1
|
Zhongyu X, Wei X, Hongmei Z, Xiaodong G, Xiaojing Y, Yuanpei L, Li Z, Zhenmin F, Jianda X. Review of pre-metastatic niches induced by osteosarcoma-derived extracellular vesicles in lung metastasis: A potential opportunity for diagnosis and intervention. Biomed Pharmacother 2024; 178:117203. [PMID: 39067163 DOI: 10.1016/j.biopha.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Osteosarcoma (OS) has a high propensity for lung metastasis, which is the leading cause of OS-related death and treatment failure. Intercellular communication between OS cells and distant lung host cells is required for the successful lung metastasis of OS cells to the lung. Before OS cells infiltrate the lung, in situ OS cells secrete extracellular vesicles (EVs) that act as mediators of cell-to-cell communication. In recent years, EVs have been confirmed to act as bridges and key drivers between in situ tumors and metastatic lesions by regulating the formation of a pre-metastatic niche (PMN), defined as a microenvironment suitable for disseminated tumor cell engraftment and colonization, in distant target organs. This review summarizes the current knowledge about the underlying mechanisms of PMN formation induced by OS-derived EVs and the potential roles of EVs as targets or drug carriers in regulating PMN formation in the lung. We also provide an overview of their potential EV-based therapeutic strategies for hindering PMN formation in the context of OS lung metastasis.
Collapse
Affiliation(s)
- Xia Zhongyu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Xu Wei
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhang Hongmei
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ge Xiaodong
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yan Xiaojing
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Lian Yuanpei
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Zhu Li
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Fan Zhenmin
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
| | - Xu Jianda
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China.
| |
Collapse
|
2
|
Voshagh Q, Anoshiravani A, Karimpour A, Goodarzi G, Tehrani SS, Tabatabaei‐Malazy O, Panahi G. Investigating the association between the tissue expression of miRNA-101, JAK2/STAT3 with TNF-α, IL-6, IL-1β, and IL-10 cytokines in the ulcerative colitis patients. Immun Inflamm Dis 2024; 12:e1224. [PMID: 38517042 PMCID: PMC10958669 DOI: 10.1002/iid3.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by numerous factors, such as immune system dysfunction and genetic factors. MicroRNAs (miRNAs) play a crucial role in UC pathogenesis, particularly via the JAK-STAT pathway. Our aim was to investigate the association between miRNA-101 and JAK2-STAT3 signaling pathway with inflammatory cytokines in UC patients. METHODS We enrolled 35 UC patients and 35 healthy individuals as the control group, referred to Shariati Hospital, Tehran, Iran. Patients were diagnosed based on clinical, laboratory, histological, and colonoscopy criteria. RNA and protein extracted from tissue samples. Real-time PCR was used to assess the expression levels of miRNA-101, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-10 genes, while western blot was employed to measure levels of P-STAT3, total STAT3, and JAK2 proteins. RESULTS Expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 significantly increased, while the expression of IL-10 significantly decreased in the case group versus controls. Additionally, miRNA-101 expression was significantly higher in UC patients. A significant correlation between miRNA-101 and IL-6 expression was observed, indicating their relationship and possible impact on cell signaling pathways, JAK2-STAT3. No significant changes were observed in phosphorylated and total STAT3 and JAK2 protein expression. CONCLUSION This study provides evidence of increased miRNA-101 expression in UC tissue, suggesting a potential correlation between miRNA-101 and IL-6 expression and their involvement in the JAK2-STAT3 pathway. The study confirms alterations in UC patients' pro-inflammatory cytokines and anti-inflammatory IL-10. However, further investigations are needed to understand the exact role of miRNA-101 in UC pathogenesis fully.
Collapse
Affiliation(s)
- Qazaleh Voshagh
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Anoshiravani
- Digestive Disease Research Center, Digestive Disease Research InstituteTehran University of Medical SciencesTehranIran
| | - Amin Karimpour
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| | - Golnaz Goodarzi
- Department of Pathobiology and Laboratory Sciences, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and MetabolismIran University of Medical ScienceTehranIran
| | - Ozra Tabatabaei‐Malazy
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
4
|
Mafi A, Mannani R, Khalilollah S, Hedayati N, Salami R, Rezaee M, Dehmordi RM, Ghorbanhosseini SS, Alimohammadi M, Akhavan-Sigari R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell Mol Neurobiol 2023; 43:3277-3299. [PMID: 37414973 DOI: 10.1007/s10571-023-01385-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mannani
- Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
6
|
Wang G, Zhang Q, Wang Q, Wang J, Chen L, Sun Q, Miao D. Long non-coding RNA DUXAP10 exerts oncogenic properties in osteosarcoma by recruiting HuR to enhance SOX18 mRNA stability. Hum Cell 2022; 35:1939-1951. [PMID: 36053455 PMCID: PMC9515053 DOI: 10.1007/s13577-022-00772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated that several long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of osteosarcoma (OS). However, more lncRNAs and their mechanisms in regulating growth and migration of OS cells remain to be investigated. In this study, we identified an lncRNA called DUXAP10 by analysis of GEO data, which was significantly up-regulated in OS tissues and cell lines. Experiments in vitro revealed that lncRNA DUXAP10 promoted proliferation, migration, and invasion of OS cells and inhibited their apoptosis. We also demonstrated that DUXAP10 promoted the formation and growth of OS by tumor formation assay. Furthermore, SOX18 was identified as a critical downstream target of DUXAP10 by transcriptome RNA-seq. Mechanistically, DUXAP10 mainly localized in cytoplasm and could specifically bind to HuR to increase the stability of SOX18 mRNA. Meanwhile, SOX18 knockdown largely reversed increased proliferation of OS cells induced by DUXAP10 overexpression. Findings from this study indicate that lncRNA DUXAP10 can act as an oncogene in osteosarcoma by binding HuR to up-regulate the expression of SOX18 at a post-transcriptional level, which may provide a new target for OS clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Guantong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qinjue Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Lulu Chen
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Dudakovic A, Jerez S, Deosthale PJ, Denbeigh JM, Paradise CR, Gluscevic M, Zan P, Begun DL, Camilleri ET, Pichurin O, Khani F, Thaler R, Lian JB, Stein GS, Westendorf JJ, Plotkin LI, van Wijnen AJ. MicroRNA-101a enhances trabecular bone accrual in male mice. Sci Rep 2022; 12:13361. [PMID: 35922466 PMCID: PMC9349183 DOI: 10.1038/s41598-022-17579-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Padmini J Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L Roudebush VA Medical Center, Indianapolis, IN, USA.
| | | |
Collapse
|
8
|
Deng K, Zou Y, Zou C, Wang H, Xiang Y, Yang X, Yang S, Cui C, Yang G, Huang J. Study on pharmacokinetic interactions between SHR2554 and itraconazole in healthy subjects: A single-center, open-label phase I trial. Cancer Med 2022; 12:1431-1440. [PMID: 35841331 PMCID: PMC9883540 DOI: 10.1002/cam4.5028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND SHR2554, a novel oral Enhancer of Zeste Homolog 2 inhibitor, shows broad-spectrum anti-tumor efficacy in preclinical studies. As SHR2554 is mainly metabolized by CYP3A4, it is helpful to conduct research on the effects of itraconazole, a strong inhibitor of CYP3A4-metabolizing enzymes, on the pharmacokinetic characteristics and safety of SHR2554. METHODS We conducted a single-center, open-label pharmacokinetic study of itraconazole on SHR2554 in 18 healthy Chinese subjects. Subjects were orally administrated SHR2554 50 mg on Day 1, itraconazole 200 mg Quaque Die (QD) from Days 4 to 7, SHR2554 50 mg co-administrated with itraconazole 200 mg on Day 8, and itraconazole 200 mg QD from Days 9 to 12. Then, 4 ml of venous blood was collected at predetermined time points. Plasma SHR2554 concentrations were analyzed using a validated high-performance liquid chromatography tandem mass spectrometry method. Pharmacokinetic parameters were calculated using Phoenix WinNonlin v8.1. RESULTS The Cmax of SHR2554 alone and in combination was 10.197 ± 7.0262 ng·ml-1 versus 70.538 ± 25.0219 ng·ml-1 , AUC0-∞ was 50.99 ± 19.358 h·ng·ml-1 versus 641.53 ± 319.538 h·ng·ml-1 , and AUC0-t was 28.70 ± 18.913 h·ng·ml-1 versus 612.13 ± 315.720 h·ng·ml-1 . Co-administration of SHR2554 and itraconazole caused 7.73-, 12.47-, and 23.75-fold adjusted geometric mean ratios increases in SHR2554 Cmax , AUC0-∞ and AUC0-t respectively. The co-administration regimen was well tolerated and had a good safety profile. CONCLUSIONS Compared with a single dose of SHR2554 50 mg, the exposure of SHR2554 in vivo was significantly affected by the combined administration of itraconazole.
Collapse
Affiliation(s)
- Kunhong Deng
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Yi Zou
- School of Mathematics and StatisticsCentral South UniversityChangshaChina
| | - Chan Zou
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Hong Wang
- School of Mathematics and StatisticsCentral South UniversityChangshaChina
| | - Yuxia Xiang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina,Research Center of Drug Clinical Evaluation of Central South UniversityChangshaChina
| | - Xiaoyan Yang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shuang Yang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Chang Cui
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Guoping Yang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina,Research Center of Drug Clinical Evaluation of Central South UniversityChangshaChina,Department of PharmacyThe Third Xiangya Hospital, Central South UniversityChangshaChina,XiangYa School of Pharmaceutical SciencesCentral South UniversityChangshaChina,National‐Local Joint Engineering Laboratory of Drug Clinical Evaluation TechnologyChangshaChina
| | - Jie Huang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina,Research Center of Drug Clinical Evaluation of Central South UniversityChangshaChina
| |
Collapse
|
9
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
10
|
Gao P, Zeng X, Zhang L, Wang L, Shen LL, Hou YY, Zhou F, Zhang X. Overexpression of miR-378 Alleviates Chronic Sciatic Nerve Injury by Targeting EZH2. Neurochem Res 2021; 46:3213-3221. [PMID: 34406548 DOI: 10.1007/s11064-021-03424-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
In numerous studies, microRNAs (miRNAs) have been authenticated to play vital roles in the pathophysiology of neuropathic pain and other neurological diseases. In our study, we focused on evaluating miR-378 and its potential effects in neuropathic pain development, as well as the underlying molecular mechanisms. Primarily, a chronic sciatic nerve injury (CCI) rat model was established. Next, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure the expression levels of miR-378 and EZH2 mRNA; the EZH2 protein expression levels were detected by western blot. A luciferase activity assay monitored the interaction of miR-378 and EZH2. Mechanical and thermal hyperalgesia was also performed to quantitate the effects of overexpression of miR-378 or EZH2 on the CCI rats. We found that miR-378 was down-regulated in the CCI rats, and the overexpression of miR-378 produced significant relief in their pain management. EZH2 was the downstream gene of miR-378 and was negatively regulated by miR-378. The up-regulation of EZH2 reduced the inhibitory effects of miR-378 on the development of neuropathic pain in the CCI rats. miR-378 acts as an inhibitor in the progression of neuropathic pain via targeting EZH2; the miR-378/EZH2 axis may be a novel target for the diagnosis and therapy of neuropathic pain in clinical treatment.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xin Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, China
| | - Lin Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, China
| | - Lu-Lu Shen
- Department of Anesthesiology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, 66 Huaihai South Road, Huai'an, Jiangsu, China
| | - Ya-Yun Hou
- Department of Anesthesiology, Huai'an Hospital of Traditional Chinese Medicine, 3 Heping Road, Huai'an, Jiangsu, China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, China
| | - Xianlong Zhang
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
11
|
Zhao W, Hou P, Ma W, Jiang C, Wang H, He H. Bta-miR-101 suppresses BEFV replication via targeting NKRF. Vet Microbiol 2021; 259:109127. [PMID: 34058703 DOI: 10.1016/j.vetmic.2021.109127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/16/2021] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs), as a kind of small noncoding RNAs, have been proved to play a regulatory role in virus infection. However, the role and mechanism of cellular miRNAs in bovine transient fever virus (BEFV) infection are largely unknown. In the present study, we found that bta-miR-101 was significantly up-regulated in the Madin-Darby Bovine Kidney (MDBK) cells upon BEFV infection. Notably, bta-miR-101 mimic dramatically inhibited BEFV replication, while bta-miR-101 inhibitor facilitated BEFV replication, suggesting that bta-miR-101 acted as an anti-viral host factor restraining BEFV replication. Subsequently, NF-κB repressing factor (NKRF) was identified as a target gene of bta-miR-101 by dual luciferase reporter assay, and bta-miR-101 mimic significantly down-regulated expression of NKRF, while bta-miR-101 inhibitor up-regulated its expression, respectively. Furthermore, NKRF could induce apoptosis, and favored the replication of BEFV. Finally, bta-miR-101 inhibited BEFV-induced apoptosis via targeting NKRF to suppress virus replication. In general, our study provides a novel mechanism for bta-miR-101 to exert its antiviral function, which provides a theoretical basis for the development of antiviral strategy.
Collapse
Affiliation(s)
- Wendong Zhao
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Peili Hou
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Wenqing Ma
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Chuan Jiang
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Hongmei Wang
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| | - Hongbin He
- Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province, China.
| |
Collapse
|
12
|
Wu X, Yan L, Liu Y, Shang L. Circ_0000527 promotes osteosarcoma cell progression through modulating miR-646/ARL2 axis. Aging (Albany NY) 2021; 13:6091-6102. [PMID: 33617480 PMCID: PMC7950279 DOI: 10.18632/aging.202602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Accumulating evidence shows that circRNAs play critical roles in the development of human tumors. We observed that circ_0000527 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared in hFOB1.19 cells. We demonstrated that the circ_0000527 level was higher in osteosarcoma specimens than in non-tumor specimens. The ectopic expression of circ_0000527 was shown to induce cell growth, cell cycle progression and the secretion of inflammatory mediators, including IL-1β, IL-6, IL-8 and TNF-α. We demonstrated that circ_0000527 sponges miR-646 in osteosarcoma cells and that ARL2 is a target gene of miR-646. MiR-646 expression was decreased and ARL2 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared to hFOB1.19 cells. Overexpression of circ_0000527 was demonstrated to induce ARL2 expression in MG-63 cells. We showed that miR-646 was downregulated in osteosarcoma specimens compared to that of non-tumor specimens and that the level of circ_0000527 was negatively correlated with miR-646 expression in osteosarcoma specimens. The elevated expression of circ_0000527 was shown to promote cell growth and cell cycle progression by modulating miR-646 expression. The ectopic expression of circ_0000527 was shown to promote cell growth, cell cycle progression and the secretion of inflammatory mediators by modulating ARL2. The present study suggested that the circ_0000527/miR-646/ARL2 axis may be a potential treatment target for osteosarcoma.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| |
Collapse
|
13
|
Tu Y, Cai Q, Zhu X, Xu M. Down-regulation of HCP5 inhibits cell proliferation, migration, and invasion through regulating EPHA7 by competitively binding miR-101 in osteosarcoma. ACTA ACUST UNITED AC 2021; 54:e9161. [PMID: 33439936 PMCID: PMC7798137 DOI: 10.1590/1414-431x20209161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Patients with osteosarcoma (OS) usually have poor overall survival because of frequent metastasis. Long non-coding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and metastasis. In this study, we investigated the expression and roles of lncRNA human histocompatibility leukocyte antigen (HLA) complex P5 (HCP5) in OS, aiming to provide a novel molecular mechanism for OS. HCP5 was up-regulated both in OS tissues and cell lines and high expression of HCP5 was associated to low survival in OS patients. Down-regulation of HCP5 inhibited cell proliferation, migration, and invasion, suggesting its carcinogenic role in OS. miR-101 was targeted by HCP5 and its expression was decreased in OS. The inhibitor of miR-101 reversed the impact of HCP5 down-regulation on cell proliferation, apoptosis, and metastasis in OS. Ephrin receptor 7 (EPHA7) was proved to be a target of miR-101 and had ability to recover the effects of miR-101 inhibitor in OS. In conclusion, lncRNA HCP5 knockdown suppressed cell proliferation, migration, and invasion, and induced apoptosis through depleting the expression of EPHA7 by binding to miR-101, providing a potential therapeutic strategy of HCP5 in OS.
Collapse
Affiliation(s)
- Yangmao Tu
- Department of Orthopedics, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
| | - Qing Cai
- Department of Orthopedics, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
| | - Xuemei Zhu
- Jingzhou Hospital of Traditional Chinese Medicine - Functional Section, Jingzhou, China
| | - Min Xu
- Jingzhou Institute of Technology, College of Textile and Apparel Design and Art, Jingzhou, China
| |
Collapse
|
14
|
Jiang H, Li L, Zhang J, Wan Z, Wang Y, Hou J, Yu Y. MiR-101-3p and Syn-Cal14.1a Synergy in Suppressing EZH2-Induced Progression of Breast Cancer. Onco Targets Ther 2020; 13:9599-9609. [PMID: 33061442 PMCID: PMC7532305 DOI: 10.2147/ott.s264600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
Objective EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and has been documented as an oncogene in breast cancer. The microRNA (miR)-101-3p can suppress breast cancer progression by targeting with EZH2. Syn-cal14.1a, a synthetic peptide derived from Californiconus californicus (Cal14.1a), can decrease the cell viability and activate the cell apoptosis in cancer. In this study, we explored whether the synergy of miR-101-3p mimic and syn-cal14.1a could inhibit the expression of EZH2. We also investigated this binding treatment’s effects on the suppression of breast cancer cells. Methods MiR-101-3p mimic was transfected and syn-cal14.1a was added in SK-BR-3 and MCF-7 breast cancer cells. The expression of EZH2 protein level was determined. Then, cell proliferation, migration, invasion, and apoptosis were observed. Results MiR-101-3p and syn-cal14.1a, when applied together, exerted a synergistic anti-EZH2 expression in breast cancer cells. The combination of miR-101-3p and syn-cal14.1a synergistically suppressed the EZH2-induced breast cancer cell migration, invasion, and proliferation. In parallel, this synergy treatment was able to promote the apoptosis of breast cancer cells. To our knowledge, this is the first report describing inhibition of EZH2 in human breast cancer cell lines by syn-cal14.1a. Conclusion The anti-EZH2 roles of miR-101-3p and/or syn-cal14.1a could provide an effective therapeutic strategy in breast cancer. These data provide significant insights into molecular mechanisms of breast cancer and may have benefits in clinical therapeutics for breast cancer.
Collapse
Affiliation(s)
- Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Li Li
- Assisted Reproduction Technology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jingjing Zhang
- Department of Plastic Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Wang
- Department of Health Medicine, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Qiu BQ, Lin XH, Ye XD, Huang W, Pei X, Xiong D, Long X, Zhu SQ, Lu F, Lin K, Zhang XQ, Xu JJ, Sheng LL, Zhang XM, Zhang PF, Wu YB. Long non-coding RNA PSMA3-AS1 promotes malignant phenotypes of esophageal cancer by modulating the miR-101/EZH2 axis as a ceRNA. Aging (Albany NY) 2020; 12:1843-1856. [PMID: 32005028 PMCID: PMC7053621 DOI: 10.18632/aging.102716] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Backgrounds: Emerging evidences has demonstrated that dysregulation of long non-coding RNAs (lncRNAs) is critically involved in esophageal squamous cell carcinoma (ESCC) progression. However, the function of lncRNA PSMA3-AS1 in ESCC is unclear. Therefore, we aimed to explore the functions and potential mechanisms of PSMA3-AS1 in ESCC cells progression. Results: Here, we found that PSMA3-AS1 expression was significantly up-regulated in ESCC tissues. Forced PSMA3-AS1 expression was correlated with tumor size, distant metastasis, and poor prognosis in ESCC patients. Functionally, PSMA3-AS1-overexpression promoted ESCC cells proliferation, invasion, and migration in vitro. Mechanistically, PSMA3-AS1 up-regulated EZH2 expression by competitively binding to miR-101. Conclusion: PSMA3-AS1 is significantly up-regulated in ESCC tissues, and the PSMA3-AS1/miR-101/EZH2 axis plays a critical role in ESCC progression. Taken together, our results may provide promising targets for ESCC therapy. Methods: PSMA3-AS1 and miR-101 expression were explored using qRT-PCR in ESCC tissues and cell lines. Immunohistochemistry assays were carried out to analyze EZH2 (enhancer of zeste homolog) protein expression. RIP, dual-luciferase reporter, fluorescence in situ hybridization, and biotin pull-down assays were used to detect the interactions of PSMA3-AS1, miR-101 and EZH2. The biological functions of PSMA3-AS1 in PSMA3-AS1-altered cells were explored using CCK-8, colony formation, wound healing, and transwell assays in vitro.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia-Hui Lin
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu-Dong Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Huang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Pei
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dian Xiong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kun Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Qiang Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu-Lu Sheng
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Zhang K, Dong C, Chen M, Yang T, Wang X, Gao Y, Wang L, Wen Y, Chen G, Wang X, Yu X, Zhang Y, Wang P, Shang M, Han K, Zhou Y. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics 2020; 10:411-425. [PMID: 31903129 PMCID: PMC6929625 DOI: 10.7150/thno.33482] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Extracellular vesicles (EVs) have emerged as novel mediators of cell-to-cell communication that are capable of the stable transfer of therapeutic microRNAs (miRNAs), and thus, EVs hold immense promise as a miRNA delivery system for cancer therapy. Additionally, as miRNA-containing EVs are secreted into circulation, miRNAs contained within plasma EVs may represent ideal biomarkers for diseases. The objective of this study was to characterize a potential tumor suppressor miRNA, miR-101, and explore the potential of miR-101 delivery via EVs for in vivo therapy of metastatic osteosarcoma as well as the potential value of plasma EV-packaged miR-101 (EV-miR-101) level for predicting osteosarcoma metastasis. Methods: The relationship of miR-101 expression and osteosarcoma progression was investigated in osteosarcoma specimens by in situ hybridization (ISH), and the potential inhibitory effect of miR-101 was further investigated using in vivo models. Using prediction software analysis, the mechanism of action of miR-101 in osteosarcoma was explored using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting and dual-luciferase assay. Adipose tissue-derived mesenchymal stromal cells (AD-MSCs) were transduced with lentiviral particles to obtain miR-101-enriched EVs. A Transwell assay and lung metastasis models of osteosarcoma were used to observe the effect of miR-101-enriched EVs on osteosarcoma invasiveness and metastasis. Detection of plasma EV-miR-101 levels was carried out in osteosarcoma patients and healthy controls by qRT-PCR. Results: miR-101 expression was markedly lower in metastatic osteosarcoma specimens compared to non-metastatic specimens. Significantly fewer metastatic lung nodules were formed by Saos-2 cells overexpressing miR-101 and SOSP-9607 cells overexpressing miR-101 injected into mice. With increased miR-101 expression, B cell lymphoma 6 (BCL6) mRNA and protein expression levels were reduced, and miR-101 was found to exert its effects by directly targeting BCL6. AD-MSCs were successfully engineered to secrete miR-101-enriched EVs. Once taken up by osteosarcoma cells, these EVs showed suppressive effects on cell invasion and migration in vitro, and systemic administration of these EVs effectively suppressed metastasis in vivo with no significant side effects. Finally, the EV-miR-101 level was lower in osteosarcoma patients than in healthy controls and even lower in osteosarcoma patients with metastasis than in those without metastasis. Conclusion: Our data support the function of miR-101 as a tumor suppressor in osteosarcoma via downregulation of BCL6. AD-MSC derived miR-101-enriched EVs represent a potential innovative therapy for metastatic osteosarcoma. EV-miR-101 also represents a promising circulating biomarker of osteosarcoma metastasis.
Collapse
|
17
|
Huang Z, Wu X, Li J. miR-101 suppresses colon cancer cell migration through regulation of EZH2. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 113:255-260. [DOI: 10.17235/reed.2020.6800/2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Deng R, Zhang J, Chen J. lncRNA SNHG1 negatively regulates miRNA‑101‑3p to enhance the expression of ROCK1 and promote cell proliferation, migration and invasion in osteosarcoma. Int J Mol Med 2018; 43:1157-1166. [PMID: 30592267 PMCID: PMC6365036 DOI: 10.3892/ijmm.2018.4039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is a rare malignant bone tumor that commonly occurs in children and adolescents and causes pain and swelling of the long bones of the legs and arms. Long non-coding RNA (lncRNA) and micro (mi)RNA-101 are important in the initialization and progression of OS. However, the mechanism underlying the role of the lncRNA and miRNA-101 in OS remains to be fully elucidated. In the present study, through reverse transcription-quantitative polymerase chain reaction analysis, it was first found that the lncRNA SNHG1 was upregulated and miRNA-101-3p was downregulated in OS tissues and cell lines. Second, the knockdown of lncRNA SNHG1 induced cell apoptosis and maintained the cell cycle at the G0/G1 phase, which decreased the overall cell viability. Furthermore, according to a dual-luciferase assay and western blot analysis, miRNA-101-3p was found to be a target of the lncRNA SNHG1 in OS, which further regulated the expression of Rho-associated coiled-coil-containing protein kinase 1 (ROCK1). It was found that the phosphoinositide 3-kinase/ATK pathway was inactivated and that epithelial-mesenchymal transition was activated in OS cell lines with overexpression of the lncRNA SNHG1. Taken together, in OS cell lines, the lncRNA SNHG1 acted as an oncogene, and miRNA-101-3p was considered a tumor suppressor. The lncRNA SNHG1 promoted OS cell proliferation, migration and invasion by downregulating the expression of miRNA-101-3p, which enhanced the expression of ROCK1.
Collapse
Affiliation(s)
- Rui Deng
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinyuan Zhang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
19
|
Chen L, Long Y, Han Z, Yuan Z, Liu W, Yang F, Li T, Shu L, Zhong Y. MicroRNA-101 inhibits cell migration and invasion in bladder cancer via targeting FZD4. Exp Ther Med 2018; 17:1476-1485. [PMID: 30680031 DOI: 10.3892/etm.2018.7084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022] Open
Abstract
Dysfunction of microRNAs (miRs) has been implicated in the development and progression of various human cancers. Our previous study demonstrated that miR-101 inhibited bladder cancer cell proliferation and invasion through inhibition of c-FOS expression. As an miR generally has many targets, other targets of miR-101 may also serve important roles in bladder cancer progression. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were used to examine mRNA and protein expression, respectively. Wound healing and Transwell assays were conducted to study cell migration and invasion, respectively. The luciferase reporter gene assay was performed to verify one of the targets of miR-101. The data in the present study indicate that the expression of miR-101 is significantly reduced in bladder cancer tissues compared with that in adjacent non-tumour tissues. In addition, miR-101 expression is also downregulated in bladder cancer cell lines compared with that in normal bladder epithelial cells. Furthermore, low expression of miR-101 was significantly associated with tumour metastasis, advanced clinical stage, and poor prognosis in bladder cancer. Frizzled class receptor 4 (FZD4) was identified as a novel target of miR-101 in bladder cancer cells. The expression of FZD4 was significantly upregulated in bladder cancer tissues and cell lines. Both miR-101 overexpression and FZD4 inhibition caused a significant reduction of the migration and invasion of bladder cancer cells, whereas overexpression of FZD4 reversed the suppressive effects of miR-101 on bladder cancer cell migration and invasion. In conclusion, it was demonstrated that miR-101 downregulation is associated with bladder cancer progression and that miR-101 can inhibit bladder cancer cell migration and invasion via directly targeting FZD4. The present study expands the understanding of the molecular mechanisms underlying bladder cancer progression.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Yongqi Long
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Zhijun Han
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Zhizhou Yuan
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Wenjin Liu
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Fan Yang
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Tao Li
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Linfei Shu
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Yunying Zhong
- Department of Urinary Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
20
|
Liu C, Yang Z, Deng Z, Zhou Y, Gong Q, Zhao R, Chen T. Downregulated miR-144-3p contributes to progression of lung adenocarcinoma through elevating the expression of EZH2. Cancer Med 2018; 7:5554-5566. [PMID: 30280514 PMCID: PMC6246953 DOI: 10.1002/cam4.1714] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The intention of our study was to investigate the relationship between miR-144-3p and EZH2 as well as the effects of their interaction on cell propagation and invasiveness in lung adenocarcinoma (LUAD). METHODS The expression levels of miR-144-3p and EZH2 in LUAD tissues and normal tissues were determined by qRT-PCR. The dual-luciferase reporter assay was utilized to validate the targeting relationship between miR-144-3p and EZH2. MTT assay and colony formation assay were performed to evaluate the viability and propagation of LUAD cells, while the effects of miR-144-3p and EZH2 on LUAD cell invasiveness were confirmed by transwell assay. Protein expression levels of VEGFA, MMP2, and MMP9 were measured by Western blot. Furthermore, xenograft tumor models were established to verify the effects of miR-144-3p on tumor formation and EZH2, VEGFA, MMP2 and MMP9 expressions in vivo. RESULTS miR-144-3P was downregulated in LUAD tissues, and overexpression of miR-144-3p inhibited propagation and invasiveness of LUAD cells. EZH2 was a target of miR-144-3p and was highly expressed in LUAD cells. Knockdown of EZH2 could suppress the propagation and invasion of LUAD cells. Increased miR-144-3p expression exerted an inhibitory effect on LUAD tumor formation in vivo. CONCLUSION Overexpression of miR-144-3p impeded the propagation and invasiveness of LUAD cells by targeting EZH2.
Collapse
Affiliation(s)
- Chao Liu
- Department of Nuclear Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Zuozhang Yang
- Departments of Orthopaedics, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Youjun Zhou
- Department of Nuclear Medicine, The Affiliated Yan'an Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Quan Gong
- Department of Palliative Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Ruilian Zhao
- Departments of Combination of Chinese Traditional and Western Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Ting Chen
- Department of Nuclear Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| |
Collapse
|
21
|
miR-101-3p induces autophagy in endometrial carcinoma cells by targeting EZH2. Arch Gynecol Obstet 2018; 297:1539-1548. [PMID: 29691644 DOI: 10.1007/s00404-018-4768-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/24/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of miR-101-3p on autophagy in endometrial carcinoma (EC) cells and the connection between miR-101-3p and EZH2. METHODS The expression levels of miRNAs were analyzed by microarray. The expression level of autophagy related proteins was measured by western blot. The mRNA expression level of beclin-1 was determined by qRT-PCR. Autophagy in EC cells was traced by GFP-LC3 fusion protein and observed by fluorescence microscopy. The number of autophagic vacuoles was determined by transmission electron microscopy (TEM). A luciferase reporter assay was utilized to assess the target relationship between miR-101-3p and EZH2. RESULTS The expression level of miR-101-3p in EC tissues was lower than in normal tissues. miR-101-3p upregulated the expression levels of the autophagy-related proteins LC3-II and beclin-1 in EC cells in a time- and dose-dependent manner. Overexpression of miR-101-3p and silencing of EZH2 both promoted autophagy in EC cells. Luciferase reporter assays verified that miR-101-3p inhibited EZH2 expression by binding to its 3'-UTR region. CONCLUSION miR-101-3p promoted autophagy in EC cells by downregulating the expression of EZH2, and it induced autophagy in EC cells by suppressing EZH2 expression. Inhibition of miR-101-3p could reduce its autophagy induction effect on EC cells.
Collapse
|
22
|
Koshizuka K, Hanazawa T, Arai T, Okato A, Kikkawa N, Seki N. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev 2018; 36:525-545. [PMID: 28836104 DOI: 10.1007/s10555-017-9692-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as fine-tuners of the post-transcriptional control of protein-coding or noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-dependent manner in cells. Accumulating evidence have been indicated that aberrantly expressed miRNAs are deeply involved in human pathogenesis, including cancers. Surprisingly, these small, single-stranded RNAs (18-23 nucleotides) have been shown to function as antitumor or oncogenic RNAs in several types of cancer cells. A single miRNA has regulating hundreds or thousands of different mRNAs, and individual mRNA has been regulated by multiple different miRNAs in normal cells. Therefore, tightly controlled RNA networks can be disrupted by dysregulated of miRNAs in cancer cells. Investigation of novel miRNA-mediated RNA networks in cancer cells could provide new insights in the field of cancer research. In this review, we focus on head and neck squamous cell carcinoma (HNSCC) and discuss current findings of the involvement of aberrantly expressed miRNAs in the pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
23
|
Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, Yoshida A, Uehara T, Omori T, Sugiu K, Komatsubara T, Takeda K, Kunisada T, Kawamura M, Kawai A, Ochiya T, Ozaki T. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget 2018; 8:33375-33392. [PMID: 28380419 PMCID: PMC5464875 DOI: 10.18632/oncotarget.16498] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel diagnostic and prognostic significance for patients with malignant diseases. The lack of useful biomarkers is a crucial problem of bone and soft tissue sarcomas; therefore, we investigated the circulating miRNA signature and its clinical relevance in osteosarcoma. Methods Global miRNA profiling was performed using patient serum collected from a discovery cohort of osteosarcoma patients and controls and cell culture media. The secretion of the detected miRNAs from osteosarcoma cells and clinical relevance of serum miRNA levels were evaluated using in vitro and in vivo models and a validation patient cohort. Results Discovery screening identified 236 serum miRNAs that were highly expressed in osteosarcoma patients compared with controls, and eight among these were also identified in the cell culture media. Upregulated expression levels of miR-17-5p and miR-25-3p were identified in osteosarcoma cells, and these were abundantly secreted into the culture media in tumor-derived exosomes. Serum miR-25-3p levels were significantly higher in osteosarcoma patients than in control individuals in the validation cohort, with favorable sensitivity and specificity compared with serum alkaline phosphatase. Furthermore, serum miR-25-3p levels at diagnosis were correlated with patient prognosis and reflected tumor burden in both in vivo models and patients; these associations were more sensitive than those of serum alkaline phosphatase. Conclusions Serum-based circulating miR-25-3p may serve as a non-invasive blood-based biomarker for tumor monitoring and prognostic prediction in osteosarcoma patients.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Center of Innovative Medicine, Okayama University Hospital, Okayama, Japan.,Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Uotani
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Morita
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yutaka Nezu
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takenori Uehara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshinori Omori
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Takeda
- Department of Intelligent Orthopaedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
24
|
Liu J, Huang L, Su P, Song T, Zhang W, Fan J, Liu Y. MicroRNA-499a-5p inhibits osteosarcoma cell proliferation and differentiation by targeting protein phosphatase 1D through protein kinase B/glycogen synthase kinase 3β signaling. Oncol Lett 2018; 15:4113-4120. [PMID: 29556286 PMCID: PMC5844143 DOI: 10.3892/ol.2018.7814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
A number of studies have attempted to elucidate the association between mircoRNAs (miRNAs/miRs) and cancer-associated processes. The aim of the present study was to determine how miR-499a-5p intervenes in human osteosarcoma cell proliferation and differentiation. The cancerous tissues and adjacent non-cancerous tissues of 62 patients with osteosarcoma (OS) were collected. miRNA microarray analysis revealed that 29 miRNAs were upregulated while 26 were downregulated, among which miR-499a-5p expression was the most decreased. Western blot analysis and reverse transcription-quantitative polymerase chain reaction demonstrated that the mRNA and protein expression of miR-499a-5p was lower, while that of protein phosphatase 1D (PPM1D) was higher in OS tissues compared with expression levels in normal tissues. Furthermore, miR-499a-5p expression was markedly decreased in the metastatic tumors and in those at stage III+IV compared with the non-metastatic tumors and those at stage I, respectively. In addition, following transfection of the human OS MG-63 cell line with an miR-499a-5p mimic, the expression of miR-499a-5p was elevated while the protein and mRNA expression of PPM1D was decreased. When combining these findings with the information obtained from the Targetscan predictive software, it was confirmed that PPM1D was targeted by miR-499a-5p. In MG-63 cells transfected with an miR-499a-5p mimic, PPM1D-associated downstream proteins phosphorylated protein kinase B (p-Akt) and phosphorylated glycogen synthase kinase 3β (p-GSK-3β) were significantly downregulated compared with the negative control (NC) group, while the expression of p-Akt and p-GSK-3β were significantly elevated in the tumor tissues compared with the adjacent non-tumor tissues. Simultaneously, the growth and proliferation activity of MG-63 cells were notably reduced when transfected with the miR-499a-5p mimic, compared with the NC group. Therefore, it may be concluded that miR-499a-5p suppresses OS cell proliferation and differentiation by targeting PPM1D through modulation of Akt/GSK-3β signaling.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand and Foot Surgery and Reparative and Reconstructive Surgery, Orthopedic Hospital of The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lei Huang
- Department of Burns, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pengxiao Su
- Department of Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Tao Song
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Wentao Zhang
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Jinzhu Fan
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Yang Liu
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
25
|
Ba Z, Gu L, Hao S, Wang X, Cheng Z, Nie G. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif 2017; 51. [PMID: 29194827 DOI: 10.1111/cpr.12409] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Long non-coding RNA cancer susceptibility candidate 2 (CASC2) is a novel lncRNA and has been indicated as playing tumour suppressor gene in several tumours. However, the role of CASC2 in osteosarcoma is still uncovered. MATERIALS AND METHODS The CASC2 and miR-181a expressions were measured via qRT-PCR. CCK-8 assay and colony formation assay were performed to determine the cell growth, and transwell assay was performed to assess the cell invasion. RESULTS We showed that CASC2 expression was downregulated in osteosarcoma samples and cell lines. Moreover, we showed that downregulated expression of CASC2 was correlated with advanced TNM stage. Furthermore, overexpression of CASC2 inhibited osteosarcoma cell proliferation, colony formation, and invasion. In addition, we indicated that ectopic expression of CASC2 suppressed miR-181a expression and enhanced the expression of Ras association domain family member 6 (RASSF6), PTEN and ATM in osteosarcoma cell, which were the direct target gene of miR-181a. Moreover, we indicated that RASSF6 expression was downregulated in osteosarcoma samples and cell lines and downregulated expression of RASSF6 was correlated with advanced TNM stage. We found that the expression of RASSF6 was positively correlated with the expression of CASC2 in osteosarcoma tissues. Ectopic expression of CASC2 suppressed the osteosarcoma cell proliferation, colony formation and invasion through regulating RASSF6 expression. CONCLUSIONS Our data illuminated that CASC2 acted as a tumour suppressor in osteosarcoma progression.
Collapse
Affiliation(s)
- Zhiwen Ba
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Lili Gu
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Songnan Hao
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Xiaofang Wang
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhenping Cheng
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Guangchen Nie
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| |
Collapse
|
26
|
Cui S, Sun Y, Liu Y, Liu C, Wang J, Hao G, Sun Q. MicroRNA‑137 has a suppressive role in liver cancer via targeting EZH2. Mol Med Rep 2017; 16:9494-9502. [PMID: 29152663 PMCID: PMC5780008 DOI: 10.3892/mmr.2017.7828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
Abstract
A variety of microRNAs (miRs) have been demonstrated to be associated with the development and malignant progression of human cancer; however, the regulatory mechanism of miR-137 underlying hepatocellular carcinoma (HCC) growth and metastasis still remains to be fully revealed. In the present study, reverse transcription-quantitative polymerase chain reaction and western blot were used to examine mRNA and protein expression. MTT assay, wound healing assay and Transwell assay were performed to determine cell proliferation, migration and invasion. Luciferase reporter assay was conducted to confirm the targeting relationship. miR-137 was significantly downregulated in HCC tissues compared to adjacent normal tissues. Low expression of miR-137 was significantly associated with lymph node metastasis, vein invasion, advanced clinical stage and poor prognosis in HCC. In addition, miR-137 was also downregulated in several liver cancer cell lines compared with normal liver epithelial cells. Overexpression of miR-137 led to a significant reduction in cell proliferation, migration and invasion of HepG2 cells. Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) was further identified as a direct target gene of miR-137, and the protein expression of EZH2 was negatively regulated by miR-137 in HepG2 cells. Additionally, EZH2 was significantly upregulated in HCC tissues and liver cancer cell lines. Furthermore, overexpression of EZH2 significantly eliminated the inhibitory effects of miR-137 on the malignant phenotypes of HepG2 cells. Therefore, the findings suggest that miR-137 may have a suppressive role in HCC growth and metastasis via targeting EZH2.
Collapse
Affiliation(s)
- Shichang Cui
- Department of General Surgery, Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Yanlei Sun
- Department of General Surgery, Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Chengbiao Liu
- Department of General Surgery, Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Jinbao Wang
- Department of General Surgery, Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Guang Hao
- Department of General Surgery, Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Qidong Sun
- Department of General Surgery, Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
27
|
Cao J, Han X, Qi X, Jin X, Li X. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p. Int J Oncol 2017; 51:1115-1123. [PMID: 28902349 PMCID: PMC5592872 DOI: 10.3892/ijo.2017.4110] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023] Open
Abstract
lncRNA-TUG1 (Taurine upregulated 1) is up regulated and highly correlated with poor prognosis and disease status in osteosarcoma. TUG1 knockdown inhibits osteosarcoma cell proliferation, migration and invasion, and promotes apoptosis. However, its mechanism of action has not been well addressed. Growing evidence documented that lncRNA works as competing endogenous (ce)RNAs to modulate the expression and biological functions of miRNA. As a putative combining target of TUG1, miR-144-3p has been associated with the progress of osteosarcoma. To verify whether TUG1 functions through regulating miR-144-3p, the expression levels of TUG1 and miR-144-3p in osteosarcoma tissues and cell lines were determined. TUG1 was upregulated in osteosarcoma tissues and cell lines, and negatively correlated with miR-144-3p. TUG1 knockdown induced miR-144-3p expression in MG63 and U2OS cell lines. Results from dual luciferase reporter assay, RNA-binding protein immuno precipitation (RIP) and applied biotin-avidin pull-down system confirmed TUG1 regulated miR-144-3p expression through direct binding. EZH2, a verified target of miR-144-3p was upregulated in osteosarcoma tissues and negatively correlated with miR-144-3p. EZH2 was negatively regulated by miR-144-3p and positively regulated by TUG1. Gain-and loss-of-function experiments were performed to analyze the role of TUG1, miR-144-3p and EZH2 in the migration and EMT of osteosarcoma cells. EZH2 overexpression partly abolished TUG1 knockdown or miR-144-3p overexpression induced inhibition of migration and EMT in osteosarcoma cells. In addition, TUG1 knockdown represses the activation of Wnt/β-catenin pathway, which was reversed by EZH2 over expression. The activator of Wnt/β-catenin pathway LiCl could partially block the TUG1-knockdown induced osteosarcoma cell migration and EMT inhibition. In conclusion, our results showed that TUG1 plays an important role in osteosarcoma development through miRNA-144-3p/EZH2/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jiaqing Cao
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xinyou Han
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xin Qi
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiangyun Jin
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaolin Li
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
28
|
Kong D, Wang Y. Knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J Cell Biochem 2017; 119:1050-1061. [PMID: 28688193 DOI: 10.1002/jcb.26273] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is a rare malignant bone tumor with high degree of malignancy. HULC (highly upregulated in liver cancer), a long noncoding RNA (lncRNA) was involved in hepatocellular carcinoma development and progression, but its underlying mechanism in osteosarcoma is unknown. The aim of this study was to explore the functional role of HULC in osteosarcoma. The study was conducted in human osteosarcoma cell lines and the expression of HULC in the cell lines was detected by qRT-PCR. Furthermore, the effects of HULC on tumorigenicity of osteosarcoma cells were evaluated by in vitro assays. Results revealed that HULC was highly expressed in osteosarcoma MG63 and OS-732 cells compared to osteoblast hFOB1.19 cells. Suppression of HULC in osteosarcoma cells inhibited cell viability, migration, invasion, and promoted apoptosis. HULC functioned as an endogenous sponge for miR-122, and its silence functioned through upregulating miR-122. HNF4G was a target of miR-122, and the effect of HNF4G on OS-732 cells was the same as HULC. Furthermore, overexpression of miR-122 inactivated PI3K/AKT, JAK/STAT, and Notch pathways by downregulation of HNF4G. These findings suggest that knockdown of HULC inhibited proliferation, migration, and invasion by sponging miR-122 in osteosarcoma cells. HULC may act as a novel therapeutic target for management of osteosarcoma.
Collapse
Affiliation(s)
- Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Hou Y, Li L, Ju Y, Lu Y, Chang L, Xiang X. MiR-101-3p Regulates the Viability of Lung Squamous Carcinoma Cells via Targeting EZH2. J Cell Biochem 2017; 118:3142-3149. [PMID: 27966775 DOI: 10.1002/jcb.25836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the effects of miR-101-3p on the viability, migration, invasion, and mitosis of lung squamous carcinoma cells by inhibiting EZH2. In this study, RT-qPCR was used to detect the expression of miR-101-3p and EZH2 in both tissues and cells at RNA level. The dual luciferase reporter gene system was used to determine whether there was targeting relationship between miR-101-3p and EZH2-3'UTR. Western Blot was used to detect the expression of EZH2 as well as the proliferation and invasion related proteins. The CCK-8 assay, Transwell invasion assay, wound healing assay and flow cytometry were conducted to test the cell viability, invasion, migration and apoptosis. The results of RT-qPCR and Western blot showed that miR-101-3p was low-expressed and EZH2 was overexpressed in lung squamous cell carcinoma tissues and cells. Meanwhile the Western blot confirmed the effects of EZH2 expression on the proliferation and invasion of carcinoma cells. The results of luciferase assay and RT-qPCR showed that miR-101-3p had a negative regulation effect on EZH2. The CCK-8 assay, Transwell invasion assay, wound healing assay and flow cytometry results showed that the inhibition of EZH2 or the up-regulation of miR-101-3p inhibited the viability, migration, invasion and cell cycle but promoted cell apoptosis of lung squamous cell carcinoma. MiR-101-3p could inhibit the viability, migration, invasion, and cell cycle of lung squamous carcinoma cells by inhibiting the EZH2. J. Cell. Biochem. 118: 3142-3149, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Yunhe Ju
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Yulin Lu
- Nursing School, Kunming Medical University, Kunming 650118, P.R.China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Xudong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| |
Collapse
|
30
|
EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe? Int J Mol Sci 2017; 18:ijms18061172. [PMID: 28561778 PMCID: PMC5485996 DOI: 10.3390/ijms18061172] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 01/26/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, catalyzes tri-methylation of histone H3 at Lys 27 (H3K27me3) to regulate gene expression through epigenetic machinery. EZH2 functions as a double-facet molecule in regulation of gene expression via repression or activation mechanisms, depending on the different cellular contexts. EZH2 interacts with both histone and non-histone proteins to modulate diverse physiological functions including cancer progression and malignancy. In this review article, we focused on the updated information regarding microRNAs (miRNAs) and long non coding RNAs (lncRNAs) in regulation of EZH2, the oncogenic and tumor suppressive roles of EZH2 in cancer progression and malignancy, as well as current pre-clinical and clinical trials of EZH2 inhibitors.
Collapse
|
31
|
Cheng DD, Yu T, Hu T, Yao M, Fan CY, Yang QC. MiR-542-5p is a negative prognostic factor and promotes osteosarcoma tumorigenesis by targeting HUWE1. Oncotarget 2016; 6:42761-72. [PMID: 26498360 PMCID: PMC4767468 DOI: 10.18632/oncotarget.6199] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
Recent evidence has demonstrated that microRNAs (miRNAs) are involved in the proliferation and metastasis of osteosarcoma. Using miRNA microarray and functional screening methods to compare miRNA expression profiles in osteosarcoma cell lines treated with Trichostatin A (TSA), overexpression of miR-542-5p was determined to be involved in the proliferation of osteosarcoma. We used isobaric tags for relative and absolute quantitation (iTRAQ) and nanoscale liquid chromatography-mass spectrometry (NanoLC−MS/MS) to identify differentially expressed proteins in MNNG/HOS and U2OS osteosarcoma cell lines transfected with miR-542-5p; in both cell lines, seven proteins were downregulated, and nine were upregulated. HUWE1 was found to be a direct target of miR-542-5p in both osteosarcoma cell lines, and was negatively correlated with miR-542-5p levels in human osteosarcoma tissues. Moreover, the expression of miR-542-5p was upregulated in human osteosarcoma tissue compared with non-tumor adjacent tissue. Kaplan-Meier analysis revealed that overexpression of miR-542-5p predicted poor prognosis for osteosarcoma patients. Taken together, our results indicated that miR-542-5p plays a critical role in the proliferation of osteosarcoma and targets HUWE1.
Collapse
Affiliation(s)
- Dong-dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tu Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun-yi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qing-cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Seeliger C, Balmayor ER, van Griensven M. miRNAs Related to Skeletal Diseases. Stem Cells Dev 2016; 25:1261-81. [PMID: 27418331 DOI: 10.1089/scd.2016.0133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
miRNAs as non-coding, short, double-stranded RNA segments are important for cellular biological functions, such as proliferation, differentiation, and apoptosis. miRNAs mainly contribute to the inhibition of important protein translations through their cleavage or direct repression of target messenger RNAs expressions. In the last decade, miRNAs got in the focus of interest with new publications on miRNAs in the context of different diseases. For many types of cancer or myocardial damage, typical signatures of local or systemically circulating miRNAs have already been described. However, little is known about miRNA expressions and their molecular effect in skeletal diseases. An overview of published studies reporting miRNAs detection linked with skeletal diseases was conducted. All regulated miRNAs were summarized and their molecular interactions were illustrated. This review summarizes the involvement and interaction of miRNAs in different skeletal diseases. Thereby, 59 miRNAs were described to be deregulated in tissue, cells, or in the circulation of osteoarthritis (OA), 23 miRNAs deregulated in osteoporosis, and 107 miRNAs deregulated in osteosarcoma (OS). The molecular influences of miRNAs regarding OA, osteoporosis, and OS were illustrated. Specific miRNA signatures for skeletal diseases are described in the literature. Some overlapped, but also unique ones for each disease exist. These miRNAs may present useful targets for the development of new therapeutic approaches and are candidates for diagnostic evaluations.
Collapse
Affiliation(s)
- Claudine Seeliger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| | - Elizabeth R Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| |
Collapse
|
33
|
Long Y, Wu Z, Yang X, Chen L, Han Z, Zhang Y, Liu J, Liu W, Liu X. MicroRNA-101 inhibits the proliferation and invasion of bladder cancer cells via targeting c-FOS. Mol Med Rep 2016; 14:2651-6. [PMID: 27485165 DOI: 10.3892/mmr.2016.5534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/15/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRs) have important roles in the parthenogenesis of malignancies. While it has been suggested that deregulation of miR‑101 is involved in bladder cancer, the underlying mechanisms have remained largely elusive. The present study aimed to investigate the roles of miR‑101 in the regulation of bladder cancer cell proliferation and invasion. Reverse‑transcription quantitative polymerase chain reaction analysis revealed that the expression of miR‑101 was significantly reduced in the HT‑1376, BIU87, T24 and 5637 several human bladder cancer cell lines compared to that in the SV‑HUC‑1 normal bladder epithelial cell line. Furthermore, a Targetscan search and a luciferase assay were used to identify c‑FOS as a novel target of miR‑101, and western blot analysis indicated that the protein expression of c‑FOS was shown to be negatively regulated by miR‑101 in bladder cancer T24 cells; however, c‑FOS mRNA expression was not affected. In addition, plasmid‑mediated overexpression of miR‑101 and small hairpin RNA‑mediated inhibition of c‑FOS significantly inhibited the proliferation and invasive capacity of T24 cells, as indicated by an MTT and a Transwell assay, respectively. However, plasmid‑mediated overexpression of c‑FOS reversed the inhibitory effects of miR‑101 overexpression on T24‑cell proliferation and invasion. In conclusion, the present study demonstrated that miR‑101 inhibits the proliferation and invasion of bladder cancer cells, at least partly via targeting c‑FOS, suggesting that miR-101/c‑FOS signaling may represent a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Yongqi Long
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| | - Zhiping Wu
- Department of Urinary Surgery, The Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Xinhua Yang
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| | - Lei Chen
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| | - Zhijun Han
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| | - Yulong Zhang
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| | - Jinge Liu
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| | - Wenjin Liu
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| | - Xinyi Liu
- Department of Urinary Surgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
34
|
Abstract
Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.
Collapse
Affiliation(s)
- Vadim V Maximov
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rami I Aqeilan
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.,Department of Molecular Virology, Immunology & Medical Genetics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget 2016; 6:12837-61. [PMID: 25968566 PMCID: PMC4536984 DOI: 10.18632/oncotarget.3805] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced phase of pre-clinical investigation or in clinical trials. In addition, a more recent body of evidence indicates that microRNAs (miRNAs) might target effectors of the epigenetic machinery, which are aberrantly expressed or active in cancers, thus reverting those epigenetic abnormalities driving tumor initiation and progression. This review will focus on the broad epigenetic activity triggered by members of the miR-29 family, which underlines the potential of miR-29s as candidate epi-therapeutics for the treatment of hematologic malignancies.
Collapse
|
36
|
Wang Z, He R, Xia H, Wei YU, Wu S. MicroRNA-101 has a suppressive role in osteosarcoma cells through the targeting of c-FOS. Exp Ther Med 2016; 11:1293-1299. [PMID: 27073439 PMCID: PMC4812594 DOI: 10.3892/etm.2016.3085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/15/2016] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRs) have been implicated in the development and progression of osteosarcoma (OS). However, the underlying mechanism of miR-101 in regulating of the proliferation, migration and invasion of OS cells remains to be elucidated. In the present study, reverse transcription-quantitative polymerase chain reaction data revealed that miR-101 was frequently downregulated in the tissue samples of 12 patients with OS compared with their matched adjacent non-tumor tissues. Furthermore, miR-101 was significantly downregulated in three common OS cell lines, Saos-2, MG63 and U2OS, compared with the human osteoblast cell line, hFOB1.19 (P<0.01). A luciferase reporter assay was also performed and identified c-FOS as a novel target of miR-101 in U2OS cells; overexpression of miR-101 significantly suppressed the protein expression levels of c-FOS, while knockdown of miR-101 significantly enhanced the formers' expression levels in U2OS cells (P<0.01). Independent inhibition of c-FOS and overexpression of miR-101 expression levels significantly suppressed U2OS cell proliferation, migration and invasion (P<0.01). However, overexpression of c-FOS reversed the inhibitory effect of miR-101 upregulation on proliferation, migration and invasion of U2OS cells, suggesting that miR-101 acts as a tumor suppressor in OS cells via targeting of c-FOS. Thus, we propose that the miR-101/c-FOS axis may be a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongzhen He
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hansong Xia
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Y U Wei
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
37
|
Yang Q, Nair S, Laknaur A, Ismail N, Diamond MP, Al-Hendy A. The Polycomb Group Protein EZH2 Impairs DNA Damage Repair Gene Expression in Human Uterine Fibroids. Biol Reprod 2016; 94:69. [PMID: 26888970 PMCID: PMC4829092 DOI: 10.1095/biolreprod.115.134924] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
Uterine fibroids are benign, smooth muscle tumors that occur in approximately 70%-80% of women by age 50 yr. The cellular and molecular mechanism(s) by which uterine fibroids (UFs) develop are not fully understood. Accumulating evidence demonstrates that several genetic abnormalities, including deletions, rearrangements, translocations, as well as mutations, have been found in UFs. These genetic anomalies suggest that low DNA damage repair capacity may be involved in UF formation. The objective of this study was to determine whether expression levels of DNA damage repair-related genes were altered, and how they were regulated in the pathogenesis of UFs. Expression levels of DNA repair-related genes RAD51 and BRCA1 were deregulated in fibroid tissues as compared to adjacent myometrial tissues. Expression levels of chromatin protein enhancer of zeste homolog 2 (EZH2) were higher in a subset of fibroids as compared to adjacent myometrial tissues by both immunohistochemistry and Western blot analysis. Treatment with an inhibitor of EZH2 markedly increased expression levels of RAD51 and BRCA1 in fibroid cells and inhibited cell proliferation paired with cell cycle arrest. Restoring the expression of RAD51 and BRCA1 by treatment with EZH2 inhibitor was dependent on reducing the enrichment of trimethylation of histone 3 lysine 27 epigenetic mark in their promoter regions. This study reveals the important role of EZH2-regulated DNA damage-repair genes via histone methylation in fibroid biology, and may provide novel therapeutic targets for the medical treatment of women with symptomatic UFs.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Sangeeta Nair
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Archana Laknaur
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Nahed Ismail
- Clinical Microbiology Division, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
38
|
Ge L, Zheng B, Li M, Niu L, Li Z. MicroRNA-497 suppresses osteosarcoma tumor growth in vitro and in vivo. Oncol Lett 2016; 11:2207-2212. [PMID: 26998150 DOI: 10.3892/ol.2016.4162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/08/2015] [Indexed: 12/13/2022] Open
Abstract
It has been demonstrated that microRNA-497 (miR-497) acts as a tumor suppressor and is involved in tumor progression, development and metastasis in several types of cancer. However, little is known about the exact role of miR-497 in osteosarcoma (OS). The aim of the current study was to investigate the potential role of miR-497 in human OS. The role of miR-497 in the growth and survival of OS cells was determined using several in vitro approaches and a nude mouse model. The results demonstrated that exogenous expression of miR-497 in human OS MG63 cells suppressed cell proliferation, colony formation, migration and invasion, and induced cell apoptosis and cell arrest at the G0/G1 phase of the cell cycle. In addition, the results of the in vivo study indicated that restoration of miR-497 inhibited OS tumor growth in a nude mouse model. Overall, the results of the present study identified a crucial tumor suppressive role of miR-497 in the progression of OS, and suggested that miR-497 may be a potential therapeutic agent for the treatment of OS.
Collapse
Affiliation(s)
- Liang Ge
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Minghe Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Liang Niu
- Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihong Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
39
|
Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, He Z, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST. Cyclooxygenase-2, a Potential Therapeutic Target, Is Regulated by miR-101 in Esophageal Squamous Cell Carcinoma. PLoS One 2015; 10:e0140642. [PMID: 26556718 PMCID: PMC4640815 DOI: 10.1371/journal.pone.0140642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND & AIMS Cyclooxygenase-2 (COX-2) is known to promote the carcinogenesis of esophageal squamous cell carcinoma (ESCC). There are no reports on whether microRNAs (miRNAs) regulate COX-2 expression in ESCC. This study investigated the effect of miR-101 on ESCC through modulating COX-2 expression in ESCC. METHODS Real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify miR-101 expression in ESCC clinical tissues and cell lines. The effects of miR-101 on ESCC progression were evaluated by cell counting kit-8 (CCK8), transwell migration and invasion assays, as well as by flow cytometry. The COX-2 and PEG2 levels were determined by western blot and enzyme-linked immunosorbent assays (ELISA). The luciferase reporter assay was used to verify COX-2 as a direct target of miR-101. The anti-tumor activity of miR-101 in vivo was investigated in a xenograft nude mouse model of ESCC. RESULTS Downregulation of miR-101 was confirmed through comparison of 30 pairs of ESCC tumor and adjacent normal tissues (P < 0.001), as well as in 11 ESCC cell lines and a human immortalized esophageal cell line (P < 0.001). Transfection of miR-101 in ESCC cell lines significantly suppressed cell proliferation, migration, and invasion (all P < 0.001). The antitumor effect of miR-101 was verified in a xenograft model. Furthermore, COX-2 was shown to be a target of miR-101. CONCLUSIONS Overexpression of miR-101 in ESCC inhibits proliferation and metastasis. Therefore, the miR-101/COX-2 pathway might be a therapeutic target in ESCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/therapy
- Cell Line, Tumor
- Cell Movement
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Down-Regulation
- Enzyme Induction/genetics
- Esophageal Neoplasms/enzymology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/therapy
- Esophagus/chemistry
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Reporter
- Genetic Therapy
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Molecular Targeted Therapy
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Real-Time Polymerase Chain Reaction
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ying Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ji-ping Yue
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Xiao-jun Ji
- Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen He
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Dan Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-dong Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
40
|
The role of miRNAs in the pheochromocytomas. Tumour Biol 2015; 37:4235-9. [DOI: 10.1007/s13277-015-4199-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022] Open
|
41
|
Deng G, Teng Y, Huang F, Nie W, Zhu L, Huang W, Xu H. MicroRNA-101 inhibits the migration and invasion of intrahepatic cholangiocarcinoma cells via direct suppression of vascular endothelial growth factor-C. Mol Med Rep 2015; 12:7079-85. [PMID: 26299768 DOI: 10.3892/mmr.2015.4239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 07/02/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) have important roles in the pathogenesis of human malignancy. It has previously been suggested that deregulation of miR‑101 is associated with the progression of intrahepatic cholangiocarcinoma (ICC); however, the exact role of miR‑101 in the regulation of ICC metastasis remains largely unknown. The present study demonstrated that the expression levels of miR‑101 were significantly decreased in ICC tissue, as compared with matched adjacent normal tissue. Furthermore, miR‑101 was downregulated in the ICC‑9810 human ICC cell line, as compared with in the normal human intrahepatic biliary epithelial cell (HIBEC) line. Vascular endothelial growth factor (VEGF)‑C was identified as a target gene of miR‑101 in ICC‑9810 cells. The expression of VEGF‑C was negatively regulated by miR‑101 at the post‑transcriptional level in ICC‑9810 cells. Further investigation demonstrated that overexpression of miR‑101 markedly suppressed the migration and invasion of ICC‑9810 cells, and these effects were similar to those observed following VEGF‑C knockdown. Conversely, restoration of VEGF‑C reversed the inhibitory effects of miR‑101 overexpression on ICC‑9810 cell migration and invasion, thus suggesting that miR‑101 may suppress ICC‑9810 cell migration and invasion, at least partly via inhibition of VEGF‑C. It was also demonstrated that the mRNA and protein expression levels of VEGF‑C were frequently upregulated in ICC tissue and cells, and its expression level was inversely correlated with that of miR‑101 in ICC tissue. In conclusion, the present study identified important roles for miR‑101 and VEGF‑C in ICC, suggesting that miR‑101/VEGF‑C signaling may be a promising diagnostic and/or therapeutic target for ICC.
Collapse
Affiliation(s)
- Gang Deng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yinglu Teng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feizhou Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wanpin Nie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongbo Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
42
|
Zhang C, Hu Y, Wan J, He H. MicroRNA-124 suppresses the migration and invasion of osteosarcoma cells via targeting ROR2-mediated non-canonical Wnt signaling. Oncol Rep 2015; 34:2195-201. [PMID: 26259653 DOI: 10.3892/or.2015.4186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) have been implicated in tumorigenesis through inhibition of the expression of their target genes at post-transcriptional levels. miR-124 has been found to be downregulated in many malignant tumors including osteosarcoma (OS). However, the detailed mechanism of miR-124 in the regulation of OS malignant phenotypes remains largely unclear. Here we aimed to explore the role of miR-124 in mediating OS cell migration and invasion, as well as the underlying regulatory mechanisms. Real-time RT-PCR data showed that miR-124 was frequently downregulated in OS cell lines compared to normal human osteoblast cells. We further conducted bioinformatic analysis and a luciferase reporter assay, and identified receptor tyrosine kinase-like orphan receptor 2 (ROR2) as a novel target of miR-124. Furthermore, we found that ROR2 was significantly upregulated in OS cell lines compared to normal human osteoblast cells, and miR-124 negatively mediated the protein level of ROR2 in U-2OS and Saos-2 cells. Moreover, transfection with miR-124 mimics significantly suppressed migration and invasion in the U-2OS and Saos-2 cells, while overexpression of ROR2 in the miR-124-transfected OS cells reversed the inhibitory effect of miR-124 upregulation on OS cell migration and invasion. In addition, we found that overexpression of miR-124 significantly suppressed the activity of non-canonical Wnt signaling, downstream of ROR2. Based on these findings, we suggest that miR-124 may inhibit OS metastasis, partly at least, via targeting ROR2 and thus suppressing the activity of ROR2-mediated non-canonical Wnt signaling.
Collapse
Affiliation(s)
- Can Zhang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wan
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongbo He
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
43
|
MicroRNA-410 promotes cell proliferation by targeting BRD7 in non-small cell lung cancer. FEBS Lett 2015; 589:2218-23. [PMID: 26149213 DOI: 10.1016/j.febslet.2015.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/10/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
Abstract
miR-410 acts as an oncogene or tumor suppressor gene in some malignancies. However, its role in NSCLC is still unknown. In this study, we showed that the expression of miR-410 was up-regulated in both human NSCLC tissues and cells. Overexpression of miR-410 promoted cell proliferation, migration, and invasion of NSCLC. In addition, bromodomain-containing protein 7 (BRD7) was a direct target of miR-410. MiR-410-mediated downregulation of BRD7 led to increase Akt phosphorylation. Inhibition of Akt phosphorylation can rescue the effect of miR-410 on NSCLC cell. The expression of BRD7 was downregulated in NSCLC and was inversely expressed with miR-410 in NSCLC. Our data provided new knowledge regarding the role of miR-410 in the lung cancer progression.
Collapse
|
44
|
Shi Y, Huang J, Zhou J, Liu Y, Fu X, Li Y, Yin G, Wen J. MicroRNA-204 inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in osteosarcoma cells via targeting Sirtuin 1. Oncol Rep 2015; 34:399-406. [PMID: 25998694 DOI: 10.3892/or.2015.3986] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) play crucial roles in tumorigenesis by directly suppressing the protein expression levels of their target genes. miR-204 has been suggested to act as a tumor suppressor in several types of human cancer. However, the exact role of miR-204 in osteosarcoma (OS) remains undetermined. In the present study, we aimed to investigate the effects of miR-204 on OS cell proliferation, migration and invasion, as well as the underlying molecular mechanisms. We found that the expression of miR-204 was frequently downregulated in four OS cell lines compared to the level in normal human osteoblast cells. Moreover, overexpression of miR-204 significantly inhibited the proliferation, migration and invasion of OS cells. Based on bioinformatics prediction and a luciferase reporter assay, we identified Sirtuin 1 (Sirt1) as a direct target gene of miR-204 in OS Saso-2 cells. Moreover, the protein expression of Sirt1 was negatively mediated by miR-204 in the OS cells. siRNA-mediated knockdown of Sirt1 also inhibited the proliferation, migration and invasion of the OS cells. Moreover, overexpression of Sirt1 reversed the inhibitory effect of miR-204 overexpression on the proliferation, migration and invasion of the OS cells. In addition, after miR-204 overexpression or Sirt1 knockdown in OS cells, the expression of E-cadherin was increased, while the N-cadherin protein level was reduced. Based on these findings, we suggest that miR-204 inhibits the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of OS cells by directly targeting Sirt1.
Collapse
Affiliation(s)
- Ying Shi
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianjun Huang
- The Second Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Jun Zhou
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ying Liu
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaodan Fu
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yimin Li
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Gang Yin
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jifang Wen
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
45
|
Geng J, Li X, Zhou Z, Wu CL, Bai X, Dai M. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer. Cancer Lett 2015; 359:275-87. [DOI: 10.1016/j.canlet.2015.01.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/31/2022]
|
46
|
Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. MicroRNAs in osteosarcoma. Clin Chim Acta 2015; 444:9-17. [PMID: 25661090 DOI: 10.1016/j.cca.2015.01.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity that principally emerges in children and adolescents. Presently, the prognosis of OS patients remains poor due to resistance to chemotherapy, highlighting the need for new therapeutic approaches. MicroRNAs (miRNAs), a class of small noncoding RNA molecules, can negatively modulate protein expression at the post-transcriptional level. miRNAs regulate a variety of normal physiologic processes and are involved in tumorigenesis and development of multiple malignancies, including OS. Some miRNAs are differentially expressed in OS tissues, cell lines and serum, and have been shown to correlate with the malignant phenotype and prognosis. These altered miRNAs function as oncogenes or tumor suppressor genes in this process. Moreover, restoration of miRNA expression has shown promise for the treatment of OS. Here, we describe miRNA biochemistry with a focus on expression profile, role and therapeutic potential in OS. A better understanding will facilitate the identification and characterization of novel biomarkers and development of miRNA-targeted therapies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|