1
|
Kuan CY, Yang IH, Chang CT, Chen ZY, Lin JN, Kuo WT, Lin YY, Yueh A, Lin FH. Enhanced non-viral gene delivery via calcium phosphate/DNA co-precipitates with low-voltage pulse electroporation in NK-92 cells for immunocellular therapy. APL Bioeng 2024; 8:036107. [PMID: 39131207 PMCID: PMC11315581 DOI: 10.1063/5.0198191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Achieving high cell transfection efficiency is essential for various cell types in numerous disease applications. However, the efficient introduction of genes into natural killer (NK) cells remains a challenge. In this study, we proposed a design strategy for delivering exogenous genes into the NK cell line, NK-92, using a modified non-viral gene transfection method. Calcium phosphate/DNA nanoparticles (pDNA-CaP NPs) were prepared using co-precipitation methods and combined with low-voltage pulse electroporation to facilitate NK-92 transfection. The results demonstrated that the developed pDNA-CaP NPs exhibited a uniform diameter of approximately 393.9 nm, a DNA entrapment efficiency of 65.8%, and a loading capacity of 15.9%. Furthermore, at three days post-transfection, both the transfection efficiency and cell viability of NK-92 were significantly improved compared to standalone plasmid DNA (pDNA) electroporation or solely relying on the endocytosis pathway of pDNA-CaP NPs. This study provides valuable insights into a novel approach that combines calcium phosphate nanoparticles with low-voltage electroporation for gene delivery into NK-92 cells, offering potential advancements in cell therapy.
Collapse
Affiliation(s)
| | - I-Hsuan Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 35053, Taiwan
| | | | - Zhi-Yu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 35053, Taiwan
| | - Jhih-Ni Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
| | - Wei-Ting Kuo
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
| | | | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 35053, Taiwan
| | - Feng-Huei Lin
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
2
|
Li H, Song W, Li Z, Zhang M. Preclinical and clinical studies of CAR-NK-cell therapies for malignancies. Front Immunol 2022; 13:992232. [PMID: 36353643 PMCID: PMC9637940 DOI: 10.3389/fimmu.2022.992232] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
The development of chimeric antigen receptor T (CAR-T) cell therapy, a specific type of immunotherapy, in recent decades was a fantastic breakthrough for the treatment of hematological malignancies. However, difficulties in collecting normal T cells from patients and the time cost of manufacturing CAR-T cells have limited the application of CAR-T-cell therapy. In addition, the termination of related clinical trials on universal CAR-T cell therapy has made further research more difficult. Natural killer (NK) cells have drawn great attention in recent years. Chimeric antigen receptor-NK (CAR-NK) cell therapy is a promising strategy in the treatment of malignant tumors because of its lack of potential for causing graft-versus-host disease (GVHD). In this review, we will address the advances in and achievements of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang,
| |
Collapse
|
3
|
Razeghian E, Kameh MC, Shafiee S, Khalafi F, Jafari F, Asghari M, Kazemi K, Ilkhani S, Shariatzadeh S, Haj-Mirzaian A. The role of the natural killer (NK) cell modulation in breast cancer incidence and progress. Mol Biol Rep 2022; 49:10935-10948. [PMID: 36008609 DOI: 10.1007/s11033-022-07865-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023]
Abstract
The importance of the immune system on tumor surveillance has been investigated for many years, and its impact on controlling tumor progression has been verified. An important subgroup of the innate immune system is natural killer (NK) cells, whose essential function in modulating tumor behavior and suppressing metastasis and tumor growth has been demonstrated. The first idea of NK cells' crucial biological processes was demonstrated through their potent ability to conduct direct cellular cytotoxicity, even without former sensitization. These properties of NK cells allow them to recognize transformed cells that have attenuated self-ligand and express stress-induced ligands. Furthermore, secretion of various cytokines and chemokines after their activation leads to tumor elimination via either direct cytotoxic effect on malignant cells or activation of the adaptive immune system. In addition, novel immunotherapeutic approaches tend to take advantage of NK cells' ability, leading to antibody-based approaches, the formation of engineered CAR-NK cells, and adoptive cell transfer. However, the restricted functionality of NK cells and the inability to infiltrate tumors are its blind spots in breast cancer patients. In this review, we gathered newly acquired data on the biology and functions of NK cells in breast cancer and proposed ways to employ this knowledge for novel therapeutic approaches in cancers, particularly breast cancer.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fehimeh Jafari
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Asghari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Karvouni M, Vidal-Manrique M, Lundqvist A, Alici E. Engineered NK Cells Against Cancer and Their Potential Applications Beyond. Front Immunol 2022; 13:825979. [PMID: 35242135 PMCID: PMC8887605 DOI: 10.3389/fimmu.2022.825979] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Cell therapy is an innovative therapeutic concept where viable cells are implanted, infused, or grafted into a patient to treat impaired or malignant tissues. The term was first introduced circa the 19th century and has since resulted in multiple breakthroughs in different fields of medicine, such as neurology, cardiology, and oncology. Lately, cell and gene therapy are merging to provide cell products with additional or enhanced properties. In this context, adoptive transfer of genetically modified cytotoxic lymphocytes has emerged as a novel treatment option for cancer patients. To this day, five cell therapy products have been FDA approved, four of which for CD19-positive malignancies and one for B-cell maturation antigen (BCMA)-positive malignancies. These are personalized immunotherapies where patient T cells are engineered to express chimeric antigen receptors (CARs) with the aim to redirect the cells against tumor-specific antigens. CAR-T cell therapies show impressive objective response rates in clinical trials that, in certain instances, may reach up to 80%. However, the life-threatening side effects associated with T cell toxicity and the manufacturing difficulties of developing personalized therapies hamper their widespread use. Recent literature suggests that Natural Killer (NK) cells, may provide a safer alternative and an 'off-the-shelf' treatment option thanks to their potent antitumor properties and relatively short lifespan. Here, we will discuss the potential of NK cells in CAR-based therapies focusing on the applications of CAR-NK cells in cancer therapy and beyond.
Collapse
Affiliation(s)
- Maria Karvouni
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Marcos Vidal-Manrique
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology‐Pathology, Karolinska Institute, Stockholm, Sweden
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Khawar MB, Sun H. CAR-NK Cells: From Natural Basis to Design for Kill. Front Immunol 2022; 12:707542. [PMID: 34970253 PMCID: PMC8712563 DOI: 10.3389/fimmu.2021.707542] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) are fusion proteins with an extracellular antigen recognition domain and numerous intracellular signaling domains that have been genetically modified. CAR-engineered T lymphocyte-based therapies have shown great success against blood cancers; however, potential fatal toxicity, such as in cytokine release syndrome, and high costs are some shortcomings that limit the clinical application of CAR-engineered T lymphocytes and remain to overcome. Natural killer (NK) cells are the focal point of current immunological research owing to their receptors that prove to be promising immunotherapeutic candidates for treating cancer. However, to date, manipulation of NK cells to treat malignancies has been moderately successful. Recent progress in the biology of NK cell receptors has greatly transformed our understanding of how NK cells recognize and kill tumor and infected cells. CAR-NK cells may serve as an alternative candidate for retargeting cancer because of their unique recognition mechanisms, powerful cytotoxic effects especially on cancer cells in both CAR-dependent and CAR-independent manners and clinical safety. Moreover, NK cells can serve as an ‘off-the-shelf product’ because NK cells from allogeneic sources can also be used in immunotherapies owing to their reduced risk of alloreactivity. Although ongoing fundamental research is in the beginning stages, this review provides an overview of recent developments implemented to design CAR constructs to stimulate NK activation and manipulate NK receptors for improving the efficiency of immunotherapy against cancer, summarizes the preclinical and clinical advances of CAR-NK cells against both hematological malignancies and solid tumors and confronts current challenges and obstacles of their applications. In addition, this review provides insights into prospective novel approaches that further enhance the efficiency of CAR-NK therapies and highlights potential questions that require to be addressed in the future.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan.,Laboratory of Molecular Biology & Genomics, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
6
|
Fabian KP, Hodge JW. The emerging role of off-the-shelf engineered natural killer cells in targeted cancer immunotherapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:266-276. [PMID: 34761106 PMCID: PMC8560822 DOI: 10.1016/j.omto.2021.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that recognize and clear infected and transformed cells. The importance of NK cells in tumor surveillance underlies the development of NK cell therapy as cancer treatment. The NK-92 cell line has been successfully modified to express high-affinity CD16 receptor for antibody-dependent cellular cytotoxicity and/or chimeric antigen receptors (CARs) that can recognize antigens expressed on tumor cells and mediate NK cell activation. Since there is no need for human leukocyte antigen matching or prior exposure to the tumor antigens, NK-92 provides an opportunity for the development of next-generation off-the-shelf cell therapy platforms. CAR-engineered NK-92 cells have demonstrated robust antitumor activity in in vitro and in vivo preclinical studies, propelling the clinical development of CAR NK-92 cells. Preliminary phase 1 data indicate that CAR NK-92 can be safely administered in the clinic. In this review, we provide an overview of recent advances in the research and clinical application of this novel cell immunotherapy.
Collapse
Affiliation(s)
- Kellsye P Fabian
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, Bethesda, MD 20892, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E, Multhoff G. NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells 2021; 10:cells10123390. [PMID: 34943898 PMCID: PMC8699535 DOI: 10.3390/cells10123390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, cell-based immunotherapies have demonstrated promising results in the treatment of cancer. Chimeric antigen receptors (CARs) arm effector cells with a weapon for targeting tumor antigens, licensing engineered cells to recognize and kill cancer cells. The quality of the CAR-antigen interaction strongly depends on the selected tumor antigen and its expression density on cancer cells. CD19 CAR-engineered T cells approved by the Food and Drug Administration have been most frequently applied in the treatment of hematological malignancies. Clinical challenges in their application primarily include cytokine release syndrome, neurological symptoms, severe inflammatory responses, and/or other off-target effects most likely mediated by cytotoxic T cells. As a consequence, there remains a significant medical need for more potent technology platforms leveraging cell-based approaches with enhanced safety profiles. A promising population that has been advanced is the natural killer (NK) cell, which can also be engineered with CARs. NK cells which belong to the innate arm of the immune system recognize and kill virally infected cells as well as (stressed) cancer cells in a major histocompatibility complex I independent manner. NK cells play an important role in the host’s immune defense against cancer due to their specialized lytic mechanisms which include death receptor (i.e., Fas)/death receptor ligand (i.e., Fas ligand) and granzyme B/perforin-mediated apoptosis, and antibody-dependent cellular cytotoxicity, as well as their immunoregulatory potential via cytokine/chemokine release. To develop and implement a highly effective CAR NK cell-based therapy with low side effects, the following three principles which are specifically addressed in this review have to be considered: unique target selection, well-designed CAR, and optimized gene delivery.
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
- Correspondence: ; Tel.: +49-89-4140-6013
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany;
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
| |
Collapse
|
8
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Park JE, Kim SE, Keam B, Park HR, Kim S, Kim M, Kim TM, Doh J, Kim DW, Heo DS. Anti-tumor effects of NK cells and anti-PD-L1 antibody with antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines. J Immunother Cancer 2021; 8:jitc-2020-000873. [PMID: 32830112 PMCID: PMC7445348 DOI: 10.1136/jitc-2020-000873] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Background Although programmed cell death-1/programmed death-ligand 1 (PD-L1) inhibitors show remarkable antitumor activity, a large portion of patients with cancer, even those with high PD-L1-expressing tumors, do not respond to their effects. Most PD-L1 inhibitors contain modified fragment crystallizable region (Fc) receptor binding sites to prevent antibody-dependent cellular cytotoxicity (ADCC) against PD-L1-expressing non-tumor cells. However, natural killer (NK) cells have specific antitumor activity in the presence of tumor-targeting antibody through ADCC, which could enhance NK cell-induced cytotoxicity. We evaluated the antitumor efficacy of ADCC via anti-PD-L1 monoclonal antibodies (mAbs) and NK cells against several PD-L1-positive cancer cell lines. Methods Various cancer cell lines were used as target cell lines. Surface PD-L1 expression was analyzed by flow cytometry. IMC-001 and anti-hPD-L1-hIgG1 were tested as anti-PD-L1 mAbs with ADCC and atezolizumab as an anti-PD-L1 mAb without ADCC. NK cell cytotoxicity was measured by 51Cr-release assay and CD107a degranulation assay. Also, live cell imaging was performed to evaluate cytotoxicity in a single-cell level. NK-92-CD16 (CD16-transduced NK-92 cell line) and peripheral blood mononuclear cells from healthy donors, respectively, were used as an effector cell. FcγRIIIa (CD16a)-V158F genotyping was performed for healthy donors. Results We demonstrated that the cytotoxicity of NK-92-CD16 cells toward PD-L1-positive cancer cell lines was significantly enhanced in the presence of anti-PD-L1 mAb with ADCC. We also noted a significant increase in primary human NK cell cytotoxicity against PD-L1-positive human cancer cells when cocultured with anti-PD-L1 mAb with ADCC. Moreover, NK cells expressing a FCGR3A high-affinity genotype displayed higher anti-PD-L1 mAb-mediated ADCC lysis of tumor cells than donors with a low-affinity genotype. Conclusion These results suggest that NK cells induce an ADCC response in combination with anti-PD-L1 mAbs, which helps promote ADCC antitumor activity against PD-L1-positive tumors. This study provides support for NK cell immunotherapy against high PD-L1-expressing tumors in combination with ADCC through anti-PD-L1 mAbs.
Collapse
Affiliation(s)
- Ji-Eun Park
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ha-Ram Park
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
10
|
El-Mayta R, Zhang Z, Hamilton AG, Mitchell MJ. Delivery technologies to engineer natural killer cells for cancer immunotherapy. Cancer Gene Ther 2021; 28:947-959. [PMID: 33888870 DOI: 10.1038/s41417-021-00336-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
In recent years, immune cell-based cancer therapeutics have been utilized broadly in the clinic. Through advances in cellular engineering, chimeric antigen receptor (CAR) T-cell therapies have demonstrated substantial success in treating hematological tumors and have become the most prominent cell-based therapy with three commercialized products in the market. However, T-cell-based immunotherapies have certain limitations, including a restriction to autologous cell sources to avoid severe side-effects caused by human leukocyte antigen (HLA) mismatch. This necessity for personalized treatment inevitably results in tremendous manufacturing and time costs, reducing accessibility for many patients. As an alternative strategy, natural killer (NK) cells have emerged as potential candidates for improved cell-based immunotherapies. NK cells are capable of killing cancer cells directly without requiring HLA matching. Furthermore, NK cell-based therapies can use various allogeneic cell sources, allowing for the possibility of "off-the-shelf" immunotherapies with reduced side-effects and shortened manufacturing times. Here we provide an overview of the use of NK cells in cancer immunotherapy, their current status in clinical trials, as well as the design and implementation of delivery technologies-including viral, non-viral, and nanoparticle-based approaches-for engineering NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zijing Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, Hassanzadeh A, Yazdanifar M, Stanley Chartrand M, Jarahian M. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front Oncol 2021; 11:673276. [PMID: 34178661 PMCID: PMC8223062 DOI: 10.3389/fonc.2021.673276] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for 'off-the-shelf' manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russia
- Tyumen Industrial University, Tyumen, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Mahnaz Mahmoodi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
12
|
A Novel off-the-Shelf Trastuzumab-Armed NK Cell Therapy (ACE1702) Using Antibody-Cell-Conjugation Technology. Cancers (Basel) 2021; 13:cancers13112724. [PMID: 34072864 PMCID: PMC8199224 DOI: 10.3390/cancers13112724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Chimeric antigen receptor T cell therapy has shown its potency against hematologic malignancies in autologous settings but also limited success against solid tumors with severe adverse events, including fatal cases of cytokine releasing syndrome. The aim of this research is to develop a novel off-the-shelf natural killer cell therapy against HER2-expressing cancers using Antibody-Cell Conjugation (ACC) technology and the endogenous CD16-expressing oNK cell line. ACE1702, trastuzumab-armed oNK cells with γ irradiation and cryopreservation, present superior in vitro and in vivo potency against HER2-expressing cancer cells and shows no tumorigenic potential, indicating the clinical application fighting HER2-expressing solid tumors. These findings suggest that ACC technology can be applied to allogeneic immune cells to provide off-the-shelf therapies for cancer patients. Abstract Natural killer (NK) cells harbor efficient cytotoxicity against tumor cells without causing life-threatening cytokine release syndrome (CRS) or graft-versus-host disease (GvHD). When compared to chimeric antigen receptor (CAR) technology, Antibody-Cell Conjugation (ACC) technology has been developed to provide an efficient platform to arm immune cells with cancer-targeting antibodies to recognize and attack cancer cells. Recently, we established an endogenous CD16-expressing oNK cell line (oNK) with a favorable expression pattern of NK activation/inhibitory receptors. In this study, we applied ACC platform to conjugate oNK with trastuzumab and an anti-human epidermal growth factor receptor 2 (HER2) antibody. Trastuzumab-conjugated oNK, ACE-oNK-HER2, executed in vitro and in vivo cytotoxicity against HER2-expressing cancer cells and secretion of IFNγ. The irradiated and cryopreserved ACE-oNK-HER2, designated as ACE1702, retained superior HER2-specific in vitro and in vivo potency with no tumorigenic potential. In conclusion, this study provides the evidence to support the potential clinical application of ACE1702 as a novel off-the-shelf NK cell therapy against HER2-expressing solid tumors.
Collapse
|
13
|
Goldberg J, Pastorello RG, Vallius T, Davis J, Cui YX, Agudo J, Waks AG, Keenan T, McAllister SS, Tolaney SM, Mittendorf EA, Guerriero JL. The Immunology of Hormone Receptor Positive Breast Cancer. Front Immunol 2021; 12:674192. [PMID: 34135901 PMCID: PMC8202289 DOI: 10.3389/fimmu.2021.674192] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized the treatment of cancer patients. The main focus of ICB has been on reinvigorating the adaptive immune response, namely, activating cytotoxic T cells. ICB has demonstrated only modest benefit against advanced breast cancer, as breast tumors typically establish an immune suppressive tumor microenvironment (TME). Triple-negative breast cancer (TNBC) is associated with infiltration of tumor infiltrating lymphocytes (TILs) and patients with TNBC have shown clinical responses to ICB. In contrast, hormone receptor positive (HR+) breast cancer is characterized by low TIL infiltration and minimal response to ICB. Here we review how HR+ breast tumors establish a TME devoid of TILs, have low HLA class I expression, and recruit immune cells, other than T cells, which impact response to therapy. In addition, we review emerging technologies that have been employed to characterize components of the TME to reveal that tumor associated macrophages (TAMs) are abundant in HR+ cancer, are highly immune-suppressive, associated with tumor progression, chemotherapy and ICB-resistance, metastasis and poor survival. We reveal novel therapeutic targets and possible combinations with ICB to enhance anti-tumor immune responses, which may have great potential in HR+ breast cancer.
Collapse
Affiliation(s)
- Jonathan Goldberg
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ricardo G. Pastorello
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Janae Davis
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Yvonne Xiaoyong Cui
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Adrienne G. Waks
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Tanya Keenan
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Sara M. Tolaney
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Elizabeth A. Mittendorf
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, United States
| | - Jennifer L. Guerriero
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunology 2021; 10:e1274. [PMID: 33959279 PMCID: PMC8080297 DOI: 10.1002/cti2.1274] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) have revolutionised the field of cellular therapy for cancer. Despite its success, this strategy has some recognised limitations and toxicities. Hence, there is growing interest in developing novel cellular therapies based on non-αβ T-cell immune effector cells, including NK cells that offer clear advantages in cancer immunotherapy. As a result, NK cells are being explored as an alternative platform for CAR engineering and are becoming recognised as important players in the next generation of cellular therapies targeting cancer. In this review, we highlight preclinical and clinical studies of CAR-NK cells derived from different sources and discuss strategies under investigation to enhance the antitumor activity of these engineered innate immune cells.
Collapse
Affiliation(s)
- May Daher
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
15
|
Marofi F, Rahman HS, Thangavelu L, Dorofeev A, Bayas-Morejón F, Shirafkan N, Shomali N, Chartrand MS, Jarahian M, Vahedi G, Mohammed RN, Shahrokh S, Akbari M, Khiavi FM. Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy. Stem Cell Res Ther 2021; 12:200. [PMID: 33752707 PMCID: PMC7983395 DOI: 10.1186/s13287-021-02251-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/28/2021] [Indexed: 02/13/2023] Open
Abstract
In recent decades, a new method of cellular immunotherapy was introduced based on engineering and empowering the immune effector cells. In this type of immunotherapy, the immune effector cells are equipped with chimeric antigen receptor (CAR) to specifically target cancer cells. In much of the trials and experiments, CAR-modified T cell immunotherapy has achieved very promising therapeutic results in the treatment of some types of cancers and infectious diseases. However, there are also some considerable drawbacks in the clinical application of CAR-T cells although much effort is in progress to rectify the issues. In some conditions, CAR-T cells initiate over-activated and strong immune responses, therefore, causing unexpected side-effects such as systemic cytokine toxicity (i.e., cytokine release syndrome), neurotoxicity, on-target, off-tumor toxicity, and graft-versus-host disease (GvHD). To overcome these limitations in CAR-T cell immunotherapy, NK cells as an alternative source of immune effector cells have been utilized for CAR-engineering. Natural killer cells are key players of the innate immune system that can destroy virus-infected cells, tumor cells, or other aberrant cells with their efficient recognizing capability. Compared to T cells, CAR-transduced NK cells (CAR-NK) have several advantages, such as safety in clinical use, non-MHC-restricted recognition of tumor cells, and renewable and easy cell sources for their preparation. In this review, we will discuss the recent preclinical and clinical studies, different sources of NK cells, transduction methods, possible limitations and challenges, and clinical considerations.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | - Lakshmi Thangavelu
- Associate professor, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Aleksey Dorofeev
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University,), Moscow, Russian Federation
| | - Favian Bayas-Morejón
- Center for Research and Biotechnological Development, Research Department, Bolivar State University, Faculty of Agricultural Sciences, Natural Resources and the Environment, CP 020150 Guaranda, Ecuador
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rebar N. Mohammed
- College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Somayeh Shahrokh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Reindl LM, Albinger N, Bexte T, Müller S, Hartmann J, Ullrich E. Immunotherapy with NK cells: recent developments in gene modification open up new avenues. Oncoimmunology 2020; 9:1777651. [PMID: 33457093 PMCID: PMC7781759 DOI: 10.1080/2162402x.2020.1777651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have achieved remarkable success. However, application-related toxicities, such as cytokine release syndrome or neurotoxicity, moved natural killer (NK) cells into focus as novel players in immunotherapy. CAR-NK cells provide an advantageous dual killing-capacity by CAR-dependent and -independent mechanisms and induce few side effects. While the majority of trials still use CAR-T cells, CAR-NK cell trials are on the rise with 19 ongoing studies worldwide. This review illuminates the current state of research and clinical application of CAR-NK cells, as well as future developmental potential.
Collapse
Affiliation(s)
- Lisa Marie Reindl
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nawid Albinger
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Bexte
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Müller
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jessica Hartmann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Evelyn Ullrich
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Anti-PSMA CAR-engineered NK-92 Cells: An Off-the-shelf Cell Therapy for Prostate Cancer. Cells 2020; 9:cells9061382. [PMID: 32498368 PMCID: PMC7349573 DOI: 10.3390/cells9061382] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PCa) has become the most common cancer among males in Europe and the USA. Adoptive immunotherapy appears a promising strategy to control the advanced stages of the disease by specifically targeting the tumor, in particular through chimeric antigen receptor T (CAR-T) cell therapy. Despite the advancements of CAR-T technology in the treatment of hematological malignancies, solid tumors still represent a challenge. To overcome current limits, other cellular effectors than T lymphocytes are under study as possible candidates for CAR-engineered cancer immunotherapy. A novel approach involves the NK-92 cell line, which mediates strong cytotoxic responses against a variety of tumor cells but has no effect on non-malignant healthy counterparts. Here, we report a novel therapeutic approach against PCa based on engineering of NK-92 cells with a CAR recognizing the human prostate-specific membrane antigen (PSMA), which is overexpressed in prostatic neoplastic cells. More importantly, the potential utility of NK-92/CAR cells to treat PCa has not yet been explored. Upon CAR transduction, NK-92/CAR cells acquired high and specific lytic activity against PSMA-expressing prostate cancer cells in vitro, and also underwent degranulation and produced high levels of IFN-γ in response to antigen recognition. Lethal irradiation of the effectors, a safety measure requested for the clinical application of retargeted NK-92 cells, fully abrogated replication but did not impact on phenotype and short-term functionality. PSMA-specific recognition and antitumor activity were retained in vivo, as adoptive transfer of irradiated NK-92/CAR cells in prostate cancer-bearing mice restrained tumor growth and improved survival. Anti-PSMA CAR-modified NK-92 cells represent a universal, off-the-shelf, renewable, and cost-effective product endowed with relevant potentialities as a therapeutic approach for PCa immunotherapy.
Collapse
|
18
|
Rotolo R, Leuci V, Donini C, Cykowska A, Gammaitoni L, Medico G, Valabrega G, Aglietta M, Sangiolo D. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci 2019; 20:ijms20112839. [PMID: 31212634 PMCID: PMC6600566 DOI: 10.3390/ijms20112839] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T lymphocytes (CAR Ts) produced impressive clinical results against selected hematological malignancies, but the extension of CAR T cell therapy to the challenging field of solid tumors has not, so far, replicated similar clinical outcomes. Many efforts are currently dedicated to improve the efficacy and safety of CAR-based adoptive immunotherapies, including application against solid tumors. A promising approach is CAR engineering of immune effectors different from αβT lymphocytes. Herein we reviewed biological features, therapeutic potential, and safety of alternative effectors to conventional CAR T cells: γδT, natural killer (NK), NKT, or cytokine-induced killer (CIK) cells. The intrinsic CAR-independent antitumor activities, safety profile, and ex vivo expansibility of these alternative immune effectors may favorably contribute to the clinical development of CAR strategies. The proper biological features of innate immune response effectors may represent an added value in tumor settings with heterogeneous CAR target expression, limiting the risk of tumor clonal escape. All these properties bring out CAR engineering of alternative immune effectors as a promising integrative option to be explored in future clinical studies.
Collapse
Affiliation(s)
- Ramona Rotolo
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | - Valeria Leuci
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| | - Chiara Donini
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | - Anna Cykowska
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | | | - Giovanni Medico
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| | - Massimo Aglietta
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| | - Dario Sangiolo
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| |
Collapse
|
19
|
Human Papillomavirus 11 Early Protein E6 Activates Autophagy by Repressing AKT/mTOR and Erk/mTOR. J Virol 2019; 93:JVI.00172-19. [PMID: 30971468 DOI: 10.1128/jvi.00172-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/31/2019] [Indexed: 12/27/2022] Open
Abstract
Low-risk human papillomaviruses (LR-HPVs) are the causative agents of genital warts, which are a widespread sexually transmitted disease. How LR-HPVs affect autophagy and the specific proteins involved are unknown. In the current study, we investigated the impact of LR-HPV11 early protein 6 (E6) on the activity of the autophagy pathway. We transfected an HPV11 E6 (11E6) plasmid into HaCaT cells, H8 cells, and NHEK cells and established a stable cell line expressing the HPV11 E6 protein. The differences in autophagy activity and upstream regulatory pathways compared with those in the parent cell lines were investigated using a Western blot analysis of the total and phosphorylated protein levels and confocal microscopy of immunostained cells and cells transfected with an mCherry-green fluorescent protein-LC3 expression plasmid. We used short hairpin RNA (shRNA) to knock down 11E6 and showed that these effects require continued 11E6 expression. Compared with its expression in the control cells, the expression of HPV11 E6 in the cells activated the autophagy pathway. The increased autophagy activity was the result of the decreased phosphorylation levels of the canonical autophagy repressor mammalian target of rapamycin (mTOR) at its Ser2448 position (the mTOR complex 1 [mTORC1] phosphorylation site) and decreased AKT and Erk phosphorylation. Therefore, these results indicate that HPV11 E6 activates autophagy through the AKT/mTOR and Erk/mTOR pathways. Our findings provide novel insight into the relationship between LR-HPV infections and autophagy and could help elucidate the pathogenic mechanisms of LR-HPV.IMPORTANCE We transfected an HPV11 E6 plasmid into HaCaT cells, H8 cells, and NHEK cells and established a stable cell line expressing the HPV11 E6 protein. Then, we confirmed that HPV11 E6 induces autophagy by suppressing the AKT/mTOR and Erk/mTOR pathways. In contrast to the high-risk HPV E6 genes, HPV11 E6 did not affect the expression of p53. To the best of our knowledge, this study represents the first direct in-depth investigation of the relationship between the LR-HPV E6 gene and autophagy, which may help to reveal the pathogenesis of LR-HPV infection.
Collapse
|
20
|
Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. Int J Mol Sci 2019; 20:ijms20020317. [PMID: 30646574 PMCID: PMC6358726 DOI: 10.3390/ijms20020317] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that can be activated rapidly to target abnormal and virus-infected cells without prior sensitization. With significant advancements in cell biology technologies, many NK cell lines have been established. Among these cell lines, NK-92 cells are not only the most widely used but have also been approved for clinical applications. Additionally, chimeric antigen receptor-modified NK-92 cells (CAR-NK-92 cells) have shown strong antitumor effects. In this review, we summarize established human NK cell lines and their biological characteristics, and highlight the applications of NK-92 cells and CAR-NK-92 cells in tumor immunotherapy.
Collapse
|
21
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
22
|
Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacol Sin 2018; 39:167-176. [PMID: 28880014 DOI: 10.1038/aps.2017.125] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/06/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potential effector cells in cell-based cancer immunotherapy, particularly in the control of hematological malignancies. The chimeric antigen receptor (CAR) is an artificially modified fusion protein that consists of an extracellular antigen recognition domain fused to an intracellular signaling domain. T cells genetically modified with a CAR have demonstrated remarkable success in the treatment of hematological cancers. Compared to T cells, CAR-transduced NK cells (CAR-NK) exhibit several advantages, such as safety in clinical use, the mechanisms by which they recognize cancer cells, and their abundance in clinical samples. Human primary NK cells and the NK-92 cell line have been successfully transduced to express CARs against both hematological cancers and solid tumors in pre-clinical and clinical trials. However, many challenges and obstacles remain, such as the ex vivo expansion of CAR-modified primary NK cells and the low transduction efficiency of NK cells. Many strategies and technologies have been developed to improve the safety and therapeutic efficacy in CAR-based immunotherapy. Moreover, NK cells express a variety of activating receptors (NKRs), such as CD16, NKG2D, CD226 and NKp30, which might specifically recognize the ligands expressed on tumor cells. Based on the principle of NKR recognition, a strategy that targets NKRs is rapidly emerging. Given the promising clinical progress described in this review, CAR- and NKR-NK cell-based immunotherapy are likely promising new strategies for cancer therapy.
Collapse
|
23
|
Yong CSM, John LB, Devaud C, Prince MH, Johnstone RW, Trapani JA, Darcy PK, Kershaw MH. A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget 2018; 7:34582-98. [PMID: 27153556 PMCID: PMC5085178 DOI: 10.18632/oncotarget.9149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 12/18/2022] Open
Abstract
While adoptive immunotherapy using chimeric antigen receptor (CAR)-modified T cells can induce remission of some tumors, the role of other CAR-modified leukocytes is not well characterized. In this study, we characterize the function of leukocytes including natural killer (NK) cells, macrophages and CAR T cells from transgenic mice expressing a CAR under the control of the pan-hematopoietic promoter, vav, and determine the ability of these mice to respond to ERB expressing tumors. We demonstrate the anti-tumor functions of leukocytes, including antigen specific cytotoxicity and cytokine secretion. The adoptive transfer of CAR T cells provided a greater survival advantage in the E0771ERB tumor model than their wildtype (WT) counterparts. In addition, CAR NK cells and CAR T cells also mediated increased survival in the RMAERB tumor model. When challenged with Her2 expressing tumors, F38 mice were shown to mount an effective immune response, resulting in tumor rejection and long-term survival. This was shown to be predominantly dependent on both CD8+ T cells and NK cells. However, macrophages and CD4+ T cells were also shown to contribute to this response. Overall, this study highlights the use of the vav-CAR mouse model as a unique tool to determine the anti-tumor function of various immune subsets, either alone or when acting alongside CAR T cells in adoptive immunotherapy.
Collapse
Affiliation(s)
- Carmen S M Yong
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Liza B John
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Christel Devaud
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Institut de Recherche en Santé Digestive, Université de Toulouse, INPT, INRA, INSERM UMR1220, UPS, France
| | - Miles H Prince
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Prahran Victoria, Australia
| | - Michael H Kershaw
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Prahran Victoria, Australia
| |
Collapse
|
24
|
NK cell therapy after hematopoietic stem cell transplantation: can we improve anti-tumor effect? Int J Hematol 2017; 107:151-156. [PMID: 29196968 DOI: 10.1007/s12185-017-2379-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/11/2017] [Accepted: 11/24/2017] [Indexed: 01/27/2023]
Abstract
After decades since the discovery of natural killer (NK) cells as potential effector cells fighting malignantly transformed and virally infected cells, little progress has been made in their clinical application. This yet unrealized therapeutic effect is presumably, at least in part, due to low numbers of functional NK cells that could be obtained from the peripheral blood relative to tumor burden. Our group hypothesized that a relatively small NK cell number to targeted malignant cells is the cause of a lack of clinical effect. We pursued obtaining large numbers of NK cells via ex vivo expansion using feeder cells that express membrane-bound IL-21. Early clinical studies demonstrate safety of administration of ex vivo expanded NK cells after transplantation using this method and suggest a therapeutic benefit in terms on decreasing relapse rate and possible control of viral infections post-transplant can be achieved. Successful application of NK cells after hematopoietic stem cell transplantation opens the possibility to effectively enhance the anti-tumor effect and decrease relapse rate post-transplant. Moreover, high doses of NK cells could prove more efficacious in enhancing anti-tumor effects, not only in hematological malignancies, with our without transplantation, but also in solid tumor oncology.
Collapse
|
25
|
Bollino D, Webb TJ. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl Res 2017; 187. [PMID: 28651074 PMCID: PMC5604792 DOI: 10.1016/j.trsl.2017.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cells of the innate immune system and natural killer T (NKT) cells, which have roles in both the innate and adaptive responses, are unique lymphocyte subsets that have similarities in their functions and phenotypes. Both cell types can rapidly respond to the presence of tumor cells and participate in immune surveillance and antitumor immune responses. This has incited interest in the development of novel cancer therapeutics based on NK and NKT cell manipulation. Chimeric antigen receptors (CARs), generated through the fusion of an antigen-binding region of a monoclonal antibody or other ligand to intracellular signaling domains, can enhance lymphocyte targeting and activation toward diverse malignancies. Most of the CAR studies have focused on their expression in T cells; however, the functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. CAR-modified NK and NKT cells are becoming more prevalent because they provide a method to direct these cells more specifically to target cancer cells, with less risk of adverse effects. This review will outline current NK and NKT cell CAR constructs and how they compare to conventional CAR T cells, and discuss future modifications that can be explored to advance adoptive cell transfer of NK and NKT cells.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Md
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Md.
| |
Collapse
|
26
|
Siegler EL, Kim YJ, Chen X, Siriwon N, Mac J, Rohrs JA, Bryson PD, Wang P. Combination Cancer Therapy Using Chimeric Antigen Receptor-Engineered Natural Killer Cells as Drug Carriers. Mol Ther 2017; 25:2607-2619. [PMID: 28919377 DOI: 10.1016/j.ymthe.2017.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
The therapeutic limitations of conventional chemotherapeutic drugs include chemo-resistance, tumor recurrence, and metastasis. Numerous nanoparticle-based active targeting approaches have emerged to enhance the intracellular concentration of drugs in tumor cells; however, efficient delivery of these systems to the tumor site while sparing healthy tissue remains elusive. Recently, much attention has been given to human immune-cell-directed nanoparticle drug delivery, because immune cells can traffic to the tumor and inflammatory sites. Natural killer cells are a subset of cytotoxic lymphocytes that play critical roles in cancer immunosurveillance. Engineering of the human natural killer cell line, NK92, to express chimeric antigen receptors to redirect their antitumor specificity has shown significant promise. We demonstrate that the efficacy of chemotherapy can be enhanced in vitro and in vivo while reducing off-target toxicity by using chimeric antigen receptor-engineered NK92 cells as carriers to direct drug-loaded nanoparticles to the target site.
Collapse
Affiliation(s)
- Elizabeth L Siegler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yu Jeong Kim
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Natnaree Siriwon
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - John Mac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer A Rohrs
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul D Bryson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Pin Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
27
|
Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017; 8:533. [PMID: 28572802 PMCID: PMC5435757 DOI: 10.3389/fimmu.2017.00533] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Aline Lindner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Leal FE, Premeaux TA, Abdel-Mohsen M, Ndhlovu LC. Role of Natural Killer Cells in HIV-Associated Malignancies. Front Immunol 2017; 8:315. [PMID: 28377768 PMCID: PMC5359293 DOI: 10.3389/fimmu.2017.00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
Now in its fourth decade, the burden of HIV disease still persists, despite significant milestone achievements in HIV prevention, diagnosis, treatment, care, and support. Even with long-term use of currently available antiretroviral therapies (ARTs), eradication of HIV remains elusive and now poses a unique set of challenges for the HIV-infected individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much greater than the age-matched uninfected population. The underlying mechanism is now recognized in part to be related to the immune dysregulated and inflammatory status characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are multifunctional effector immune cells that play a critical role in shaping the innate immune responses to viral infections and cancer. NK cells can modulate the adaptive immune response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore poised as attractive therapeutic targets that can be harnessed to control or clear both HIV and HIV-associated malignancies. To date, features of the tumor microenvironment and the evolution of NK-cell function among individuals with HIV-related malignancies remain unclear and may be distinct from malignancies observed in uninfected persons. This review intends to uncouple anti-HIV and antitumor NK-cell features that can be manipulated to halt the evolution of HIV disease and HIV-associated malignancies and serve as potential preventative and curative immunotherapeutic options.
Collapse
Affiliation(s)
- Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional de Cancer , Rio de Janeiro , Brazil
| | - Thomas A Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| |
Collapse
|
29
|
Shevtsov M, Multhoff G. Immunological and Translational Aspects of NK Cell-Based Antitumor Immunotherapies. Front Immunol 2016; 7:492. [PMID: 27891129 PMCID: PMC5104957 DOI: 10.3389/fimmu.2016.00492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells play a pivotal role in the first line of defense against cancer. NK cells that are deficient in CD3 and a clonal T cell receptor (TCR) can be subdivided into two major subtypes, CD56dimCD16+ cytotoxic and CD56brightCD16− immunoregulatory NK cells. Cytotoxic NK cells not only directly kill tumor cells without previous stimulation by cytotoxic effector molecules, such as perforin and granzymes or via death receptor interactions, but also act as regulatory cells for the immune system by secreting cytokines and chemokines. The aim of this review is to highlight therapeutic strategies utilizing autologous and allogenic NK cells, combinations of NK cells with monoclonal antibodies to induce antibody-dependent cellular cytotoxicity, or immune checkpoint inhibitors. Additionally, we discuss the use of chimeric antigen receptor-engineered NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Gabriele Multhoff
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Experimental Immune Biology, Institute for innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
30
|
Abstract
Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer.
Collapse
Affiliation(s)
- Maelig G Morvan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
31
|
Carlsten M, Childs RW. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications. Front Immunol 2015; 6:266. [PMID: 26113846 PMCID: PMC4462109 DOI: 10.3389/fimmu.2015.00266] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.
Collapse
Affiliation(s)
- Mattias Carlsten
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, MD , USA
| | - Richard W Childs
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
32
|
Hermanson DL, Kaufman DS. Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol 2015; 6:195. [PMID: 25972867 PMCID: PMC4412125 DOI: 10.3389/fimmu.2015.00195] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells represent an attractive lymphocyte population for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization and without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs) are able to enhance lymphocyte targeting and activation toward diverse malignancies. CARs consist of an external recognition domain (typically a small chain variable fragment) directed at a specific tumor antigen that is linked with one or more intracellular signaling domains that mediate lymphocyte activation. Most CAR studies have focused on their expression in T cells. However, use of CARs in NK cells is starting to gain traction because they provide a method to redirect these cells more specifically to target refractory cancers. CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as NK cells isolated from peripheral blood, and NK cells produced from human pluripotent stem cells. This review will outline the CAR constructs that have been reported in NK cells with a focus on comparing the use of different signaling domains in combination with other co-activating domains.
Collapse
Affiliation(s)
- David L. Hermanson
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Dan S. Kaufman
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- *Correspondence: Dan S. Kaufman, Department of Medicine, Stem Cell Institute, University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN 55455, USA,
| |
Collapse
|