1
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Shen P, Yu J, Long X, Huang X, Tong C, Wang X. Effect of forsythoside A on the transcriptional profile of bovine mammary epithelial cells challenged with lipoteichoic acid. Reprod Domest Anim 2023; 58:89-96. [PMID: 36128756 DOI: 10.1111/rda.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023]
Abstract
Mastitis is a common disease of the dairy cattle, which affects the development of the dairy industry and leads to huge economic losses. Forsythoside A (FTA) has anti-inflammatory, antioxidant, antiviral and anti-apoptotic effects. However, the therapeutic effect and molecular mechanism of FTA on dairy cow mastitis remain unclear. In this study, bovine mammary epithelial cells (BMECs) were stimulated with lipoteichoic acid (LTA), a key virulence factor of Staphylococcus aureus (S. aureus), to construct in vitro models, and then treated with FTA. Subsequently, the differentially expressed genes (DEGs) in different groups were determined by RNA sequencing (RNA-Seq) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyse the possible function of the DEGs, real-time quantitative PCR (RT-qPCR) was used to verify whether the expression levels of these DEGs were consistent with RNA-Seq results. The results showed that cell division cycle 20B (CDC20B), endothelial cell surface expressed chemotaxis and apoptosis regulator (ECSCR), complement factor H-related 5 (CFHR5) and phospholipase A2 group IVA (PLA2G4A) were down-regulated after FTA treatment. In contrast, Kruppel-like factor 15 (KLF15) and Metallothionein 1E (MT1E) were up-regulated. These DEGs are involved in processes such as apoptosis, inflammation and development of cancer. This study provides valuable insights into the transcriptome changes in BMECs after FTA treatment. Further analysis may help identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaochuan Long
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Xiankai Huang
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Wushu Overseas Students Pioneer Park, Wuhu, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
HIF in Gastric Cancer: Regulation and Therapeutic Target. Molecules 2022; 27:molecules27154893. [PMID: 35956843 PMCID: PMC9370240 DOI: 10.3390/molecules27154893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
HIF means hypoxia-inducible factor gene family, and it could regulate various biological processes, including tumor development. In 2021, the FDA approved the new drug Welireg for targeting HIF-2a, and it is mainly used to treat von Hippel-Lindau syndrome, which demonstrated its good prospects in tumor therapy. As the fourth deadliest cancer worldwide, gastric cancer endangers the health of people all across the world. Currently, there are various treatment methods for patients with gastric cancer, but the five-year survival rate of patients with advanced gastric cancer is still not high. Therefore, here we reviewed the regulatory role and target role of HIF in gastric cancer, and provided some references for the treatment of gastric cancer.
Collapse
|
4
|
Sharma A, Sinha S, Shrivastava N. Therapeutic Targeting Hypoxia-Inducible Factor (HIF-1) in Cancer: Cutting Gordian Knot of Cancer Cell Metabolism. Front Genet 2022; 13:849040. [PMID: 35432450 PMCID: PMC9008776 DOI: 10.3389/fgene.2022.849040] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Metabolic alterations are one of the hallmarks of cancer, which has recently gained great attention. Increased glucose absorption and lactate secretion in cancer cells are characterized by the Warburg effect, which is caused by the metabolic changes in the tumor tissue. Cancer cells switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis due to changes in glucose degradation mechanisms, a process known as “metabolic reprogramming”. As a result, proteins involved in mediating the altered metabolic pathways identified in cancer cells pose novel therapeutic targets. Hypoxic tumor microenvironment (HTM) is anticipated to trigger and promote metabolic alterations, oncogene activation, epithelial-mesenchymal transition, and drug resistance, all of which are hallmarks of aggressive cancer behaviour. Angiogenesis, erythropoiesis, glycolysis regulation, glucose transport, acidosis regulators have all been orchestrated through the activation and stability of a transcription factor termed hypoxia-inducible factor-1 (HIF-1), hence altering crucial Warburg effect activities. Therefore, targeting HIF-1 as a cancer therapy seems like an extremely rational approach as it is directly involved in the shift of cancer tissue. In this mini-review, we present a brief overview of the function of HIF-1 in hypoxic glycolysis with a particular focus on novel therapeutic strategies currently available.
Collapse
Affiliation(s)
- Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, India
| | | | - Neeta Shrivastava
- Shri B.V. Patel Education Trust, Ahmedabad, India
- *Correspondence: Neeta Shrivastava,
| |
Collapse
|
5
|
Cherukunnath A, Davargaon RS, Ashraf R, Kamdar U, Srivastava AK, Tripathi PP, Chatterjee N, Kumar S. KLF8 is activated by TGF-β1 via Smad2 and contributes to ovarian cancer progression. J Cell Biochem 2022; 123:921-934. [PMID: 35293014 DOI: 10.1002/jcb.30235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Krüppel-like factor 8 (KLF8) is a transcription factor expressed abnormally in various cancer types and promotes oncogenic transformation. However, the role of KLF8 in ovarian cancer (OC) progression remains unclear. This study reports that transforming growth factor-β1 (TGF-β1)/Smad2/KLF8 axis regulates epithelial-mesenchymal transition (EMT) and contributes to OC progression. We analyzed the KLF8 expression in OC cells and tissues, wherein a significant overexpression of KLF8 was observed. Increased KLF8 expressions were correlated with higher cell proliferation, EMT, migration, and invasion and conferred poor clinical outcomes in OC patients. Overexpressed KLF8 increases F-actin polymerization and induces cytoskeleton remodeling of OC cells. Furthermore, a dissection of the molecular mechanism defined that TGF-β1 triggers KLF8 through the Smad2 pathway and regulates EMT. Pharmacological and genetic inhibition of Smad2 followed by TGF-β1 treatment failed to activate KLF8 expression and induction of EMT. Using promoter-luciferase reporter assays, we defined that upon TGF-β1 activation, phosphorylated Smad2 binds and promotes the KLF8 promoter activity, and knockdown of Smad2 inhibits KLF8 promoter activation. Together, these results demonstrate that TGF-β1 activates KLF8 expression by the Smad2 pathway, and KLF8 contributes to OC progression and may serve as a potential therapeutic strategy for treating OC patients.
Collapse
Affiliation(s)
- Aparna Cherukunnath
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Ravichandra S Davargaon
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Urja Kamdar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Amit K Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Prem P Tripathi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Nabanita Chatterjee
- Department of Receptor Biology and Tumor metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
6
|
Kumar S, Behera A, Saha P, Kumar Srivastava A. The role of Krüppel-like factor 8 in cancer biology: Current research and its clinical relevance. Biochem Pharmacol 2020; 183:114351. [PMID: 33253644 DOI: 10.1016/j.bcp.2020.114351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide, ranked second after heart disease. Despite recent advancements in diagnosis and treatment, there are still numerous problems associated with cancer progression, disease recurrence, and therapeutic resistance that are partially explored. Several studies have recently revealed that Krüppel-like factor 8 (KLF8) regulates transcription of genes linked with diverse biological processes, including proliferation, epithelial to mesenchymal transition (EMT), migration, invasion, and inflammation. KLF8 is expressed ubiquitously in mammalian cells, and its aberrant expression has been manifested with several cancer types. Earlier studies demonstrated the crucial role of KLF8 in DNA repair and resistance to apoptosis in numerous cancer types. Hence, studying the function of KLF8 from the perspective of cancer progression and therapy resistance would help develop a new therapeutic avenue. In this review, we summarize the clinical relevance of KLF8 expression in various malignancies, focusing on recent updates in EMT, cellular signaling, and cancer stem cells. We also address the contribution of KLF8 in development, DNA repair, chemoresistance, and its clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| |
Collapse
|
7
|
Jin Y, Che X, Qu X, Li X, Lu W, Wu J, Wang Y, Hou K, Li C, Zhang X, Zhou J, Liu Y. CircHIPK3 Promotes Metastasis of Gastric Cancer via miR-653-5p/miR-338-3p-NRP1 Axis Under a Long-Term Hypoxic Microenvironment. Front Oncol 2020; 10:1612. [PMID: 32903845 PMCID: PMC7443574 DOI: 10.3389/fonc.2020.01612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
As a vital feature of the microenvironment, hypoxia, especially long-term hypoxia, is known to promote metastasis and lead to poor prognosis in solid tumors. Circular RNAs (circRNAs) participate in important processes of cell proliferation and metastasis in cancers. However, the contribution of circRNAs to metastasis under long-term hypoxia is obscure. In this study, we aim to explore specific functions of circHIPK3 in long-term hypoxia-promoting metastasis of gastric cancer (GC). The hypoxic resistant gastric cancer (HRGC) cell lines we established previously, which were tolerant to 2% O2 conditions, were used as the long-term hypoxia model. We found that circHIPK3 was upregulated by HIF-2α in HRGC cells, and circHIPK3 facilitated the migration and invasion ability of HRGC cells. Further investigation proved that circHIPK3 promoted metastasis of HRGC cells directly by interacting with miR-653-5p and miR-338-3p to relieve the suppression of neuropilin 1 (NRP1), resulting in the activation of downstream ERK and AKT pathways. Our study identified oncogene functions of circHIPK3 under a long-term hypoxic microenvironment and the possibility of using circHIPK3 as a potential biomarker of long-term hypoxia in GC. In conclusion, circHIPK3 could promote GC metastasis via the miR-653-5p/miR-338-3p-NRP1 axis under a long-term hypoxic microenvironment.
Collapse
Affiliation(s)
- Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenqing Lu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jie Wu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yizhe Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| |
Collapse
|
8
|
Wang Y, Bibi M, Min P, Deng W, Zhang Y, Du J. SOX2 promotes hypoxia-induced breast cancer cell migration by inducing NEDD9 expression and subsequent activation of Rac1/HIF-1α signaling. Cell Mol Biol Lett 2019; 24:55. [PMID: 31462898 PMCID: PMC6704701 DOI: 10.1186/s11658-019-0180-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background Hypoxia, a major condition associated with the tumor microenvironment, stimulates the migration of cancer cells. SOX2 is a powerful transcription factor that shows higher expression in several cancers, however, its role in hypoxia-induced breast cancer cell migration remains largely elusive. Methods The human breast cancer cell lines MDA-MB-231 and MDA-MB-468 were cultured under hypoxic conditions. The cell migration rate was determined using the wound-healing and transwell assays. The protein levels of SOX2, NEDD9 and HIF-1α were evaluated via western blotting analysis. The NEDD9 mRNA levels were evaluated using qPCR. The activation of Rac1 was detected with the pulldown assay. The binding of SOX2 to the NEDD9 promoter was checked using the luciferase reporter assay. We also transfected breast cancer cells with specific siRNA for SOX2, NEDD9 or the Rac1 inactive mutant (T17 N) to investigate the role of SOX2, NEDD9 and Rac1 in the response to hypoxia. Results Hypoxia markedly increased SOX2 protein levels in a time-dependent manner. SiRNA-mediated disruption of SOX2 inhibited cell migration under hypoxic conditions. Hypoxia also significantly augmented the NEDD9 mRNA and protein levels. Interestingly, SOX2 is a positive transcriptional regulator of NEDD9. Knockdown of SOX2 inhibited hypoxia-induced NEDD9 mRNA and protein expressions. Furthermore, hypoxia-induced upregulation of Rac1 activity and HIF-1α expression was attenuated by SOX2 or NEDD9 silencing, and Rac1-T17 N abolished HIF-1α expression as well as cell migration in cells subjected to hypoxia. Conclusions Our results highlight the essential role of SOX2 in breast cancer cell motility. The upregulation of SOX2 under hypoxic conditions may facilitate NEDD9 transcription and expression, and subsequent activation of Rac1 and HIF-1α expression. This could accelerate breast cancer cell migration.
Collapse
Affiliation(s)
- Yueyuan Wang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Maria Bibi
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Pengxiang Min
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Wenjie Deng
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Yujie Zhang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China.,2Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Jun Du
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China.,2Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| |
Collapse
|
9
|
Mao A, Zhou X, Liu Y, Ding J, Miao A, Pan G. KLF8 is associated with poor prognosis and regulates glycolysis by targeting GLUT4 in gastric cancer. J Cell Mol Med 2019; 23:5087-5097. [PMID: 31124603 PMCID: PMC6653475 DOI: 10.1111/jcmm.14378] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Krüppel‐like transcription factor (KLF) family is involved in tumorigenesis in different types of cancer. However, the importance of KLF family in gastric cancer is unclear. Here, we examined KLF gene expression in five paired liver metastases and primary gastric cancer tissues by RT‐PCR, and immunohistochemistry was used to study KLF8 expression in 206 gastric cancer samples. The impact of KLF8 expression on glycolysis, an altered energy metabolism that characterizes cancer cells, was evaluated. KLF8 showed the highest up‐regulation in liver metastases compared with primary tumours among all KLF members. Higher KLF8 expression associated with larger tumour size (P < 0.001), advanced T stage (P = 0.003) and N stage (P < 0.001). High KLF8 expression implied shorter survival outcome in both TCGA and validation cohort (P < 0.05). Silencing KLF8 expression impaired the glycolysis rate of gastric cancer cells in vitro. Moreover, high KLF8 expression positively associated with SUVmax in patient samples. KLF8 activated the GLUT4 promoter activity in a dose‐dependent manner (P < 0.05). Importantly, KLF8 and GLUT4 showed consistent expression patterns in gastric cancer tissues. These findings suggest that KLF8 modulates glycolysis by targeting GLUT4 and could serve as a novel biomarker for survival and potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Anwei Mao
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Xiang Zhou
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Yanxia Liu
- Department of Nursing, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Junbin Ding
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Aiyu Miao
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gaofeng Pan
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| |
Collapse
|
10
|
Liu J, Zheng H, Ding Y, Li M, Li J, Guo J, Hu L, Pu L, Xiong S. The level of Krüppel-like factor 8 expression predicts prognosis and metastasis in various carcinomas. Medicine (Baltimore) 2019; 98:e15519. [PMID: 31045845 PMCID: PMC6504245 DOI: 10.1097/md.0000000000015519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Krüppel-like factor 8 (KLF8), a transcription factor, belongs to the KLF8 family. Currently, studies have shown that KLF8 is highly expressed in some tumors. However, the prognostic value and metastasis of KLF8 in cancers remain unclear. For the first time, we conducted meta-analysis to explore the relationship between KLF8 expression with prognosis and metastasis in various carcinomas patients. METHODS Web of Science, PubMed, Embase, and Cochrane Library were systematically searched for eligible articles. Pooled hazard ratios (HRs) and their 95% confidence intervals (95% CIs) were calculated to evaluate the prognostic value and metastasis of KLF8 expression in human cancer patients. RESULTS The result revealed that highly expression level of KLF8 was significantly associated with poor overall survival (OS) (HR = 1.56, 95% CI: 1.26-1.87). Meanwhile, this significant correlation was also observed in subgroup analysis stratified by cancer types, source of HR, sample size, follow-up (months). In addition, highly expression of KLF8 was also closely associated with metastasis (HR = 1.37, 95% CI: 0.57-2.17) and tumor node metastasis stage (HR = 1.58, 95% CI: 0.90-2.25) in carcinomas. CONCLUSION In summary, our meta-analysis indicates that overexpression of KLF8 may be associated with poor prognosis and higher incidence of metastasis in various carcinomas, and KLF8 may be used as a prognostic and metastatic indicator in human cancers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hematology/Hematological Lab
| | | | | | - Manman Li
- Department of Hematology/Hematological Lab
| | - Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, Anhui
| | - Jiaojiao Guo
- Department of Ultrasound, The Yangpu Hospital of Tongji University, Shanghai
| | - Linhui Hu
- Department of Hematology, The Third People's Hospital of Jingdezhen, Jingdezhen, Jiangxi
| | - Lianfang Pu
- Department of Hematology, The Third People's Hospital of Bengbu, Bengbu, Anhui, People's Republic of China
| | | |
Collapse
|
11
|
Li Q, Tang H, Hu F, Qin C. Knockdown of A-kinase anchor protein 4 inhibits hypoxia-induced epithelial-to-mesenchymal transition via suppression of the Wnt/β-catenin pathway in human gastric cancer cells. J Cell Biochem 2018; 119:10013-10020. [PMID: 30145836 DOI: 10.1002/jcb.27331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Hypoxia induces epithelial-mesenchymal transition (EMT) in tumorigenesis. A-kinase anchor protein 4 (AKAP4) is a member of AKAPs family and plays a critical role in tumorigenesis. However, the biological role of AKAP4 in gastric cancer remains unknown. Thus, we investigated the effect of AKAP4 on EMT in human gastric cancer cells under hypoxic conditions. Our results showed that AKAP4 expression was significantly upregulated in human gastric cancer cell lines. In addition, silenced expression of hypoxia-inducible factor-1α markedly suppressed AKAP4 expression in gastric cancer cells under hypoxia. Furthermore, knockdown of AKAP4 significantly prevented hypoxia-induced migration, invasion, and EMT process in gastric cancer cells. Mechanistically, knockdown of AKAP4 prevented the activation of the Wnt/β-catenin pathway in gastric cancer cells under hypoxia condition. These findings indicate that knockdown of AKAP4 inhibits hypoxia-induced EMT in human gastric cancer cells, at least in part, via inactivation of the Wnt/β-catenin signaling pathway. It is, therefore, AKAP4 may be a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Quanying Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hongna Tang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Fangfang Hu
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
12
|
Wang X, He M, Li J, Wang H, Huang J. KLF15 suppresses cell growth and predicts prognosis in lung adenocarcinoma. Biomed Pharmacother 2018; 106:672-677. [PMID: 29990857 DOI: 10.1016/j.biopha.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 02/07/2023] Open
Abstract
Krüppel-like factors (KLFs) are transcription factors containing three different C2H2-type zinc finger domains in their carboxy-terminal regions which have been identified to play important roles in a variety of cancers. However, little is known about KLF15 in lung adenocarcinoma (LAUD). Our study demonstrated that the expression levels of KLF15 were observably down-regulated in LAUD tissues compared to paired adjacent normal tissues. LUAD patients with low expression levels of KLF15 have worse prognosis than those with high expression levels of KLF15. KLF15 could suppress cell growth, which was partly via up-regulating CDKN1 A/p21 and CDKN2A/p15. Our findings suggested that KLF15 showed a significant role in LAUD progression and may shed light on a promising novel therapeutic target for blocking progression of LAUD.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China; Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China
| | - Jianzhong Li
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China
| | - Haiying Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
13
|
Zhang Y, Lin S, Chen Y, Yang F, Liu S. LDH-Apromotes epithelial-mesenchymal transition by upregulating ZEB2 in intestinal-type gastric cancer. Onco Targets Ther 2018; 11:2363-2373. [PMID: 29740212 PMCID: PMC5931238 DOI: 10.2147/ott.s163570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction Epithelial-mesenchymal transition (EMT) is regarded as a crucial process of invasion and metastasis, which contribute greatly to cancer-related relapse and death. Based on research results that hypoxia can trigger gastric cancer EMT and decreasing lactate production can selectively kill hypoxic cancer cells, we infer that lactate dehydrogenase A (LDH-A) transforming pyruvate into lactate is at least in part responsible for poor prognosis of gastric cancer. Materials and methods We used siRNA to knock down LDH-A in intestinal-type gastric cancer (ITGC) cell lines SGC7901 and BGC823. Western blot and RT-PCR were applied to detect mRNA and protein expression of EMT-related genes, respectively. Transwell invasion assay and migration assay were applied to study invasive and migratory abilities, respectively. Survival analysis was used to evaluate prognostic values. Results and conclusion The results of in vitro experiment demonstrated that LDH-A facilitates ITGC cells’ invasion and migration by upregulating ZEB2. The positive correlation between LDH-A and ZEB2 was verified in 371 ITGC specimens. Survival analysis indicated that co-expression of LDH-A/ZEB2 had synergetic power to predict overall survival. Thus, we conclude that the close relationship between LDH-A and ZEB2 may offer a potential therapeutic strategy for ITGC.
Collapse
Affiliation(s)
- Yongjie Zhang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Sen Lin
- Clinical Laboratory, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Yan Chen
- Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Fei Yang
- Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Shenlin Liu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Bian T, Jiang D, Liu J, Yuan X, Feng J, Li Q, Zhang Q, Li X, Liu Y, Zhang J. miR-1236-3p suppresses the migration and invasion by targeting KLF8 in lung adenocarcinoma A549 cells. Biochem Biophys Res Commun 2017; 492:461-467. [DOI: 10.1016/j.bbrc.2017.08.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/20/2017] [Indexed: 12/25/2022]
|
16
|
Yi X, Zai H, Long X, Wang X, Li W, Li Y. Krüppel-like factor 8 induces epithelial-to-mesenchymal transition and promotes invasion of pancreatic cancer cells through transcriptional activation of four and a half LIM-only protein 2. Oncol Lett 2017; 14:4883-4889. [PMID: 28943967 DOI: 10.3892/ol.2017.6734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive types of cancer with an extremely poor prognosis. Invasive growth and early metastasis is one of the greatest challenges to overcome for the treatment of PC. Numerous previous studies have indicated that the transcription factor Krüppel-like factor 8 (KLF8) and nuclear cofactor four and a half LIM-only protein 2 (FHL2) serve important roles in tumorigenesis and tumor progression; however, their roles in PC remain elusive. The present study revealed that KLF8 and FHL2 expression is aberrantly co-overexpressed in PC tissue samples and associated with tumor metastasis. Furthermore, a positive correlation between the expression levels of KLF8 and FHL2 was observed. Subsequently, the present study identified KLF8 as a critical inducer of epithelial-to-mesenchymal transition (EMT) and invasion. Of note, the present study demonstrated that KLF8 overexpression induced a strong increase in FHL2 expression, and subsequent promoter reporter assays determined that KLF8 directly bound and activated the FHL2 gene promoter. Furthermore, FHL2 knockdown in KLF8-overexpressing cells partially reversed the EMT and invasive phenotypes. The present study identified KLF8-induced FHL2 activation as a novel and critical signaling mechanism underlying human PC invasion.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Postdoctoral Research Workstation of Pathology and Pathophysiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongyan Zai
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yixiong Li
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
17
|
Wang Z, Zhang K, Zhu Y, Wang D, Shao Y, Zhang J. Curcumin inhibits hypoxia-induced proliferation and invasion of MG-63 osteosarcoma cells via downregulating Notch1. Mol Med Rep 2017; 15:1747-1752. [PMID: 28138706 DOI: 10.3892/mmr.2017.6159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/11/2016] [Indexed: 11/05/2022] Open
Abstract
Curcumin is a biologically active ingredient abundantly present in the ground rhizomes of Curcuma longa with a wide range of bioactive properties, including antitumor effects. Hypoxia is a common characteristic of solid tumors, including osteosarcoma. However, whether curcumin has antitumor effects on osteosarcoma under hypoxic conditions, and its underlying molecular mechanisms, remain unclear. The present study demonstrated that the MG‑63 osteosarcoma cell line exhibited increased proliferation and enhanced invasiveness upon exposure to hypoxic conditions. However, these effects were prevented by curcumin treatment. Further investigation revealed that curcumin may inhibit Notch1 upregulation induced by hypoxia. Overexpression of Notch1 via Notch1 cDNA transfection ameliorated curcumin‑inhibited MG‑63 cell growth under hypoxic conditions. Taken together, these data revealed that curcumin may suppress the growth of osteosarcoma cells in hypoxia via inhibiting Notch1 signaling.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Orthopaedics, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Kun Zhang
- Department of Orthopaedics, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Yangjun Zhu
- Department of Orthopaedics, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Dengfeng Wang
- Department of Orthopaedics, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Yuxiong Shao
- Department of Orthopaedics, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Jun Zhang
- Department of Orthopaedics, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
18
|
Hsu LS, Huang RH, Lai HW, Hsu HT, Sung WW, Hsieh MJ, Wu CY, Lin YM, Chen MK, Lo YS, Chen CJ. KLF6 inhibited oral cancer migration and invasion via downregulation of mesenchymal markers and inhibition of MMP-9 activities. Int J Med Sci 2017. [PMID: 28638268 PMCID: PMC5479121 DOI: 10.7150/ijms.19024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factors can bind to specific DNA motifs and regulate various cellular functions, such as metabolism, cell proliferation, and differentiation. Krüppel-like factor 6 (KLF6), a member of this family, is downregulated in human cancers. Oral cancer is a highly prevalent type in Taiwan. Although KLF6 overexpression in human cancer cells inhibits cell proliferation, induces apoptosis, and attenuates cell migration, the effects of KLF6 on oral cancer remains poorly elucidated. This study investigated the role of KLF6 in oral cancer tumorigenesis. Immunohistochemical staining revealed that nuclear KLF6 level was significantly and inversely associated with tumor size and stages. KLF6 overexpression attenuated the migration and invasion of oral cancer SAS cells. Zymography assay demonstrated that KLF6 inhibited the activities of matrix metalloproteinase 9 (MMP-9) and weakened the expression of mesenchymal markers, such as snail, slug, and vimentin. Our study is the first to provide demonstrate that KLF6 functions as a tumor suppressor gene and prevents the metastasis of oral cancer cells.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital Taichung, Taiwan
| | - Ren-Hung Huang
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Wen Lai
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichuang, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wen-Wei Sung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichuang, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chong-Yu Wu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Mu-Kuan Chen
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichuang, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| |
Collapse
|
19
|
Shen YN, He HG, Shi Y, Cao J, Yuan JY, Wang ZC, Shi CF, Zhu N, Wei YP, Liu F, Huang JL, Yang GS, Lu JH. Krüppel-like factor 8 promotes cancer stem cell-like traits in hepatocellular carcinoma through Wnt/β-catenin signaling. Mol Carcinog 2016; 56:751-760. [PMID: 27478926 DOI: 10.1002/mc.22532] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 01/15/2023]
Abstract
Krüppel-like factor 8 (KLF8) is highly expressed in hepatocellular carcinoma (HCC) and contributes to tumor initiation and progression by promoting HCC cell proliferation and invasion. However, the role of KLF8 in liver cancer stem cells (LCSCs) is not known. In the current study, we investigated the role of KLF8 in LCSCs to determine if KLF8 is a novel marker of these cells. We found that KLF8 was highly expressed in primary HCC tumors, distant migrated tissues, and LCSCs. Patients with high KLF8 expression had a poor prognosis. KLF8 promoted stem cell-like features through activation of the Wnt/β-catenin signaling pathway. Cell apoptosis was significantly increased in HCC cells with knockdown of KLF8 compared with the control cells when treated with the same doses of sorafenib or cisplatin. Taken together, our study shows that KLF8 plays a potent oncogenic role in HCC tumorigenesis by maintaining stem cell-like features through activation of the Wnt/β-catenin signaling pathway and promoting chemoresistance. Thus, targeting KLF8 may provide an effective therapeutic approach to suppress tumorigenicity of HCC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Nan Shen
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Guan He
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yang Shi
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian Cao
- The 3rd Department of Surgery, The Third People's Hospital of Jiujiang, Jiujiang, Jiangxi Prov, China
| | - Jian-Yong Yuan
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhou-Chong Wang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chun-Feng Shi
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Zhu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Peng Wei
- Xiangan Institute of Health of Retired Cadres, Second Military Medical University, Shanghai, China
| | - Fang Liu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jia-Li Huang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guang-Shun Yang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Hua Lu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Yi X, Li Y, Zai H, Long X, Li W. KLF8 knockdown triggered growth inhibition and induced cell phase arrest in human pancreatic cancer cells. Gene 2016; 585:22-27. [DOI: 10.1016/j.gene.2016.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 02/07/2023]
|