1
|
Mo L, Yang C, Dai Y, Liu W, Gong Y, Guo Y, Zhu Y, Cao Y, Xiao X, Du S, Lu S, He J. Novel drug delivery systems for hirudin-based product development and clinical applications. Int J Biol Macromol 2024; 287:138533. [PMID: 39657884 DOI: 10.1016/j.ijbiomac.2024.138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Hirudin, a natural biological polypeptide macromolecule secreted by the salivary glands of medicinal leech, is a specific thrombin inhibitor with multiple favourable bioactivities, including anti-coagulation, anti-fibrotic, and anti-tumour. Despite several anticoagulants have been widely applied in clinic, hirudin shows advantages in reducing the incidence of bleeding side effects by virtue of its high specificity in binding to thrombin. As a result, hirudin has been tested in clinical practice to prevent and treat several complex diseases. However, the application of this polypeptide macromolecule is compromised by its low bioavailability and bioactivity due to poor serum stability and susceptibility to protease degradation in vivo. To overcome these drawbacks, several studies have proposed novel drug delivery systems (NDDSs) to prevent the degradation and increase the targeting efficiency of hirudin. This systematic review summarises the clinical research on hirudin, including its classification and bioactivities, and highlights the opportunities and challenges in the clinical use of hirudin. The NDDSs designed to enhance the bioavailability and bioactivity of hirudin are discussed to explore its application in the treatment of related diseases. This review may considerably contribute to the advancement of delivery science and technology, particularly in the context of polypeptide-based therapeutics.
Collapse
Affiliation(s)
- Liqing Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Wei Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuhong Gong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Yuxi Zhu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Yan Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Shi Du
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| |
Collapse
|
2
|
Srivastava P, Jha S, Singh SK, Vyas H, Sethupathi P, Nair RS, Ramachandran K, Rana B, Kumar S, Rana A. Protease activated receptor-1 regulates mixed lineage kinase-3 to drive triple-negative breast cancer tumorigenesis. Cancer Lett 2024; 603:217200. [PMID: 39222677 DOI: 10.1016/j.canlet.2024.217200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is difficult to treat breast cancer subtype due to lack or insignificant expressions of targetable estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). Therefore, finding a targetable protein or signaling pathway in TNBC would impact patient care. Here, we report that a member of the Mixed Lineage Kinase (MLK) family, MLK3, is an effector of G-protein-coupled protease-activated receptors 1 (PAR1) and targeting MLK3 by a small-molecule inhibitor prevented PAR1-mediated TNBC tumorigenesis. In silico and immunohistochemistry analysis of human breast tumors showed overexpression of PAR1 and MLK3 in TNBC tumors. Treating α-thrombin and PAR1 agonist increased MLK3 and JNK activities and induced cell migration in TNBC cells. The PAR1 positive/high (PAR1+/hi) population of TNBC cells showed aggressive tumor phenotype with increased MLK3 signaling. Moreover, combined inhibition of the PAR1 and MLK3 mitigated the TNBC tumor burden in preclinical TNBC models. Our data suggests that activation of the PAR1-MLK3 axis promotes TNBC tumorigenesis. Therefore, combinatorial therapy targeting MLK3 and PAR1 could effectively reduce TNBC tumor burden.
Collapse
Affiliation(s)
- Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harsh Vyas
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Periannan Sethupathi
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kheerthivasan Ramachandran
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Xie Q, Zhou J, He C, Xu Y, Tao F, Hu M. Unlocking the intricacies: Exploring the complex interplay between platelets and ovarian cancer. Crit Rev Oncol Hematol 2024; 202:104465. [PMID: 39097249 DOI: 10.1016/j.critrevonc.2024.104465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Ovarian cancer, an aggressive malignancy of the female reproductive tract, is frequently linked to an elevated risk of thrombotic events. This association is manifested by a pronounced rise in platelet counts and activation levels. Current research firmly supports the pivotal role of platelets in the oncogenic processes of ovarian cancer, influencing tumor cell proliferation and metastasis. Platelets influence these processes through direct interactions with tumor cells or by secreting cytokines and growth factors that enhance tumor growth, angiogenesis, and metastasis. This review aims to thoroughly dissect the interactions between platelets and ovarian cancer cells, emphasizing their combined role in tumor progression and associated thrombotic events. Additionally, it summarizes therapeutic strategies targeting platelet-cancer interface which show significant promise. Such approaches could not only be effective in managing the primary ovarian tumor but also play a pivotal role in preventing metastasis and attenuating thrombotic complications associated with ovarian cancer.
Collapse
Affiliation(s)
- Qianxin Xie
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zhou
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaonan He
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengjiao Hu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Pei Q, Li Z, Zhao J, Zhang H, Qin T, Zhao J. Recombinant hirudin and PAR-1 regulate macrophage polarisation status in diffuse large B-cell lymphoma. BMC Biotechnol 2024; 24:55. [PMID: 39135175 PMCID: PMC11318299 DOI: 10.1186/s12896-024-00879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a malignant tumour. Although some standard therapies have been established to improve the cure rate, they remain ineffective for specific individuals. Therefore, it is meaningful to find more novel therapeutic approaches. Macrophage polarisation is extensively involved in the process of tumour development. Recombinant hirudin (rH) affects macrophages and has been researched frequently in clinical trials lately. Our article validated the regulatory role of rH in macrophage polarisation and the mechanism of PAR-1 by collecting clinical samples and subsequently establishing a cellular model to provide a scientifically supported perspective for discovering new therapeutic approaches. METHOD We assessed the expression of macrophage polarisation markers, cytokines and PAR-1 in clinical samples. We established a cell model by co-culture with THP-1 and OCI-Ly10 cell. We determined the degree of cell polarisation and expression of validation cytokines by flow cytometry, ELISA, and RT-qPCR to confirm the success of the cell model. Subsequently, different doses of rH were added to discover the function of rH on cell polarisation. We confirmed the mechanism of PAR-1 in macrophage polarisation by transfecting si-PAR-1 and pcDNA3.1-PAR-1. RESULTS We found higher expression of M2 macrophage markers (CD163 + CMAF+) and PAR-1 in 32 DLBCL samples. After inducing monocyte differentiation into M0 macrophages and co-culturing with OCI-Ly10 lymphoma cells, we found a trend of these expressions in the cell model consistent with the clinical samples. Subsequently, we discovered that rH promotes the polarisation of M1 macrophages but inhibits the polarisation of M2 macrophages. We also found that PAR-1 regulates macrophage polarisation, inhibiting cell proliferation, migration, invasion and angiogenic capacity. CONCLUSION rH inhibits macrophage polarisation towards the M2 type and PAR-1 regulates polarisation, proliferation, migration, invasion, and angiogenesis of DLBCL-associated macrophages.
Collapse
Affiliation(s)
- Qiang Pei
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China.
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China.
| | - Zihui Li
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jingjing Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Haixi Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China
| | - Tao Qin
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China
| | - Juan Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China
| |
Collapse
|
5
|
Wu S, Zhou Y, Wang Y, Zhang Z. Therapeutic Potentials of Medicinal Leech in Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1027-1051. [PMID: 38879745 DOI: 10.1142/s0192415x24500423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The use of medicinal leeches in clinical therapy has been employed for a long time, as it was originally recognized for exerting antithrombin effects. These effects were due to the ability of the leech to continuously suck blood while attached to human skin. According to Chinese Pharmacopoei, leeches used in traditional Chinese medicine mainly consist of Whitmania pigra Whitman, Hirudo nipponia Whitman, and Whitmania acranulata, but the latter two species are relatively scarce. The main constituents of leeches are protein and peptide macromolecules. They can be categorized into two categories based on their pharmacological effects. One group consists of active ingredients that directly target the coagulation system, such as hirudin, heparin, and histamine, which are widely known. The other group comprises protease inhibitor components like Decorsin and Hementin. Among these, hirudin secreted by the salivary glands of the leech is the most potent thrombin inhibitor and served as the sole remedy for preventing blood clotting until the discovery of heparin. Additionally, leeches play a significant role in various traditional Chinese medicine formulations. In recent decades, medicinal leeches have been applied in fields including anti-inflammatory treatment, cardiovascular disease management, antitumor treatment, and many other medical conditions. In this review, we present a comprehensive overview of the historical journey and medicinal applications of leeches in various medical conditions, emphasizing their pharmaceutical significance within traditional Chinese medicine. This review offers valuable insights for exploring additional therapeutic opportunities involving the use of leeches in various diseases and elucidating their underlying mechanisms for future research.
Collapse
Affiliation(s)
- Shaohua Wu
- Department of Parasitology, Xiangya School of Medicine, Central South University Changsha, Hunan 410013, P. R. China
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Changsha 410008, P. R. China
- Laboratory for Interdisciplinary Science of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Yaya Zhou
- Department of Parasitology, Xiangya School of Medicine, Central South University Changsha, Hunan 410013, P. R. China
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Changsha 410008, P. R. China
- Laboratory for Interdisciplinary Science of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Changsha 410008, P. R. China
- Laboratory for Interdisciplinary Science of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zuping Zhang
- Department of Parasitology, Xiangya School of Medicine, Central South University Changsha, Hunan 410013, P. R. China
| |
Collapse
|
6
|
Kou J, Gao L, Ni L, Shao T, Ding J. Mechanism of Hirudin-Mediated Inhibition of Proliferation in Ovarian Cancer Cells. Mol Biotechnol 2024; 66:1062-1070. [PMID: 38184808 DOI: 10.1007/s12033-023-01003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024]
Abstract
To investigate the inhibitory effect of hirudin on the cell proliferation of human ovarian cancer A2780 cells by preventing thrombin and its underlying molecular mechanism. Cell Counting Kit-8 (CCK-8) method was used to detect the effect of different concentrations of hirudin and thrombin on the cell proliferation of A2780 cells. PAR-1 wild-type overexpression plasmid was constructed utilizing enzyme digestion identification, and it was transferred to A2780 cells. Sequencing and Western blot were used to detect the changes in PAR-1 protein expression. Western blot detection of PKCα protein phosphorylation in A2780 cells was performed. We also implemented quantitative PCR to detect the mRNA expression levels of epithelial-mesenchymal transition (EMT)-related genes, CDH2, Snail, and Vimentin, in A2780 cells. 1 μg/ml hirudin treatment maximally inhibited the promotion of A2780 cell proliferation by thrombin. Hirudin inhibited the binding of thrombin to the N-terminus of PAR-1, hindered PKCα protein phosphorylation in A2780 cells, and downregulated the mRNA expression levels of CDH2, Snail, and Vimentin. In conclusion, hirudin inhibits the cell proliferation of ovarian cancer A2780 cells, and the underlying mechanism may be through downregulating the transcription level of EMT genes, CDH2, Snail, and Vimentin. This study indicates that hirudin may have a therapeutic potential as an anti-cancer agent for ovarian cancer.
Collapse
Affiliation(s)
- Junyan Kou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, No. 34 Yanguan Lane, Ziyang Street, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Liujie Gao
- Department of Oncology & Hematology, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - Liwei Ni
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, No. 34 Yanguan Lane, Ziyang Street, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Tingting Shao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, No. 34 Yanguan Lane, Ziyang Street, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Jiyuan Ding
- Department of Oncology & Hematology, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
7
|
Li FG, Shi XY, Yang L, Lu X, Qi Y, Li P, Yang H, Gao W. Quantitative proteomics based bioactive proteins discovery and quality control of medicinal leeches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117117. [PMID: 37659761 DOI: 10.1016/j.jep.2023.117117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leech, a classical traditional Chinese medicine for promoting blood circulation and removing blood stasis, is mainly used in the clinical treatment of cardiovascular and cerebrovascular diseases. The discovery of activity proteins or peptides in the dead and dried medicinal leech is an important task with great challenges. AIM OF THE STUDY The aim of this study was to provide a basic proteome profile and help further discover active proteins and quality control for medicinal leeches, which would also provide insight into the research of animal medicines. MATERIALS AND METHODS Seventeen batches of dried medicinal leeches covering three species were collected from medicinal markets, which were authenticated by DNA barcoding. Then the proteome of different species leeches was profiled to reveal the significantly different proteins using label-free proteomics. The characteristic peptides were screened out based on biological pathways analysis, which were further absolutely quantified using the developed stable isotope-labeled based parallel reaction monitoring method. RESULTS Seventeen batches of leech materials were Whitmania pigra Whitman (WP), Whitmania laevis Whitman (WL) and Poecilobdella manillensis Lesson (PM), respectively. A total of 1,035 proteins (452 in WP, 425 in WL and 158 in PM) were identified. Among them, 90 overlapping proteins were mainly concentrated in diverse metabolic pathways and primarily localized in the cytoplasm and mitochondrial inner membrane, which mainly related to ATP binding, catalytic activity and structural molecular activity. In total of 51 uniquely expressed proteins (21 in WP, 23 in WL and 7 in PM), associated with multiple key signaling pathways, including Rap1, cGMP-PKG, PI3K-Akt, Wnt and HIF-1, etc., relevant to treating cardiovascular diseases, diabetes, cancer and even a variety of neurodegenerative diseases. Three proteins with potential bioactivities, including Neurohemerythrin, Hirudin and Eglin C, were selected as the quality makers and then quantified based on the characteristic peptides. CONCLUSIONS This work profiled the proteome of three species of leeches, and addressed potential active proteins of the medicinal leech, which would help to provide the potential molecular mechanisms involved in disease treatment. The proteomics-based approach developed in this work is not only useful for the discovery of proteins with potential bioactivities but also helpful for the bioactivity relevant quality control of animal medicines.
Collapse
Affiliation(s)
- Fu-Gui Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin-Yue Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Qi
- Yangshengtang Pharmaceutical Co., Ltd, Hangzhou, 310000, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Abd Elhameed AA, Ali AR, Ghabbour HA, Bayomi SM, El-Gohary NS. Design, synthesis, and antitumor screening of new thiazole, thiazolopyrimidine, and thiazolotriazine derivatives as potent inhibitors of VEGFR-2. Drug Dev Res 2023; 84:1664-1698. [PMID: 37661648 DOI: 10.1002/ddr.22109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/09/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023]
Abstract
New thiazole, thiazolopyrimidine, and thiazolotriazine derivatives 3-12 and 14a-f were synthesized. The newly synthesized analogs were tested for in vitro antitumor activity against HepG2, HCT-116, MCF-7, HeP-2, and Hela cancer cells. Results indicated that compound 5 displayed the highest potency toward the tested cancer cells. Compound 11b possessed enhanced effectiveness over MCF-7, HepG2, HCT-116, and Hela cancer cells. In addition, compounds 4 and 6 showed promising activity toward HCT-116, MCF-7, and Hela cancer cells and eminent activity against HepG2 and HeP-2 cells. Moreover, compounds 3-6 and 11b were tested for their capability to inhibit vascular endothelial growth factor receptor-2 (VEGFR-2) activity. The obtained results showed that compound 5 displayed significant inhibitory activity against VEGFR-2 (half-maximal inhibitory concentration [IC50 ] = 0.044 μM) comparable to sunitinib (IC50 = 0.100 μM). Also, the synthesized compounds 3-6 and 11b were subjected to in vitro cytotoxicity tests over WI38 and WISH normal cells. It was found that the five tested compounds displayed significantly lower cytotoxicity than doxorubicin toward normal cell lines. Cell cycle analysis proved that compound 5 induces cell cycle arrest in the S phase for HCT-116 and Hela cancer cell lines and in the G2/M phase for the MCF-7 cancer cell line. Moreover, compound 5 induced cancer cell death through apoptosis accompanied by a high ratio of BAX/BCL-2 in the screened cancer cells. Furthermore, docking results revealed that compound 5 showed the essential interaction bonds with VEGFR-2, which agreed with in vitro enzyme assay results. In silico studies showed that most of the analyzed compounds complied with the requirements of good oral bioavailability with minimal toxicity threats in humans.
Collapse
Affiliation(s)
- Alaa A Abd Elhameed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Said M Bayomi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Bridoux A, Mousa SA. Screening of a Library for Factor VIIa Inhibitors. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211207125903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As an alternative to the anticoagulant’s strategy using direct or indirect anti-Xa
drugs, considering other targets upstream in the coagulation cascade such as anti-Factor VIIa could represent
an effective and safer strategy in coagulation and pathological angiogenesis.
Objective:
The objective of the study was to assess a high technology methodology composed of virtual
screening, anticoagulant, and anti-angiogenesis assays to identify potent small-molecule FVIIa inhibitors.
Methods:
Chemical databanks were screened to select molecules bearing functional groups that could fit
into the active site of FVIIa, which were then tested. Ligands assigned with the lowest scores were retained
and then biologically assessed.
Results:
From the 500 molecules considered, 8 chemical structures revealed to be effective compounds in
vitro and to inhibit angiogenesis in the chick chorioallantoic membrane (CAM) model.
Conclusion:
New potent small-molecule FVIIa inhibitors have been identified; further biochemical and
chemical developments would be investigated directly from the selected scaffolds.
Collapse
Affiliation(s)
- Alexandre Bridoux
- Vascular Vision Pharmaceuticals, 5 University Place, Rensselaer, NY 12144, USA
- Pharmaceutical Research Institute,
One Discovery Drive, Rensselaer, NY 12144, USA
| | - Shaker A. Mousa
- Vascular Vision Pharmaceuticals, 5 University Place, Rensselaer, NY 12144, USA
- Pharmaceutical Research Institute,
One Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
10
|
Shen Y, Ye H, Zhang D, Yang M, Ji Y, Tang L, Zhu X, Yuan L. The role of exosomal CDC6 in the hirudin-mediated suppression of the malignant phenotype of bladder cancer cells. Gene 2022; 821:146269. [PMID: 35150820 DOI: 10.1016/j.gene.2022.146269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bladder cancer is a malignant tumor characterized by high recurrence and persistence due to the limited therapies that are currently available. Hirudin exerts a strong anticancer effect on several tumors. Thus, it is urgent to explore the biological function of hirudin in bladder cancer and the role of bladder cancer-derived exosomes in tumor inhibition. METHODS First, a network pharmacology analysis was performed to explore the relationships among hirudin, bladder cancer, and exosomes. Then, the effects of hirudin were examined by CCK-8 assay, flow cytometry, Transwell assay, and tumorigenic ability experiments in vitro. Exosomes derived from cells were identified with transmission electron microscopy, fluorescence labeling, and Western blotting and collected for further microarray analysis. Only CDC6 expression and mRNA abundance in hirudin-treated cells and exosomes was subjected to further validation using quantitative PCR and Western blotting. RESULTS Through network analysis, we found that hirudin affected bladder cancer, and this effect was related to exosomes. Our studies verified the effects of hirudin by revealing that hirudin inhibits malignant processes of bladder cancer cells in vitro, such as invasion, metastasis, and apoptosis. Similarly, the oncogenic effects of bladder cancer-derived exosomes were successfully isolated and identified. Via microarray assessment of the exosomes, we identified 600 differential mRNAs, of which the expression of the core target CDC6 was found to be significantly different in both The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. We further confirmed that hirudin suppresses CDC6 expression mRNA abundance in both cells and exosomes. CONCLUSION Hirudin was able to decrease the expression of CDC6 in bladder cancer cells and exosomes, which effectively repressed the malignant processes of bladder cancer cells.
Collapse
Affiliation(s)
- Yang Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Hesong Ye
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Dongjian Zhang
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ming Yang
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Yuanyuan Ji
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Longlong Tang
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Xudong Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Lin Yuan
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Dymicka-Piekarska V, Koper-Lenkiewicz OM, Zińczuk J, Kratz E, Kamińska J. Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs). Cancer Immunol Immunother 2021; 70:1497-1510. [PMID: 33146401 PMCID: PMC8139882 DOI: 10.1007/s00262-020-02758-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
It is well known that various inflammatory cells infiltrate cancer cells. Next to TAMs (tumor-associated macrophages), TAFs (tumor-associated fibroblasts) and TANs (tumor-associated neutrophils) also platelets form the tumor microenvironment. Taking into account the role of platelets in the development of cancer, we have decided to introduce a new term: tumor associated platelets-TAPs. To the best of our knowledge, thus far this terminology has not been employed by anyone. Platelets are the first to appear at the site of the inflammatory process that accompanies cancer development. Within the first few hours from the start of the colonization of cancer cells platelet-tumor aggregates are responsible for neutrophils recruitment, and further release a number of factors associated with tumor growth, metastasis and neoangiogenesis. On the other hand, it also has been indicated that factors delivered from platelets can induce a cytotoxic effect on the proliferating neoplastic cells, and even enhance apoptosis. Undoubtedly, TAPs' role seems to be more complex when compared to tumor associated neutrophils and macrophages, which do not allow for their division into TAP P1 and TAP P2, as in the case of TANs and TAMs. In this review we discuss the role of TAPs as an important element of tumor invasiveness and as a potentially new therapeutic target to prevent cancer development. Nevertheless, better exploring the interactions between platelets and tumor cells could help in the formulation of new therapeutic goals that support or improve the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Ewa Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
12
|
Junren C, Xiaofang X, Huiqiong Z, Gangmin L, Yanpeng Y, Xiaoyu C, Yuqing G, Yanan L, Yue Z, Fu P, Cheng P. Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives - A Review. Front Pharmacol 2021; 12:660757. [PMID: 33935784 PMCID: PMC8085555 DOI: 10.3389/fphar.2021.660757] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Hirudin, an acidic polypeptide secreted by the salivary glands of Hirudo medicinalis (also known as "Shuizhi" in traditional Chinese medicine), is the strongest natural specific inhibitor of thrombin found so far. Hirudin has been demonstrated to possess potent anti-thrombotic effect in previous studies. Recently, increasing researches have focused on the anti-thrombotic activity of the derivatives of hirudin, mainly because these derivatives have stronger antithrombotic activity and lower bleeding risk. Additionally, various bioactivities of hirudin have been reported as well, including wound repair effect, anti-fibrosis effect, effect on diabetic complications, anti-tumor effect, anti-hyperuricemia effect, effect on cerebral hemorrhage, and others. Therefore, by collecting and summarizing publications from the recent two decades, the pharmacological activities, pharmacokinetics, novel preparations and derivatives, as well as toxicity of hirudin were systematically reviewed in this paper. In addition, the clinical application, the underlying mechanisms of pharmacological effects, the dose-effect relationship, and the development potential in new drug research of hirudin were discussed on the purpose of providing new ideas for application of hirudin in treating related diseases.
Collapse
Affiliation(s)
- Chen Junren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xie Xiaofang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Huiqiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Gangmin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Yanpeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cao Xiaoyu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gao Yuqing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yanan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Peng Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Wang CH, Pandey S, Sivalingam K, Shibu MA, Kuo WW, Viswanadha VP, Lin YC, Liao SC, Huang CY. Leech extract: A candidate cardioprotective against hypertension-induced cardiac hypertrophy and fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113346. [PMID: 32896627 DOI: 10.1016/j.jep.2020.113346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of cardiovascular diseases (CVDs) has been increasing worldwide. Despite significant improvements in therapeutics and on-going developments of novel targeted-treatment regimens, cardiac diseases lack effective preventive and curative therapies with minimal side effects. Therefore, there is an urgent need to identify and propagate alternative and complementary therapies against cardiovascular diseases. Some traditional Chinese medicines can contribute to the prevention and treatment of CVDs and other chronic diseases, with few side effects. Hirudo, a medicinal leech, has been acclaimed for improving blood circulation and overcoming blood stagnation; however, the precise molecular mechanisms of leech extract treatment against pathological cardiac remodeling remain elusive. In this study, we aimed to delineate the molecular mechanisms of medicinal leech extract in the treatment of cardiac hypertrophy and fibrosis, using both in vitro and in vivo assessments. MATERIALS AND METHODS We conducted in vitro and in vivo animal experiments, including cell-viability assays, fluorescence microscopy, immunoblotting, immunohistochemistry, and Masson's trichrome staining. RESULTS Pre-treatment with leech extract conferred a survival benefit to spontaneously-hypertensive rats (SHRs) and significantly reduced angiotensin II (ANG II)-induced cardiac hypertrophy and fibrosis. ANG II-stimulated cardiac hypertrophy markers were attenuated by leech extract treatment, versus controls. Translational expression of stress-associated mitogen-activated protein kinases (MAPKs) was also repressed. In vivo, leech extract treatment significantly ameliorated the cardiac hypertrophy phenotype in SHRs and diminished interstitial fibrosis, accompanied with reduced fibrosis markers. CONCLUSION Leech extract treatment under a hypertensive condition exerted significant cardio-protective benefits by reducing the expression of cardiac hypertrophy-related transcription factors, stress-associated MAPKs, and fibrosis mediators. Our findings imply that medicinal leach extract may be effective against hypertension-induced cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kalaiselvi Sivalingam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | - Yuan-Chuan Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
Lin Y, Liu Z, Qiu Y, Zhang J, Wu H, Liang R, Chen G, Qin G, Li Y, Zou D. Clinical significance of plasma D-dimer and fibrinogen in digestive cancer: A systematic review and meta-analysis. Eur J Surg Oncol 2018; 44:1494-1503. [DOI: 10.1016/j.ejso.2018.07.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
|
15
|
Yu C, Wang W, Jin X. Hirudin Protects Ang II-Induced Myocardial Fibroblasts Fibrosis by Inhibiting the Extracellular Signal-Regulated Kinase1/2 (ERK1/2) Pathway. Med Sci Monit 2018; 24:6264-6272. [PMID: 30194718 PMCID: PMC6140377 DOI: 10.12659/msm.909044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Myocardial fibrosis is closely related to all types of cardiovascular diseases. Hirudin is widely used in the prevention and treatment of cardiovascular diseases and cancers. In this study, we examined the potential role(s) and mechanism of hirudin in angiotensin II (Ang II)-induced myocardial fibrosis. MATERIAL AND METHODS The viability of myocardial fibroblasts, and reactive oxygen species (ROS) rates were measured respectively using cell counting kit-8 (CCK-8) and flow cytometry. Malondialdehyde (MDA) content, the activities of lactate dehydrogenase (LDH), and superoxide dismutase (SOD) were detected by the respective kits. The mRNA and protein levels of fibrosis-related factors were separately assessed by qRT-PCR and western blot. RESULTS Our data revealed that hirudin suppressed the viability of myocardial fibroblasts, and that it relieved the proliferation induced by Ang II in a dose-dependent manner. We also found that hirudin reduced ROS production, LDH activity, and MDA content; however, it enhanced SOD activity. Moreover, while hirudin significantly downregulated the levels of matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin (FN), transforming growth factor beta 1 (TGF-β1), collagen-I (COL-I), and COL-III, it upregulated the expression level of tissue inhibitor of metalloproteinases-2 (TIMP-2). Furthermore, phosphorylated extracellular signal-regulated kinase1/2 (p-ERK1/2) was decreased by hirudin, compared to the Ang-II group. CONCLUSIONS Hirudin depressed Ang II-induced myocardial fibroblasts via inhibiting oxidative stress, regulating fibrosis-related factors, and repressing the ERK1/2 pathway.
Collapse
Affiliation(s)
- Chunxia Yu
- Department of Cardiology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| | - Weimin Wang
- Department of Electrocardiogram, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China (mainland)
| | - Xin Jin
- Department of Cardiology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| |
Collapse
|
16
|
Abstract
Hirudin was discovered as an active anticoagulant in leech extracts almost 60 years ago. Since their initial discovery, hirudin and its variants have been produced with various anti-thrombotic, cancer cell inhibition, diabetic cataract treatment and anti-fatigue activities. Some hirudin variants have been approved for clinical use and released into the marketplace. Recent progress has seen made in relation to hirudin variants expressed in several well-established microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and others, with high levels of activity and yield. This review summarizes the current progress on hirudin production using microbial producers, and considers the outlook for future development.
Collapse
Affiliation(s)
- Jianguo Zhang
- a Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai , China
| | - Nana Lan
- a Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai , China
| |
Collapse
|
17
|
Feng Y, Yin Z, Zhang D, Srivastava A, Ling C. Chinese Medicine Protein and Peptide in Gene and Cell Therapy. Curr Protein Pept Sci 2018; 20:251-264. [PMID: 29895243 DOI: 10.2174/1389203719666180612082432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023]
Abstract
The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier.
Collapse
Affiliation(s)
- Yinlu Feng
- Department of Traditional Chinese Medicine, 401 Hospital of the Chinese People's Liberation Army, Qingdao, Shandong 266071, China.,Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Zifei Yin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Daniel Zhang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| |
Collapse
|
18
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev 2018; 36:305-329. [PMID: 28752248 PMCID: PMC5557869 DOI: 10.1007/s10555-017-9683-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as "cancers follow bleeding." The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.
| | - Dominika Hempel
- Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA.,Departments of Chemistry, Wayne State University, Detroit, MI, 48202, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, 48202, USA
| |
Collapse
|