1
|
Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, Latifi N, Jahromi AM. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep 2024; 37:101644. [PMID: 38298209 PMCID: PMC10827597 DOI: 10.1016/j.bbrep.2024.101644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Exosomes are a type of extracellular vesicle that contains bioactive molecules that can be secreted by most cells. Nevertheless, the content of these cells differs depending on the cell from which they originate. The exosome plays a crucial role in modulating intercellular communication by conveying molecular messages to neighboring or distant cells. Cancer-derived exosomes can transfer several types of molecules into the tumor microenvironment, including high levels of microRNA (miRNA). These miRNAs significantly affect cell proliferation, angiogenesis, apoptosis resistance, metastasis, and immune evasion. Increasing evidence indicates that exosomal miRNAs (exomiRs) are crucial to regulating cancer resistance to apoptosis. In cancer cells, exomiRs orchestrate communication channels between them and their surrounding microenvironment, modulating gene expression and controlling apoptosis signaling pathways. This review presents an outline of present-day knowledge of the mechanisms that affect target cells and drive cancer resistance to apoptosis. Also, our study looks at the regulatory role of exomiRs in mediating intercellular communication between tumor cells and surrounding microenvironmental cells, specifically stromal and immune cells, to evade therapy-induced apoptosis.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Daniyal Arab
- Department of Human Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naghme Safaeian
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Ashuori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Amir Moein Jahromi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Semina EV, Rysenkova KD, Troyanovskiy KE, Shmakova AA, Rubina KA. MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming. BIOCHEMISTRY (MOSCOW) 2021; 86:785-799. [PMID: 34284705 DOI: 10.1134/s0006297921070014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By 2003, the Human Genome project had been completed; however, it turned out that 97% of genome sequences did not encode proteins. The explanation came later when it was found the untranslated DNA contain sequences for short microRNAs (miRNAs) and long noncoding RNAs that did not produce any mRNAs or tRNAs, but instead were involved in the regulation of gene expression. Initially identified in the cytoplasm, miRNAs have been found in all cell compartments, where their functions are not limited to the degradation of target mRNAs. miRNAs that are secreted into the extracellular space as components of exosomes or as complexes with proteins, participate in morphogenesis, regeneration, oncogenesis, metastasis, and chemoresistance of tumor cells. miRNAs play a dual role in oncogenesis: on one hand, they act as oncogene suppressors; on the other hand, they function as oncogenes themselves and inactivate oncosuppressors, stimulate tumor neoangiogenesis, and mediate immunosuppressive processes in the tumors, The review presents current concepts of the miRNA biogenesis and their functions in the cytoplasm and nucleus with special focus on the noncanonical mechanisms of gene regulation by miRNAs and involvement of miRNAs in oncogenesis, as well as the authors' opinion on the role of miRNAs in metastasis and formation of the premetastatic niche.
Collapse
Affiliation(s)
- Ekaterina V Semina
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Karina D Rysenkova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | | | - Anna A Shmakova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Kseniya A Rubina
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| |
Collapse
|
3
|
Chang YC, Chan MH, Li CH, Fang CY, Hsiao M, Chen CL. Exosomal Components and Modulators in Colorectal Cancer: Novel Diagnosis and Prognosis Biomarkers. Biomedicines 2021; 9:biomedicines9080931. [PMID: 34440135 PMCID: PMC8391321 DOI: 10.3390/biomedicines9080931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The relatively high incidence and mortality rates for colorectal carcinoma (CRC) make it a formidable malignant tumor. Comprehensive strategies have been applied to predict patient survival and diagnosis. Various clinical regimens have also been developed to improve the therapeutic outcome. Extracellular vesicles (EVs) are recently proposed cellular structures that can be produced by natural or artificial methods and have been extensively studied. In addition to their innate functions, EVs can be manipulated to be drug carriers and exert many biological functions. The composition of EVs, their intravesicular components, and the surrounding tumor microenvironment are closely related to the development of colorectal cancer. Determining the expression profiles of exocytosis samples and using them as indicators for selecting effective combination therapy is an indispensable direction for EV study and should be regarded as a novel prediction platform in addition to cancer stage, prognosis, and other clinical assessments. In this review, we summarize the function, regulation, and application of EVs in the colon cancer research field. We provide an update on and discuss potential values for clinical applications of EVs. Moreover, we illustrate the specific markers, mediators, and genetic alterations of EVs in colorectal carcinogenesis. Furthermore, we outline the vital markers present in the EVs and discuss their plausible uses in colon cancer patient therapy in combination with the currently used clinical strategies. The development and application of these EVs will significantly improve the accuracy of diagnosis, lead to more precise prognoses, and may lead to the improved treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2736-1661 (ext. 3139) (C.-L.C.); Fax: +886-2-2789-9931 (M.H.)
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2736-1661 (ext. 3139) (C.-L.C.); Fax: +886-2-2789-9931 (M.H.)
| |
Collapse
|
4
|
Danac JMC, Uy AGG, Garcia RL. Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review). Int J Mol Med 2021; 47:112. [PMID: 33907829 PMCID: PMC8075282 DOI: 10.3892/ijmm.2021.4945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of cancer cells from a primary tumor to distant sites is a multi-step process that involves cellular reprogramming, the breaking or breaching of physical barriers and the preparation of a pre-metastatic niche for colonization. The loss of adhesion between cells, cytoskeletal remodeling, the reduction in size and change in cell shape, the destruction of the extracellular matrix, and the modification of the tumor microenvironment facilitate migration and invasion into surrounding tissues. The promotion of vascular leakiness enables intra- and extravasation, while angiogenesis and immune suppression help metastasizing cells become established in the new site. Tumor-derived exosomes have long been known to harbor microRNAs (miRNAs or miRs) that help prepare secondary sites for metastasis; however, their roles in the early and intermediate steps of the metastatic cascade are only beginning to be characterized. The present review article presents a summary and discussion of the miRNAs that form part of colorectal cancer (CRC)-derived exosomal cargoes and which play distinct roles in epithelial to mesenchymal plasticity and metastatic organotropism. First, an overview of epithelial-to-mesenchymal transition (EMT), metastatic organotropism, as well as exosome biogenesis, cargo sorting and uptake by recipient cells is presented. Lastly, the potential of these exosomal miRNAs as prognostic biomarkers for metastatic CRC, and the blocking of these as a possible therapeutic intervention is discussed.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Aileen Geobee G Uy
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
5
|
Maleki S, Jabalee J, Garnis C. The Role of Extracellular Vesicles in Mediating Resistance to Anticancer Therapies. Int J Mol Sci 2021; 22:4166. [PMID: 33920605 PMCID: PMC8073860 DOI: 10.3390/ijms22084166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Although advances in targeted therapies have driven great progress in cancer treatment and outcomes, drug resistance remains a major obstacle to improving patient survival. Several mechanisms are involved in developing resistance to both conventional chemotherapy and molecularly targeted therapies, including drug efflux, secondary mutations, compensatory genetic alterations occurring upstream or downstream of a drug target, oncogenic bypass, drug activation and inactivation, and DNA damage repair. Extracellular vesicles (EVs) are membrane-bound lipid bilayer vesicles that are involved in cell-cell communication and regulating biological processes. EVs derived from cancer cells play critical roles in tumor progression, metastasis, and drug resistance by delivering protein and genetic material to cells of the tumor microenvironment. Understanding the biochemical and genetic mechanisms underlying drug resistance will aid in the development of new therapeutic strategies. Herein, we review the role of EVs as mediators of drug resistance in the context of cancer.
Collapse
Affiliation(s)
- Saeideh Maleki
- Postgraduate Program in Interdisciplinary Oncology, Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (S.M.); (J.J.)
| | - James Jabalee
- Postgraduate Program in Interdisciplinary Oncology, Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (S.M.); (J.J.)
| | - Cathie Garnis
- Postgraduate Program in Interdisciplinary Oncology, Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (S.M.); (J.J.)
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
6
|
Yang J, Li B, Zhao S, Du H, Du Y. Exosomal miR-638 Inhibits Hepatocellular Carcinoma Progression by Targeting SP1. Onco Targets Ther 2020; 13:6709-6720. [PMID: 32764961 PMCID: PMC7368457 DOI: 10.2147/ott.s253151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Exosomal microRNAs (miRNAs) play essential roles in the development of hepatocellular carcinoma (HCC). Nevertheless, the role and mechanism of exosomal miR-638 in HCC development remain largely unknown. Methods Exosomes were isolated and confirmed via transmission electron microscopy and western blot. The abundances of miR-638 and specificity protein 1 (SP1) were measured via quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation was investigated by Cell Counting Kit-8, colony formation assay, apoptosis, cell cycle distribution and related protein expression. Cell migration and invasion were detected via transwell assay and western blot. Co-culture experiment was performed to assess exosome transfer from HCC cells to endothelial cells. The target correlation between miR-638 and SP1 was analyzed via dual-luciferase reporter and RNA immunoprecipitation assays. The subcutaneous xenograft experiment was conducted to test the function of miR-638 in vivo. Results The miR-638 level declined in exosomes from serum or HCC cell medium. miR-638 overexpression repressed HCC cell proliferation by decreasing viability and colony formation and inducing apoptosis and cell cycle arrest at G1 phase, and decreased abilities of migration and invasion. Exosomal miR-638 from HCC cells could transfer to human umbilical vein endothelial cells (HUVECs) and suppress HUVEC proliferation, migration and invasion. SP1 was a target of miR-638 and overexpression of SP1 reversed the effect of miR-638 on HCC cells. Overexpression of miR-638 reduced xenograft tumor growth via decreasing SP1. Conclusion Exosomal miR-638 inhibited HCC tumorigenesis by targeting SP1. This study indicated the potential clinical implications of miR-638 in HCC.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pathology, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Bo Li
- Department of Pathology, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Shuo Zhao
- Department of Nursing, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Hongyu Du
- Department of Pathology, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yaming Du
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Nazimek K, Bryniarski K. Perspectives in Manipulating EVs for Therapeutic Applications: Focus on Cancer Treatment. Int J Mol Sci 2020; 21:ijms21134623. [PMID: 32610582 PMCID: PMC7369858 DOI: 10.3390/ijms21134623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) receive special attention from oncologists due to their assumed usefulness as prognostic markers, vaccines to induce anti-cancer immune response, and physiological delivery tools. The latter application, which supports the reduction of side effects of treatment, is still fraught with many challenges, including established methods for loading EVs with selected cargo and directing them towards target cells. EVs could be loaded with selected cargo either in vitro using several physicochemical techniques, or in vivo by modification of parental cell, which may have an advantage over in vitro procedures, since some of them significantly influence EVs’ properties. Otherwise, our research findings suggest that EVs could be passively supplemented with micro RNAs (miRNAs) or miRNA antagonists to induce expected biological effect. Furthermore, our observations imply that antigen-specific antibody light chains could coat the surface of EVs to increase the specificity of cell targeting. Finally, the route of EVs’ administration also determines their bioavailability and eventually induced therapeutic effect. Besides, EV membrane lipids may possibly possess immune adjuvant activity. The review summarizes the current knowledge on the possibilities to manipulate EVs to use them as a delivery tool, with the special emphasis on anti-cancer therapy.
Collapse
|
8
|
Syed SN, Frank AC, Raue R, Brüne B. MicroRNA-A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells 2019; 8:E1482. [PMID: 31766495 PMCID: PMC6953083 DOI: 10.3390/cells8121482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
9
|
Exosomal miRNA: Small Molecules, Big Impact in Colorectal Cancer. JOURNAL OF ONCOLOGY 2019; 2019:8585276. [PMID: 31737071 PMCID: PMC6815599 DOI: 10.1155/2019/8585276] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related deaths worldwide. Tumor microenvironment (TME) contains many cell types including stromal cells, immune cells, and endothelial cells. The TME modulation explains the heterogeneity of response to therapy observed in patients. In this context, exosomes are emerging as major contributors in cancer biology. Indeed, exosomes are implicated in tumor proliferation, angiogenesis, invasion, and premetastatic niche formation. They contain bioactive molecules such as proteins, lipids, and RNAs. More recently, many studies on exosomes have focused on miRNAs, small noncoding RNA molecules able to influence protein expression. In this review, we describe miRNAs transported by exosomes in the context of CRC and discuss their influence on TME and their potential as circulating biomarkers. This overview underlines emerging roles for exosomal miRNAs in cancer research for the near future.
Collapse
|
10
|
Zulueta A, Peli V, Dei Cas M, Colombo M, Paroni R, Falleni M, Baisi A, Bollati V, Chiaramonte R, Del Favero E, Ghidoni R, Caretti A. Inflammatory role of extracellular sphingolipids in Cystic Fibrosis. Int J Biochem Cell Biol 2019; 116:105622. [PMID: 31563560 DOI: 10.1016/j.biocel.2019.105622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Ceramide is emerging as one of the players of inflammation in lung diseases. However, data on its inflammatory role in Cystic Fibrosis (CF) as part of the extracellular machinery driven by lung mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are missing. We obtained an in vitro model of CF-MSC by treating control human lung MSCs with a specific CFTR inhibitor. We characterized EVs populations derived from MSCs (ctr EVs) and CF-MSCs (CF-EVs) and analyzed their sphingolipid profile by LC-MS/MS. To evaluate their immunomodulatory function, we treated an in vitro human model of CF, with both EVs populations. Our data show that the two EVs populations differ for the average size, amount, and rate of uptake. CF-EVs display higher ceramide and dihydroceramide accumulation as compared to control EVs, suggesting the involvement of the de novo biosynthesis pathway in the parental CF-MSCs. Higher sphingomyelinase activity in CF-MSCs, driven by inflammation-induced ceramide accumulation, sustains the exocytosis of vesicles that export new formed pro-inflammatory ceramide. Our results suggest that CFTR dysfunction associates with an enhanced sphingolipid metabolism leading to the release of EVs that export the excess of pro-inflammatory Cer to the recipient cells, thus contributing to maintain the unresolved inflammatory status of CF.
Collapse
Affiliation(s)
- Aida Zulueta
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Valeria Peli
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Michele Dei Cas
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Michela Colombo
- Laboratory of Experimental Medicine and Pathophysiology, Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy; Haematopoietic Stem Cell Biology Laboratory, Medical Research Council(MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX39DS, UK.
| | - Rita Paroni
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Monica Falleni
- Pathology Division, Health Sciences Department, University of Milan, San Paolo Hospital Medical School, Via A. di Rudinì, 8, Milan, Italy.
| | - Alessandro Baisi
- Thoracic Surgery Unit, Health Sciences Department, University of Milan, San Paolo Hospital Medical School, Via A. di Rudinì, 8, Milan, Italy.
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Raffaella Chiaramonte
- Laboratory of Experimental Medicine and Pathophysiology, Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Milan, Italy.
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Anna Caretti
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| |
Collapse
|
11
|
Luque A, Farwati A, Krupinski J, Aran JM. Association between low levels of serum miR-638 and atherosclerotic plaque vulnerability in patients with high-grade carotid stenosis. J Neurosurg 2019; 131:72-79. [PMID: 30052155 DOI: 10.3171/2018.2.jns171899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/16/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Carotid artery atherosclerosis is a major cause of ischemic stroke. However, reliable criteria to identify patients with high-risk carotid plaques beyond the severity of stenosis are still lacking. Circulating microRNAs (miRNAs) are being postulated as biomarkers for a variety of vascular immune-inflammatory diseases. The authors investigated whether cell-free circulating miR-638, highly expressed in vascular smooth muscle cells and implicated in proliferative vascular diseases, is associated with vulnerable atherosclerotic plaques in high-risk patients with advanced carotid artery stenosis undergoing carotid endarterectomy (CEA). METHODS The authors conducted a prospective study in 22 consecutive symptomatic patients with high-grade carotid stenosis undergoing CEA and 36 age- and sex-matched patients without ischemic stroke history or carotid atherosclerosis (control group). In addition, they reviewed data from a historical group of 9 CEA patients who underwent long-term follow-up after revascularization. Total RNA was isolated from all serum samples, and relative miR-638 expression levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and compared among groups. A correlation analysis of serum miR-638 levels with vascular risk factors and treatments, and with plaque features, was performed. The ability of serum miR-638 to discriminate between the non-CEA control group and the different CEA groups was assessed by receiver operating characteristic evaluation. A logistic regression model was employed to examine the association between stratified CEA patients and serum miR-638 levels. RESULTS Serum levels of miR-638 were significantly lower in symptomatic CEA patients (p = 0.009) and particularly in the subgroup of CEA patients who had experienced stroke (p = 0.0006) than in non-CEA controls. Discrimination of high-risk plaques was accurate (area under the curve [AUC] 0.66 for symptomatic CEA patients in general and 0.76 for those who had experienced stroke). When only patients with high cardiovascular risk were considered, the diagnostic value of serum miR-638 from symptomatic CEA patients and CEA patients who had experienced stroke improved (AUC 0.79 and 0.85). Moreover, serum miR-638 was negatively correlated with the occurrence of stroke, smoker status, presence of bilateral pathology, coronary artery disease, and cholesterol treatment; and with the high-risk fibroatheroma plaques extracted from CEA patients. Multivariate logistic regression analysis demonstrated that serum miR-638 was an independent predictor of plaque instability. Furthermore, serum miR-638 appeared to attain good discrimination for atherosclerotic stenosis in CEA patients based on analysis of blood samples obtained in the historical group before and 5 years after intervention (p = 0.04) (AUC = 0.79). CONCLUSIONS According to this preliminary proof-of-concept study, serum miR-638 might constitute a promising noninvasive biomarker associated with plaque vulnerability and ischemic stroke, particularly in individuals with elevated cardiovascular risk.
Collapse
Affiliation(s)
- Ana Luque
- 1Immune-Inflammatory Processes and Gene Therapeutics Group, Genes, Disease and Therapy Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona
| | - Abduljalil Farwati
- 1Immune-Inflammatory Processes and Gene Therapeutics Group, Genes, Disease and Therapy Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona
| | - Jerzy Krupinski
- 2Neurology Department, Mutua de Terrassa University Hospital, Terrassa, Barcelona, Spain; and
- 3School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Josep M Aran
- 1Immune-Inflammatory Processes and Gene Therapeutics Group, Genes, Disease and Therapy Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona
| |
Collapse
|
12
|
Jabalee J, Towle R, Garnis C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells 2018; 7:cells7080093. [PMID: 30071693 PMCID: PMC6115997 DOI: 10.3390/cells7080093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.
Collapse
Affiliation(s)
- James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
13
|
Zhang C, Zhang K, Huang F, Feng W, Chen J, Zhang H, Wang J, Luo P, Huang H. Exosomes, the message transporters in vascular calcification. J Cell Mol Med 2018; 22:4024-4033. [PMID: 29892998 PMCID: PMC6111818 DOI: 10.1111/jcmm.13692] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification (VC) is caused by hydroxyapatite deposition in the intimal and medial layers of the vascular wall, leading to severe cardiovascular events in patients with hypertension, chronic kidney disease and diabetes mellitus. VC occurrences involve complicated mechanism networks, such as matrix vesicles or exosomes production, osteogenic differentiation, reduced cell viability, aging and so on. However, with present therapeutic methods targeting at VC ineffectively, novel targets for VC treatment are demanded. Exosomes are proven to participate in VC and function as initializers for mineral deposition. Secreted exosomes loaded with microRNAs are also demonstrated to modulate VC procession in recipient vascular smooth muscle cells. In this review, we targeted at the roles of exosomes during VC, especially at their effects on transporting biological information among cells. Moreover, we will discuss the potential mechanisms of exosomes in VC.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Feifei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Jie Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanji Zhang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| |
Collapse
|
14
|
Abstract
For many years, neutral sphingomyelinases (N-SMases) were long thought to be anticancer enzymes owing to their roles as key producers of ceramide linked to apoptosis, growth arrest, and the chemotherapeutic response. However, in recent years, with the cloning of multiple isoforms and with new information on their cellular roles, particularly for nSMase2, a more complex picture is emerging suggesting that N-SMases have both pro- and anticancer roles. In this chapter, we will summarize current knowledge on N-SMase expression in cancer and the roles of N-SMase activity and specific isoforms in cancer-relevant biologies. We will also discuss what we see as the major challenges ahead for research into N-SMases in cancer.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Medicine and Cancer Center, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
15
|
Liu X, Wang S, Xu J, Kou B, Chen D, Wang Y, Zhu X. Extract of Stellerachamaejasme L(ESC) inhibits growth and metastasis of human hepatocellular carcinoma via regulating microRNA expression. Altern Ther Health Med 2018; 18:99. [PMID: 29554896 PMCID: PMC5859742 DOI: 10.1186/s12906-018-2123-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/01/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND MicroRNAs(miRNAs)are involved in the initiation and progression of hepatocellular carcinoma. ESC, an extract of Stellerachamaejasme L, had been confirmed as a potential anti-tumor extract of Traditional Chinese Medicine. In light of the important role of miRNAs in hepatocellular carcinoma, we questioned whether the inhibitory effects of ESC on hepatocellular carcinoma (HCC) were associated with miRNAs. METHODS The proliferation inhibition of ESC on HCC cells was measured with MTT assay. The migration inhibition of ESC on HCC cells was measured with transwell assay. The influences of ESC on growth and metastasis inhibition were evaluated with xenograft tumor model of HCC. Protein expressions were measured with western blot and immunofluorescence methods and miRNA profiles were detected with miRNA array. Differential miRNA and target mRNAs were verified with real-time PCR. RESULTS The results showed that ESC could inhibit proliferation and epithelial mesenchymal transition (EMT) in HCC cells in vitro and tumor growth and metastasis in xenograft models in vivo. miRNA array results showed that 69 differential miRNAs in total of 429 ones were obtained in MHCC97H cells treated by ESC. hsa-miR-107, hsa-miR-638, hsa-miR-106b-5p were selected to be validated with real-time PCR method in HepG2 and MHCC97H cells. Expressions of hsa-miR-107 and hsa-miR-638 increased obviously in HCC cells treated by ESC. Target genes of three miRNAs were also validated with real-time PCR. Interestingly, only target genes of hsa-miR-107 changed greatly. ESC downregulated the MCL1, SALL4 and BCL2 gene expressions significantly but did not influence the expression of CACNA2D1. CONCLUSION The findings suggested ESC regressed growth and metastasis of human hepatocellular carcinoma via regulating microRNAs expression and their corresponding target genes.
Collapse
|
16
|
Chiba M, Monzen S, Iwaya C, Kashiwagi Y, Yamada S, Hosokawa Y, Mariya Y, Nakamura T, Wojcik A. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation. Sci Rep 2018; 8:1302. [PMID: 29358747 PMCID: PMC5778023 DOI: 10.1038/s41598-018-19763-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Exposure to high-doses of ionizing radiation (IR) leads to development of a strong acute radiation syndrome (ARS) in mammals. ARS manifests after a latency period and it is important to develop fast prognostic biomarkers for its early detection and assessment. Analysis of chromosomal aberrations in peripheral blood lymphocytes is the gold standard of biological dosimetry, but it fails after high doses of IR. Therefore, it is important to establish novel biomarkers of exposure that are fast and reliable also in the high dose range. Here, we investigated the applicability of miRNA levels in mouse serum. We found significantly increased levels of miR-375-3p following whole body exposure to 7 Gy of X-rays. In addition, we analyzed their levels in various organs of control mice and found them to be especially abundant in the pancreas and the intestine. Following a dose of 7 Gy, extensive cell death occurred in these tissues and this correlated negatively with the levels of miR-375-3p in the organs. We conclude that high expressing tissues of miR-375-3p may secrete this miRNA in serum following exposure to 7 Gy. Therefore, elevated miR-375-3p in serum may be a predictor of tissue damage induced by exposure to a high radiation dose.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Satoru Monzen
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Chihiro Iwaya
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yuri Kashiwagi
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Sunao Yamada
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yasushi Mariya
- Department of Radiology and Radiation Oncology, Mutsu General Hospital, 1-2-8, Kogawa-machi, Mutsu, Aomori, 035-0071, Japan
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner Gren Instititute, Stockholm University, Svante Arrhenius väg 20 C, 10691, Stockholm, Sweden.,Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, ul. Swietokrzyska 15, 25-406, Kielce, Poland
| |
Collapse
|
17
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
18
|
Rashed MH, Kanlikilicer P, Rodriguez-Aguayo C, Pichler M, Bayraktar R, Bayraktar E, Ivan C, Filant J, Silva A, Aslan B, Denizli M, Mitra R, Ozpolat B, Calin GA, Sood AK, Abd-Ellah MF, Helal GK, Berestein GL. Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: a possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget 2017; 8:20145-20164. [PMID: 28423620 PMCID: PMC5386751 DOI: 10.18632/oncotarget.15525] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes have emerged as important mediators of diverse biological functions including tumor suppression, tumor progression, invasion, immune escape and cell-to-cell communication, through the release of molecules such as mRNAs, miRNAs, and proteins. Here, we identified differentially expressed exosomal miRNAs between normal epithelial ovarian cell line and both resistant and sensitive ovarian cancer (OC) cell lines. We found miR-940 as abundant in exosomes from SKOV3-IP1, HeyA8, and HeyA8-MDR cells. The high expression of miR-940 is associated with better survival in patients with ovarian serous cystadenocarcinoma. Ectopic expression of miR-940 inhibited proliferation, colony formation, invasion, and migration and triggered G0/G1 cell cycle arrest and apoptosis in OC cells. Overexpression of miR-940 also inhibited tumor cell growth in vivo. We showed that proto-oncogene tyrosine-protein kinase (SRC) is directly targeted by miR-940 and that miR-940 inhibited SRC expression at mRNA and protein levels. Following this inhibition, the expression of proteins downstream of SRC, such as FAK, paxillin and Akt was also reduced. Collectively, our results suggest that OC cells secrete the tumor-suppressive miR-940 into the extracellular environment via exosomes, to maintain their invasiveness and tumorigenic phenotype.
Collapse
Affiliation(s)
- Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andreia Silva
- Instituto de Investigação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, Universidade do Porto, Porto, Portugal
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul Mitra
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed F. Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gouda K. Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gabriel Lopez Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
López JA, Granados-López AJ. Future directions of extracellular vesicle-associated miRNAs in metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:115. [PMID: 28361080 DOI: 10.21037/atm.2017.01.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numerous studies have demonstrated the dynamic cell-to-cell communication mediated by extracellular vesicles (EV) in cancer cell survival and metastasis development. EV content includes proteins, lipids, DNA, and RNA like microRNAs. Non-protein coding microRNAs play a very active role in almost all cellular processes targeting mRNAs for silencing. Different miRNA profiles have been found in different cancer types, and clarification of miRNAs packed in EV from different types of cancers will allow the understanding of metastasis and the application of miRNAs as biomolecules in diagnostic, prognostic and therapeutic approaches to fight cancer. The profound review of Dhondt et al., 2016, provides a wide view of EV miRNAs involved in various steps of the metastasis process to illustrate how the cancer cell interaction with the near and long distance microenvironment allows metastasis. These studies will surely conduce to additional patient studies to prove the relevance of EV miRNAs in metastasis in vivo. It remains to be elucidated how the tumoral cell sorts the miRNAs for secretion to send a message, and to well recognize the type of EV performing this message delivering. It will be very useful to identify whether miRNAs are delivered with post-transcriptional modifications since this is an important feature for miRNAs activity and stability.
Collapse
Affiliation(s)
- Jesús Adrián López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico; Doctorado en Ciencias Básicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Angelica Judith Granados-López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico; Doctorado en Ciencias Básicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
20
|
Abstract
OBJECTIVES Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. METHODS Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. RESULTS Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. CONCLUSIONS We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.
Collapse
|
21
|
Matsuzaka Y, Tanihata J, Komaki H, Ishiyama A, Oya Y, Rüegg U, Takeda SI, Hashido K. Characterization and Functional Analysis of Extracellular Vesicles and Muscle-Abundant miRNAs (miR-1, miR-133a, and miR-206) in C2C12 Myocytes and mdx Mice. PLoS One 2016; 11:e0167811. [PMID: 27977725 PMCID: PMC5158003 DOI: 10.1371/journal.pone.0167811] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder. Here, we show that the CD63 antigen, which is located on the surface of extracellular vesicles (EVs), is associated with increased levels of muscle-abundant miRNAs, namely myomiRs miR-1, miR-133a, and miR-206, in the sera of DMD patients and mdx mice. Furthermore, the release of EVs from the murine myoblast C2C12 cell line was found to be modulated by intracellular ceramide levels in a Ca2+-dependent manner. Next, to investigate the effects of EVs on cell survival, C2C12 myoblasts and myotubes were cultured with EVs from the sera of mdx mice or C2C12 cells overexpressing myomiRs in presence of cellular stresses. Both the exposure of C2C12 myoblasts and myotubes to EVs from the serum of mdx mice, and the overexpression of miR-133a in C2C12 cells in presence of cellular stress resulted in a significant decrease in cell death. Finally, to assess whether miRNAs regulate skeletal muscle regeneration in vivo, we intraperitoneally injected GW4869 (an inhibitor of exosome secretion) into mdx mice for 5 and 10 days. Levels of miRNAs and creatine kinase in the serum of GW4869-treated mdx mice were significantly downregulated compared with those of controls. The tibialis anterior muscles of the GW4869-treated mdx mice showed a robust decrease in Evans blue dye uptake. Collectively, these results indicate that EVs and myomiRs might protect the skeletal muscle of mdx mice from degeneration.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Urs Rüegg
- Department of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
| | - Shin-ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Intracellular and extracellular microRNA: An update on localization and biological role. ACTA ACUST UNITED AC 2016; 51:33-49. [PMID: 27396686 DOI: 10.1016/j.proghi.2016.06.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
Collapse
|
23
|
Jalabert A, Vial G, Guay C, Wiklander OPB, Nordin JZ, Aswad H, Forterre A, Meugnier E, Pesenti S, Regazzi R, Danty-Berger E, Ducreux S, Vidal H, El-Andaloussi S, Rieusset J, Rome S. Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 2016; 59:1049-58. [PMID: 26852333 DOI: 10.1007/s00125-016-3882-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The crosstalk between skeletal muscle (SkM) and beta cells plays a role in diabetes aetiology. In this study, we have investigated whether SkM-released exosome-like vesicles (ELVs) can be taken up by pancreatic beta cells and can deliver functional cargoes. METHODS Mice were fed for 16 weeks with standard chow diet (SCD) or with standard diet enriched with 20% palmitate (HPD) and ELVs were purified from quadriceps muscle. Fluorescent ELVs from HPD or SCD quadriceps were injected i.v. or intramuscularly (i.m.) into mice to determine their biodistributions. Micro (mi)RNA quantification in ELVs was determined using quantitative real-time RT-PCR (qRT-PCR)-based TaqMan low-density arrays. Microarray analyses were performed to determine whether standard diet ELVs (SD-ELVs) and high palmitate diet ELVs (HPD-ELVs) induced specific transcriptional signatures in MIN6B1 cells. RESULTS In vivo, muscle ELVs were taken up by pancreas, 24 h post-injection. In vitro, both SD-ELVs and HPD-ELVs transferred proteins and miRNAs to MIN6B1 cells and modulated gene expressions whereas only HPD-ELVs induced proliferation of MIN6B1 cells and isolated islets. Bioinformatic analyses suggested that transferred HPD-ELV miRNAs may participate in these effects. To validate this, we demonstrated that miR-16, which is overexpressed in HPD-ELVs, was transferred to MIN6B1 cells and regulated Ptch1, involved in pancreas development. In vivo, islets from HPD mice showed increased size and altered expression of genes involved in development, including Ptch1, suggesting that the effect of palm oil on islet size in vivo was reproduced in vitro by treating beta cells with HPD-ELVs. CONCLUSIONS/INTERPRETATION Our data suggest that muscle ELVs might have an endocrine effect and could participate in adaptations in beta cell mass during insulin resistance.
Collapse
Affiliation(s)
- Audrey Jalabert
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Guillaume Vial
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Joel Z Nordin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Hala Aswad
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Alexis Forterre
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Emmanuelle Meugnier
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sandra Pesenti
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Danty-Berger
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sylvie Ducreux
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Hubert Vidal
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jennifer Rieusset
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sophie Rome
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France.
| |
Collapse
|
24
|
Genemaras AA, Ennis H, Kaplan L, Huang CY. Inflammatory cytokines induce specific time- and concentration-dependent MicroRNA release by chondrocytes, synoviocytes, and meniscus cells. J Orthop Res 2016; 34:779-90. [PMID: 26505891 DOI: 10.1002/jor.23086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023]
Abstract
In knee osteoarthritis (OA), concentrations of interleukin (IL)-1β and tumor necrosis factor (TNF)-α increase in joint tissues and synovial fluid which incite a catabolic cascade and further the progression of OA. Several microRNAs (miRNA) have been associated with apoptosis (miR-16), inflammation (miR-22, miR-146a), and matrix degradation (miR-140, miR-27b) in developed OA or its symptoms. In this study, the time- and concentration-dependent nature of cellular and extracellular miRNAs in synoviocytes, meniscus cells, and chondrocytes as influenced by inflammatory cytokines was investigated. For time-dependent studies, three cell types were stimulated with 10 ng/ml IL-1β or 50 ng/ml TNF-α for 8, 16, and 24 h. For concentration-dependent studies, chondrocytes were stimulated with a higher level of IL-1β (20 ng/ml) or TNF-α (100 ng/ml) for 8 h. Cellular and extracellular expressions of miR-22, miR-16, miR-146a, miR-27b, and miR-140 were analyzed by RT-PCR. Time-dependent cellular miRNA expressions were similar across the three cell types with miR-146a significantly up-regulated and miR-27b significantly down-regulated at all time points. However, chondrocytes exhibited a unique extracellular miRNA profile with an increased release rate of miR-27b at 24 h. Our findings support further research into the characterization of miRNAs in synovial fluid for the development of early detection strategies of OA or cartilage injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:779-790, 2016.
Collapse
Affiliation(s)
- Amaris A Genemaras
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Hayley Ennis
- Department of Orthopedics, Division of Sports Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Lee Kaplan
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| |
Collapse
|
25
|
Makarova JA, Shkurnikov MU, Turchinovich AA, Tonevitsky AG, Grigoriev AI. Circulating microRNAs. BIOCHEMISTRY (MOSCOW) 2015; 80:1117-26. [DOI: 10.1134/s0006297915090035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|