PMID: 32518380 PMCID: PMC7283475 DOI: 10.1038/s41598-020-66236-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Most glioblastoma patients have a dismal prognosis, although some survive several years. However, only few biomarkers are available to predict the disease course. EGR1 and EGR3 have been linked to glioblastoma stemness and tumour progression, and this study aimed to investigate their spatial expression and prognostic value in gliomas. Overall 207 gliomas including 190 glioblastomas were EGR1/EGR3 immunostained and quantified. A cohort of 21 glioblastomas with high P53 expression and available tissue from core and periphery was stained with double-immunofluorescence (P53-EGR1 and P53-EGR3) and quantified.EGR1 expression increased with WHO-grade, and declined by 18.9% in the tumour periphery vs. core (P = 0.01), while EGR3 expression increased by 13.8% in the periphery vs. core (P = 0.04). In patients with high EGR1 expression, 83% had methylated MGMT-promoters, while all patients with low EGR1 expression had un-methylated MGMT-promoters. High EGR3 expression in MGMT-methylated patients was associated with poor survival (HR = 1.98; 95%CI 1.22–3.22; P = 0.006), while EGR1 high/EGR3 high, was associated with poor survival vs. EGR1 high/EGR3 low (HR = 2.11; 95%CI 1.25–3.56; P = 0.005). EGR1 did not show prognostic value, but could be involved in MGMT-methylation. Importantly, EGR3 may be implicated in cell migration, while its expression levels seem to be prognostic in MGMT-methylated patients.
Collapse
|
14
|
Determination of novel biomarkers and pathways shared by colorectal cancer and endometrial cancer via comprehensive bioinformatics analysis. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
|
15
|
Catalano C, da Silva Filho MI, Frank C, Lu S, Jiraskova K, Vymetalkova V, Levy M, Liska V, Vycital O, Naccarati A, Vodickova L, Hemminki K, Vodicka P, Weber ANR, Försti A. Epistatic effect of TLR3 and cGAS-STING-IKKε-TBK1-IFN signaling variants on colorectal cancer risk. Cancer Med 2019; 9:1473-1484. [PMID: 31869529 PMCID: PMC7013077 DOI: 10.1002/cam4.2804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objective The TLR3/cGAS‐STING‐IFN signaling has recently been reported to be disturbed in colorectal cancer due to deregulated expression of the genes involved. Our study aimed to investigate the influence of potential regulatory variants in these genes on the risk of sporadic colorectal cancer (CRC) in a Czech cohort of 1424 CRC patients and 1114 healthy controls. Methods The variants in the TLR3, CGAS, TMEM173, IKBKE, and TBK1 genes were selected using various online bioinformatic tools, such as UCSC browser, HaploReg, Regulome DB, Gtex Portal, SIFT, PolyPhen2, and miRNA prediction tools. Results Logistic regression analysis adjusted for age and sex detected a nominal association between CRC risk and three variants, CGAS rs72960018 (OR: 1.68, 95% CI: 1.11‐2.53, P‐value = .01), CGAS rs9352000 (OR: 2.02, 95% CI: 1.07‐3.84, P‐value = .03) and TMEM173 rs13153461 (OR: 1.53, 95% CI: 1.03‐2.27, P‐value = .03). Their cumulative effect revealed a threefold increased CRC risk in carriers of 5‐6 risk alleles compared to those with 0‐2 risk alleles. Epistatic interactions between these genes and the previously genotyped IFNAR1, IFNAR2, IFNA, IFNB, IFNK, IFNW, IRF3, and IRF7 genes, were computed to test their effect on CRC risk. Overall, we obtained nine pair‐wise interactions within and between the CGAS, TMEM173, IKBKE, and TBK1 genes. Two of them remained statistically significant after Bonferroni correction. Additional 52 interactions were observed when IFN variants were added to the analysis. Conclusions Our data suggest that epistatic interactions and a high number of risk alleles may play an important role in CRC carcinogenesis, offering novel biological understanding for the CRC management.
Collapse
Affiliation(s)
- Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Christoph Frank
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shun Lu
- Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Miroslav Levy
- First Medical Faculty, Department of Surgery, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Vaclav Liska
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic.,Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
| | - Ondrej Vycital
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic.,Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Baden-Württemberg, Tübingen, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
16
|
Guenzle J, Garrelfs NWC, Goeldner JM, Weyerbrock A. Cyclooxygenase (COX) Inhibition by Acetyl Salicylic Acid (ASA) Enhances Antitumor Effects of Nitric Oxide in Glioblastoma In Vitro. Mol Neurobiol 2019; 56:6046-6055. [DOI: 10.1007/s12035-019-1513-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
|
17
|
Shi K, Qiu X, Zheng W, Yan D, Peng W. MiR-203 regulates keloid fibroblast proliferation, invasion, and extracellular matrix expression by targeting EGR1 and FGF2. Biomed Pharmacother 2018; 108:1282-1288. [DOI: 10.1016/j.biopha.2018.09.152] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
|
18
|
Hasakova K, Vician M, Reis R, Zeman M, Herichova I. Sex-dependent correlation between survival and expression of genes related to the circadian oscillator in patients with colorectal cancer. Chronobiol Int 2018; 35:1423-1434. [PMID: 29953268 DOI: 10.1080/07420528.2018.1488722] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the important role of the circadian system in cancer progression in humans. The aim of the present study is to evaluate clock (cry1, cry2 and per2) and clock-controlled (vascular endothelial growth factor-a, early growth response protein 1 and estrogen receptor β) gene expression in colorectal cancer and adjacent tissue and identify a possible link between survival of patients and expression of above mentioned genes. The study includes 64 patients of both sexes with previously diagnosed colorectal cancer. RNA was extracted from the tumor tissue and adjacent parts of the resected colon, and real-time PCR was used for detection of clock gene expression. Expression of cry2 and per2 was significantly downregulated in tumor tissue compared to adjacent tissues. After splitting of the cohort according to sex, we detected downregulated levels of cry2 and per2 in male patients, but not in females. Splitting of male and female sub-cohorts according to presence of metastases revealed significant donwregulation of cry2 expression in female patients without distant metastasis. Better survival rate was associated with low expression of cry2 in female patients. Moreover, we observed an increase in cry1 expression in female patients with distant metastases in tumor compared to adjacent tissue. Accordingly, women with high expression of cry1 in tumor tissue displayed worse survival, which was not observed in men. Taken together, expression of clock and clock-controlled genes in tumors of males and females clustered according to presence of distant metastases correlated with survival analysis. Studied clock-controlled genes also showed sex-dependent changes. Low expression of vegf-a in tumor correlated with better survival in men but not in women. High expression of estrogen receptor β mRNA was related to better survival in women but not in men. Low expression of vegf-a, egr1 and estrogen receptor β was associated with worse survival in women compared to men. Our data indicate sex-dependent associations between clock and clock-controlled gene expression in cancer tissue and patient's survival prognosis.
Collapse
Affiliation(s)
- Kristina Hasakova
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Marian Vician
- b Fourth Surgery Department , University Hospital, Comenius University Bratislava , Bratislava , Slovak Republic
| | - Richard Reis
- c First Surgery Department , University Hospital, Comenius University Bratislava , Bratislava , Slovak Republic
| | - Michal Zeman
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Iveta Herichova
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University Bratislava , Bratislava , Slovak Republic
| |
Collapse
|
19
|
Zhong JT, Wang HJ, Yu J, Zhang JH, Wang SF, Yang X, Su W. Correlations of the expressions of c-Jun and Egr-1 proteins with clinicopathological features and prognosis of patients with nasopharyngeal carcinoma. Cancer Biomark 2018; 19:213-220. [PMID: 28269757 DOI: 10.3233/cbm-161710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
This study intended to explore the correlation of the expressions of c-Jun and Egr-1 proteins with clinicopathological features and prognosis of patients with nasopharyngeal carcinoma (NPC). From January 2008 to January 2011, 123 NPC patients and 59 patients with chronic rhinitis were enrolled in this study. Fresh NPC and normal nasopharynx tissue specimens were obtained during surgery. Immunohistochemistry (IHC) was adopted to determine the positive expressions of the c-Jun and Egr-1 proteins. A 5-year clinical follow-up was conducted on all NPC patients. The Kaplan-Meier survival curve and Cox regression model were used for survival analysis. Compared with normal nasopharynx tissues, c-Jun expression was up-regulated but Egr-1 expression was down-regulated in NPC tissues. NPC patients with stage T3-T4 or stage III-IV had higher positive rates of c-Jun expression than those with stage T1-T2 or stage I-II. However, the positive rates of Egr-1 expression was higher in patients with stage T1-T2 or stage III-IV than those with stage T3-T4 or stage I-II. The survival rate of NPC patients with high c-Jun expression was lower than those with low/negative c-Jun expression, while the survival rate of NPC patients with high Egr-1 expression was higher than those with low/negative Egr-1 expression. The Cox regression analysis revealed that stage T3-T4, high c-Jun expression, and low Egr-1 expression were risk factors for poor prognosis of NPC patients. In conclusion, our study suggests that the c-Jun and Egr-1 proteins can serve as novel potential biomarkers for the early diagnosis and prognosis prediction of NPC.
Collapse
Affiliation(s)
- Jia-Teng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Hai-Jun Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Jing-Hang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Shi-Feng Wang
- Pediatric Rescue Room, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Xue Yang
- Pediatric Rescue Room, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China.,Clinical Molecular Pathology Diagnosis Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| |
Collapse
|
20
|
Wang Y, Goodison S, Li X, Hu H. Prognostic cancer gene signatures share common regulatory motifs. Sci Rep 2017; 7:4750. [PMID: 28684851 PMCID: PMC5500535 DOI: 10.1038/s41598-017-05035-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2017] [Accepted: 06/01/2017] [Indexed: 11/29/2022] Open
Abstract
Scientists have discovered various prognostic gene signatures (GSs) in different cancer types. Surprisingly, although different GSs from the same cancer type can be used to measure similar biological characteristics, often rarely is there a gene shared by different GSs. To explain such a paradox, we hypothesized that GSs from the same cancer type may be regulated by common regulatory motifs. To test this hypothesis, we carried out a comprehensive motif analysis on the prognostic GSs from five cancer types. We demonstrated that GSs from individual cancer type as well as across cancer types share regulatory motifs. We also observed that transcription factors that likely bind to these shared motifs have prognostic functions in cancers. Moreover, 75% of the predicted cofactors of these transcription factors may have cancer-related functions and some cofactors even have prognostic functions. In addition, there exist common microRNAs that regulate different GSs from individual cancer types and across cancer types, several of which are prognostic biomarkers for the corresponding cancer types. Our study suggested the existence of common regulatory mechanisms shared by GSs from individual cancer types and across cancer types, which shed light on the discovery of new prognostic GSs in cancers and the understanding of the regulatory mechanisms of cancers.
Collapse
Affiliation(s)
- Ying Wang
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Steve Goodison
- Nonagen BioScience Corp, Jacksonville, FL, 32216, USA
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Xiaoman Li
- Burnett school of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
21
|
Choi EJ, Yoo NJ, Kim MS, An CH, Lee SH. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. Oncology 2016; 91:289-294. [PMID: 27677186 DOI: 10.1159/000450616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The transcription factor-encoding EGR1 and the kinase-encoding BRSK1 are considered putative tumor suppressor genes (TSGs). However, EGR1 and BRSK1 mutations that could inactivate their functions are not reported in colorectal (CRC) and gastric (GC) cancers. METHODS There are mononucleotide repeats in EGR1 and BRSK1, which could be mutated in cancers with defects in mismatch repair, resulting in microsatellite instability (MSI). We analyzed 124 CRCs and 79 GCs for mutations and their intratumoral heterogeneities (ITHs). RESULTS Twenty-one out of 79 CRCs (26.6%) and 5 out of 34 GCs (14.7%) carrying high MSI (MSI-H) exhibited frameshift mutations. However, we found no such mutations in cancers with microsatellite stability. In addition, we studied ITH for these mutations in 16 cases of CRCs and observed that EGR1 and BRSK1 mutations exhibited ITH in 3 (18.8%) and 2 (12.5%) cases, respectively. CONCLUSION Our data in this study reveal that the TSG genes EGR1 and BRSK1 carry mutational ITH as well as frameshift mutations in MSI-H CRC and GC, which together may be features of GC and CRC with MSI-H. These results suggest that frameshift mutations of EGR1 and BRSK1 might play a role in tumorigenesis through TSG inactivation in CRC and GC.
Collapse
Affiliation(s)
- Eun Ji Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
22
|
Auburn H, Zuckerman M, Smith M. Analysis of Epstein-Barr virus and cellular gene expression during the early phases of Epstein-Barr virus lytic induction. J Med Microbiol 2016; 65:1243-1252. [PMID: 27625030 DOI: 10.1099/jmm.0.000352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
In order to develop novel host/pathogen real-time PCR assays for routine diagnostic use, early gene expression patterns from both Epstein-Barr virus (EBV) and Raji cells were examined after inducing the lytic life cycle using 12-O-tetradecanoyl-13-phorbol ester and sodium butyrate. Real-time PCR identified several highly induced (>90-fold) EBV lytic genes over a 48 h time course during the lytic induction phase. Latent genes were induced at low levels during this phase. The cellular response to lytic viral replication is poorly understood. Whole human genome microarray analysis identified 113 cellular genes regulated twofold or more by EBV, including 63 upregulated and 46 downregulated genes, over a 24 h time course post-induction. The most upregulated gene was CHI3L1, a chitinase-3-like 1 protein (18.1-fold; P<0.0084), and the most downregulated gene was TYMS, a thymidylate synthetase (-7.6-fold). Gene Ontology enrichment analysis using MetaCore software revealed cell cycle (core), cell cycle (role of anaphase-promoting complex) in cell cycle regulation) and lymphatic diseases as the most significantly represented biological network processes, canonical pathways and disease biomarkers, respectively. Chemotaxis, DNA damage and inflammation (IL-4 signalling) together with lymphoproliferative disorders and non-Hodgkin's lymphoma were significantly represented biological processes and disease biomarkers.
Collapse
Affiliation(s)
- Helen Auburn
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Mark Zuckerman
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Melvyn Smith
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
23
|
Chen Y, Cha Z, Fang W, Qian B, Yu W, Li W, Yu G, Gao Y. The prognostic potential and oncogenic effects of PRR11 expression in hilar cholangiocarcinoma. Oncotarget 2016; 6:20419-33. [PMID: 25971332 PMCID: PMC4653015 DOI: 10.18632/oncotarget.3983] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2014] [Accepted: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
PRR11 is a newly identified oncogene in lung cancer, yet its role in others tumors remains unclear. Gastrointestinal tissue microarrays were used to evaluate PRR11 expression and its association with clinical outcome was analyzed in patients with hilar cholangiocarcinoma. Overexpression of PRR11 was observed in esophageal, gastric, pancreatic, colorectal, and hilar cholangiocarcinoma. Expression of PRR11 correlated with lymph node metastasis and CA199 level in two HC patient cohorts. After an R0 resection, a high level of PRR11 expression was found to be an independent indicator of recurrence (P = 0.001). In cell culture, PRR11 silencing resulted in decreased cellular proliferation, cell migration, tumor growth of QBC939 cells. Microarray analysis revealed that several genes involved in cell proliferation, cell adhesion, and cell migration were altered in PRR11-knockout cells, including: vimentin (VIM), Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1), early growth response protein (EGR1), and System A amino acid transporter1 (SNAT1). Silencing PRR11 inhibited the expression of UCHL1, EGR1, and SNAT1 proteins, with immunoassays revealing a significant correlation among the levels of these four proteins. These results indicate that PRR11 is an independent prognostic indicator for patients with HC.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pathology, Changhai Hospital, Shanghai, China
| | - Zhanshan Cha
- Department of Transfusion, Changhai Hospital, Shanghai, China
| | - Wenzheng Fang
- Department of Oncology, Fuzhou General Hospital, Fuzhou, Fujian Province, China
| | - Baohua Qian
- Department of Transfusion, Changhai Hospital, Shanghai, China
| | - Wenlong Yu
- Department of Surgery, Eastern Hepatobiliary Hospital, Shanghai, China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Guanzhen Yu
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China.,Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Gao
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Wu SY, Rupaimoole R, Shen F, Pradeep S, Pecot CV, Ivan C, Nagaraja AS, Gharpure KM, Pham E, Hatakeyama H, McGuire MH, Haemmerle M, Vidal-Anaya V, Olsen C, Rodriguez-Aguayo C, Filant J, Ehsanipour EA, Herbrich SM, Maiti SN, Huang L, Kim JH, Zhang X, Han HD, Armaiz-Pena GN, Seviour EG, Tucker S, Zhang M, Yang D, Cooper LJN, Ali-Fehmi R, Bar-Eli M, Lee JS, Ram PT, Baggerly KA, Lopez-Berestein G, Hung MC, Sood AK. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun 2016; 7:11169. [PMID: 27041221 PMCID: PMC4822037 DOI: 10.1038/ncomms11169] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2015] [Accepted: 02/26/2016] [Indexed: 12/13/2022] Open
Abstract
A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy. The formation of blood vessels in tumours, angiogenesis, is a promising target for therapy. Here, the authors show that microRNA192 has anti-angiogenic functions and negatively regulates EGR1 and HOXB9, and that delivery of this microRNA to tumours in vivo can reduce angiogenesis and tumour growth.
Collapse
Affiliation(s)
- Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Fangrong Shen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chad V Pecot
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Archana S Nagaraja
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elizabeth Pham
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada, M4N 3M5
| | - Hiroto Hatakeyama
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael H McGuire
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Monika Haemmerle
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Viviana Vidal-Anaya
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Courtney Olsen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Cristian Rodriguez-Aguayo
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Justyna Filant
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ehsan A Ehsanipour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shelley M Herbrich
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sourindra N Maiti
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ji Hoon Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hee-Dong Han
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Immunology Laboratory, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elena G Seviour
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sue Tucker
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Min Zhang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Laurence J N Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prahlad T Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keith A Baggerly
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599 USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
25
|
Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1. J Virol 2016; 90:3558-72. [PMID: 26792742 PMCID: PMC4794670 DOI: 10.1128/jvi.02827-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a previously weaponized arthropod-borne virus responsible for causing acute and fatal encephalitis in animal and human hosts. The increased circulation and spread in the Americas of VEEV and other encephalitic arboviruses, such as eastern equine encephalitis virus and West Nile virus, underscore the need for research aimed at characterizing the pathogenesis of viral encephalomyelitis for the development of novel medical countermeasures. The host-pathogen dynamics of VEEV Trinidad donkey-infected human astrocytoma U87MG cells were determined by carrying out RNA sequencing (RNA-Seq) of poly(A) and mRNAs. To identify the critical alterations that take place in the host transcriptome following VEEV infection, samples were collected at 4, 8, and 16 h postinfection and RNA-Seq data were acquired using an Ion Torrent PGM platform. Differential expression of interferon response, stress response factors, and components of the unfolded protein response (UPR) was observed. The protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm of the UPR was activated, as the expression of both activating transcription factor 4 (ATF4) and CHOP (DDIT3), critical regulators of the pathway, was altered after infection. Expression of the transcription factor early growth response 1 (EGR1) was induced in a PERK-dependent manner. EGR1−/− mouse embryonic fibroblasts (MEFs) demonstrated lower susceptibility to VEEV-induced cell death than isogenic wild-type MEFs, indicating that EGR1 modulates proapoptotic pathways following VEEV infection. The influence of EGR1 is of great importance, as neuronal damage can lead to long-term sequelae in individuals who have survived VEEV infection. IMPORTANCE Alphaviruses represent a group of clinically relevant viruses transmitted by mosquitoes to humans. In severe cases, viral spread targets neuronal tissue, resulting in significant and life-threatening inflammation dependent on a combination of virus-host interactions. Currently there are no therapeutics for infections cause by encephalitic alphaviruses due to an incomplete understanding of their molecular pathogenesis. Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is prevalent in the Americas and that is capable of infecting horses and humans. Here we utilized next-generation RNA sequencing to identify differential alterations in VEEV-infected astrocytes. Our results indicated that the abundance of transcripts associated with the interferon and the unfolded protein response pathways was altered following infection and demonstrated that early growth response 1 (EGR1) contributed to VEEV-induced cell death.
Collapse
|
26
|
Stamatakis K, Jimenez-Martinez M, Jimenez-Segovia A, Chico-Calero I, Conde E, Galán-Martínez J, Ruiz J, Pascual A, Barrocal B, López-Pérez R, García-Bermejo ML, Fresno M. Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression. Oncotarget 2015; 6:39941-59. [PMID: 26498686 PMCID: PMC4741871 DOI: 10.18632/oncotarget.5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase2 (COX2) has been associated with cell growth, invasiveness, tumor progression and metastasis of colorectal carcinomas. However, the downstream prostaglandin (PG)-PG receptor pathway involved in these effects is poorly characterized.We studied the PG-pathway in gene expression databases and we found that PTGS2 (prostaglandin G/H synthase and cyclooxygenase) and PTGES (prostaglandin E synthase) are co-expressed in human colorectal tumors. Moreover, we detected that COX2 and microsomal Prostaglandin E2 synthase 1 (mPGES1) proteins are both up-regulated in colorectal human tumor biopsies.Using colon carcinoma cell cultures we found that COX2 overexpression significantly increased mPGES1 mRNA and protein. This up-regulation was due to an increase in early growth response 1 (EGR1) levels and its transcriptional activity. EGR1 was induced by COX2-generated PGF2α. A PGF2α receptor antagonist, or EGR1 silencing, inhibited the mPGES1 induction by COX2 overexpression. Moreover, using immunodeficient mice, we also demonstrated that both COX2- and mPGES1-overexpressing carcinoma cells were more efficient forming tumors.Our results describe for the first time the molecular pathway correlating PTGS2 and PTGES in colon cancer progression. We demonstrated that in this pathway mPGES1 is induced by COX2 overexpression, via autocrine PGs release, likely PGF2α, through an EGR1-dependent mechanism. This signaling provides a molecular explanation to PTGS2 and PTGES association and contribute to colon cancer advance, pointing out novel potential therapeutic targets in this oncological context.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa de Investigacion Sanitaria (IIS-P), Madrid, Spain
| | - Marta Jimenez-Martinez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Jimenez-Segovia
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Chico-Calero
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Conde
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, Madrid, Spain
| | - Javier Galán-Martínez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Ruiz
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Pascual
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, Madrid, Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Fresno
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa de Investigacion Sanitaria (IIS-P), Madrid, Spain
| |
Collapse
|
27
|
ter Braak B, Wink S, Koedoot E, Pont C, Siezen C, van der Laan JW, van de Water B. Alternative signaling network activation through different insulin receptor family members caused by pro-mitogenic antidiabetic insulin analogues in human mammary epithelial cells. Breast Cancer Res 2015; 17:97. [PMID: 26187749 PMCID: PMC4506606 DOI: 10.1186/s13058-015-0600-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Introduction Insulin analogues are designed to have improved pharmacokinetic parameters compared to regular human insulin. This provides a sustained control of blood glucose levels in diabetic patients. All novel insulin analogues are tested for their mitogenic side effects, however these assays do not take into account the molecular mode of action of different insulin analogues. Insulin analogues can bind the insulin receptor and the insulin-like growth factor 1 receptor with different affinities and consequently will activate different downstream signaling pathways. Methods Here we used a panel of MCF7 human breast cancer cell lines that selectively express either one of the isoforms of the INSR or the IGF1R. We applied a transcriptomics approach to assess the differential transcriptional programs activated in these cells by either insulin, IGF1 or X10 treatment. Results Based on the differentially expressed genes between insulin versus IGF1 and X10 treatment, we retrieved a mitogenic classifier gene set. Validation by RT-qPCR confirmed the robustness of this gene set. The translational potential of these mitogenic classifier genes was examined in primary human mammary cells and in mammary gland tissue of mice in an in vivo model. The predictive power of the classifier genes was evaluated by testing all commercial insulin analogues in the in vitro model and defined X10 and glargine as the most potent mitogenic insulin analogues. Conclusions We propose that these mitogenic classifier genes can be used to test the mitogenic potential of novel insulin analogues as well as other alternative molecules with an anticipated affinity for the IGF1R. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0600-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas ter Braak
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Steven Wink
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Esmee Koedoot
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Chantal Pont
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Christine Siezen
- Medicines Evaluation Board (MEB), Graadt van Roggenweg 500, Utrecht, 3531 AH, The Netherlands.
| | - Jan Willem van der Laan
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands. .,Medicines Evaluation Board (MEB), Graadt van Roggenweg 500, Utrecht, 3531 AH, The Netherlands. .,Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, The Netherlands.
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
28
|
Abstract
The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(-/-) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABL(p210+) LSCs. Transplantation with BCR-ABL(p210+)-infected bone marrow from Cdk6(-/-) mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6(-/-) BCR-ABL(p210+) LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs.
Collapse
|
29
|
Differential modulation of nicotine-induced gemcitabine resistance by GABA receptor agonists in pancreatic cancer cell xenografts and in vitro. BMC Cancer 2014; 14:725. [PMID: 25260978 PMCID: PMC4190427 DOI: 10.1186/1471-2407-14-725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer is frequently resistant to cancer therapeutics. Smoking and alcoholism are risk factors and pancreatic cancer patients often undergo nicotine replacement therapy (NRT) and treatment for alcohol dependence. Based on our report that low dose nicotine within the range of NRT causes gemcitabine resistance in pancreatic cancer, our current study has tested the hypothesis that GABA or the selective GABA-B-R agonist baclofen used to treat alcohol dependence reverse nicotine-induced gemcitabine resistance in pancreatic cancer. Methods Using mouse xenografts from the gemcitabine--sensitive pancreatic cancer cell line BXPC-3, we tested the effects of GABA and baclofen on nicotine-induced gemcitabine resistance. The levels of cAMP, p-SRC, p-ERK, p-AKT, p-CREB and cleaved caspase-3 in xenograft tissues were determined by ELISA assays. Expression of the two GABA-B receptors, metalloproteinase-2 and 9 and EGR-1 in xenograft tissues was monitored by Western blotting. Mechanistic studies were conducted in vitro, using cell lines BXPC-3 and PANC-1 and included analyses of cAMP production by ELISA assay and Western blots to determine protein expression of GABA-B receptors, metalloproteinase-2 and 9 and EGR-1. Results Our data show that GABA was as effective as gemcitabine and significantly reversed gemcitabine resistance induced by low dose nicotine in xenografts whereas baclofen did not. These effects of GABA were accompanied by decreases in cAMP, p-CREB, p-AKT, p-Src, p-ERK metalloproteinases-9 and -2 and EGR-1 and increases in cleaved caspase-3 in xenografts whereas baclofen had the opposite effects. In vitro exposure of cells to single doses or seven days of nicotine induced the protein expression of MMP-2, MMP-9 and EGR-1 and these responses were blocked by GABA. Baclofen downregulated the protein expression of GABA-B-Rs in xenograft tissues and in cells exposed to baclofen for seven days in vitro. This response was accompanied by inversed baclofen effects from inhibition of cAMP formation after single dose exposures to stimulation of cAMP formation in cells pretreated for seven days. Conclusions These findings suggest GABA as a promising single agent for the therapy of pancreatic cancer and to overcome nicotine-induced gemcitabine resistance whereas treatment with baclofen may increase gemcitabine resistance.
Collapse
|
30
|
Hann SS, Tang Q, Zheng F, Zhao S, Chen J, Wang Z. Repression of phosphoinositide-dependent protein kinase 1 expression by ciglitazone via Egr-1 represents a new approach for inhibition of lung cancer cell growth. Mol Cancer 2014; 13:149. [PMID: 24925061 PMCID: PMC4061523 DOI: 10.1186/1476-4598-13-149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2013] [Accepted: 06/03/2014] [Indexed: 01/10/2023] Open
Abstract
Background Peroxisome proliferator-activated receptors gamma (PPARγ) ligands have been shown to inhibit the growth of non-small cell lung cancer (NSCLC) cells. However, the mechanisms underlying this effect remain incompletely elucidated. Methods Cell proliferation and apoptosis were measured by cell viability, MTT and caspase3/7 activity assays. Phosphorylation/protein expression and gene silence/overexpression of AMPKα, phosphoinositide-dependent protein kinase 1 (PDK1), Egr-1 and PPARγ were performed by Western blot and siRNA/transfection assays. Dual-Luciferase Reporter Kit was used to measure the PPAR response elements (PPRE) reporter and PDK1 promoter activities, and ChIP assay was used to detect the Egr-1 protein binding to the DNA site in the PDK1 gene promoter. Results We found that ciglitazone, one synthetic PPARγ ligand, inhibited growth and induced apoptosis of NSCLC cells through decreased expression of PDK1, which was not blocked by GW9662 (a specific PPARγ antagonist). Overexpression of PDK1 overcame the effect of ciglitazone on cell growth and caspase 3/7 activity. Ciglitazone increased the phosphorylation of AMPKα and c-Jun N-terminal kinase (JNK), and the inhibitor of AMPK (compound C), but not JNK (SP600125), reversed the effect of ciglitazone on PDK1 protein expression. Ciglitazone reduced PDK1 gene promoter activity, which was not observed in cells exposed to compound C, but not silenced of PPARγ siRNA. Combination of ciglitazone and metformin further reduced PDK1 expression and promoter activity. Furthermore, we showed that ciglitazone induced the protein expression of Egr-1, which was not observed in cells silencing of AMPKα. Moreover, silencing of Egr-1 abrogated the effect of ciglitazone on PDK1 promoter activity and cell growth. On the contrary, overexpression of Egr-1 enhanced the effect of ciglitazone on PDK1 gene promoter activity. ChIP assays demonstrated that ciglitazone induced Egr-1 protein bind to the specific DNA site in the PDK1 gene promoter. Conclusion Collectively, our results demonstrate that ciglitazone inhibits PDK1 expression through AMPKα-mediated induction of Egr-1 and Egr-1 binding to the specific DNA site in the PDK1 gene promoter, which is independent of PPARγ. Activation of AMPKα by metformin enhances the effect of ciglitazone. In turn, this leads to inhibition of NSCLC cell proliferation.
Collapse
Affiliation(s)
- Swei Sunny Hann
- University of Guangzhou Traditional Chinese Medicine, Guangdong Academy of Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China 510120.
| | | | | | | | | | | |
Collapse
|