1
|
Wen H, Tang J, Cui Y, Hou M, Zhou J. m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle 2023; 22:100-116. [PMID: 35949109 PMCID: PMC9769451 DOI: 10.1080/15384101.2022.2109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The aim is to explore the underlying mechanism of basic leucine zipper ATF-like transcription factor 2 (BATF2) in tongue squamous cell carcinoma (TSCC). The expression of BATF2 in TSCC tissues and corresponding adjacent normal TSCC tissues, human TSCC cell lines (SCC-15 and CAL-27) and human normal tongue epithelial cells NTEC was detected. Then, SCC-15 cells with stable BATF2 knockdown and CAL-27 cells with BATF2 overexpression were established to investigate the functional effect of BATF2 on TSCC. Thereafter, the effect of BATF2 on TSCC angiogenesis and BATF2 m6A methylation was also examined. BATF2 was significantly downregulated in TSCC tissues and cell lines, and BATF2 overexpression could suppress growth, metastasis and angiogenesis of TSCC. Mechanistically, vascular endothelial growth factor A (VEGFA) was identified as a downstream gene of BATF2, and it was confirmed that BATF2 suppressed growth, metastasis and angiogenesis of TSCC via inhibiting VEGFA. In addition, the N6-methyladenosine (m6A) modification of BATF2 mRNA mediated by METTL14 suppressed its expression in TSCC. METTL14/BATF2 axis could serve as a novel promising therapeutic candidate against angiogenesis for TSCC.
Collapse
Affiliation(s)
- Haojie Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Jinyong Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Yi Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Minhua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Juan Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| |
Collapse
|
2
|
Voinsky I, Zoabi Y, Shomron N, Harel M, Cassuto H, Tam J, Rose S, Scheck AC, Karim MA, Frye RE, Aran A, Gurwitz D. Blood RNA Sequencing Indicates Upregulated BATF2 and LY6E and Downregulated ISG15 and MT2A Expression in Children with Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23179843. [PMID: 36077244 PMCID: PMC9456089 DOI: 10.3390/ijms23179843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in over 100 genes are implicated in autism spectrum disorder (ASD). DNA SNPs, CNVs, and epigenomic modifications also contribute to ASD. Transcriptomics analysis of blood samples may offer clues for pathways dysregulated in ASD. To expand and validate published findings of RNA-sequencing (RNA-seq) studies, we performed RNA-seq of whole blood samples from an Israeli discovery cohort of eight children with ASD compared with nine age- and sex-matched neurotypical children. This revealed 10 genes with differential expression. Using quantitative real-time PCR, we compared RNAs from whole blood samples of 73 Israeli and American children with ASD and 26 matched neurotypical children for the 10 dysregulated genes detected by RNA-seq. This revealed higher expression levels of the pro-inflammatory transcripts BATF2 and LY6E and lower expression levels of the anti-inflammatory transcripts ISG15 and MT2A in the ASD compared to neurotypical children. BATF2 was recently reported as upregulated in blood samples of Japanese adults with ASD. Our findings support an involvement of these genes in ASD phenotypes, independent of age and ethnicity. Upregulation of BATF2 and downregulation of ISG15 and MT2A were reported to reduce cancer risk. Implications of the dysregulated genes for pro-inflammatory phenotypes, immunity, and cancer risk in ASD are discussed.
Collapse
Affiliation(s)
- Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yazeed Zoabi
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moria Harel
- Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | | | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Adrienne C. Scheck
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mohammad A. Karim
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Richard E. Frye
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| | - Adi Aran
- Shaare Zedek Medical Center, Jerusalem 91031, Israel
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Correspondence: (A.A.); (D.G.)
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: (A.A.); (D.G.)
| |
Collapse
|
3
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Lin Y, Zhou X, Peng W, Wu J, Wu X, Chen Y, Cui Z. Expression and clinical implications of basic leucine zipper ATF-like transcription factor 2 in breast cancer. BMC Cancer 2021; 21:1062. [PMID: 34565331 PMCID: PMC8474811 DOI: 10.1186/s12885-021-08785-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Background Basic leucine zipper ATF-like transcription factor 2 (BATF2) has been reported to participate in the occurrence and development of some malignancies. Herein, we aimed to explore the expression pattern and clinical implications of BATF2 in breast cancer (BC). Methods We assessed the differences in BATF2 mRNA expression between cancerous and noncancerous tissues in BC using GEPIA and UALCAN data and in BATF2 protein expression pattern using Human Protein Atlas (HPA) data. BATF2 co-expression networks were analyzed in Coexpedia. The association between the differentially expressed BATF2 mRNA and BC prognosis was assessed using UALCAN, OSbrca, and GEPIA databases. In external validations, BATF2 protein expression in BC tissues was quantitated using a tissue microarray and immunohistochemistry (IHC) analysis, and BATF2 mRNA expression in serum and serum-derived exosomes of BC patients using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results No difference in the BATF2 mRNA expression level was found between cancerous and noncancerous tissues in BC based on databases. There were low-to-moderate levels of increases in BATF2 protein expressions in BC cases from the HPA cohort. BATF2 mRNA expression was negatively correlated with androgen receptor (AR) and positively correlated with BRCA2 DNA repair associated (BRCA2), marker of proliferation Ki-67 (Mki67), and tumor protein p53 (TP53) expressions. Generally, BATF2 mRNA exhibited a non-significant association with BC prognosis; yet the subgroup analyses showed that triple-negative breast cancer (TNBC) patients with high BATF2 mRNA expressions had a longer overall survival (OS). Our IHC analysis revealed a positive rate of BATF2 protein expression of 46.90%, mainly located in the nucleus of cancer cells in BC, and the OS of BC patients with high BATF2 protein expressions was prolonged. The positive rates of BATF2 mRNA expressions in the serum and exosomes were 45.00 and 41.67%, respectively. Besides, the AUCs of serum and exosomal BATF2 mRNA for BC diagnosis were 0.8929 and 0.8869, respectively. Conclusions BC patients exhibit low-to-moderate expressions in BATF2 mRNA expression levels in cancerous tissues. The high BATF2 protein expression can be a potential indicator of a better BC prognosis. Serum and exosomal BATF2 mRNA levels also serve as promising noninvasive biomarkers for BC diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08785-6.
Collapse
Affiliation(s)
- Yingying Lin
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350014, Fujian Province, China
| | - Xusheng Zhou
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350014, Fujian Province, China
| | - Wei Peng
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350014, Fujian Province, China
| | - Jing Wu
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350014, Fujian Province, China
| | - Xiufeng Wu
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China.
| | - Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350014, Fujian Province, China.
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350014, Fujian Province, China.
| |
Collapse
|
5
|
Li C, Liu M, Liu K, Li M, Liu Y, Li T, Wei Y, Long Y, He W, Shi X, Li Y, Zhang H. BATF2 balances the T cell-mediated immune response of CADM with an anti-MDA5 autoantibody. Biochem Biophys Res Commun 2021; 551:155-160. [PMID: 33740622 DOI: 10.1016/j.bbrc.2021.02.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Clinically amyopathic dermatomyositis (CADM) is a subtype of dermatomyositis (DM) characterized by low-grade or absent muscle inflammation but frequent and rapidly progressive interstitial lung disease (RP-ILD) and skin ulcers with anti-melanoma differentiation-associated gene 5 (anti-MDA5) autoantibodies. Basic leucine zipper transcription factor ATF-like 2 (BATF2) is thought to function as an inhibitor of tumours and inflammation. Here, we aimed to investigate the roles of BATF2 in Th cell differentiation of CADM with an anti-MDA5 autoantibody (anti-MDA5+ CADM). METHODS Naive CD4+ T cells from human peripheral blood mononuclear cells (PBMCs) of healthy controls (HCs) were isolated and then cultured with IL-12, TGF-β or TGF-β plus IL-6 following anti-CD3 and anti-CD28 stimulations. The expression of BATF2 was measured by real-time PCR. The percentages of Th1, Th17 and Treg CD4+ T cells were detected by flow cytometry. BATF2 knockdown of CD4+ T cells was performed using small interfering RNAs (siRNAs). RESULTS The expression of BATF2 in PBMCs was higher in anti-MDA5+ CADM patients than in healthy controls. The BATF2 mRNA expression was increased under Th1 and Treg polarization but decreased under Th17 polarization. Th17 cell activation-associated genes were possibly increased while Th1 and Treg cell differentiation-associated genes were inhibited by posttranscriptional gene silencing of BATF2 in CD4+ T cells. CONCLUSIONS BATF2 promoted Th1 and Treg cell differentiation but suppressed Th17 cell activation in anti-MDA5+ CADM.
Collapse
Affiliation(s)
- Caiyan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Yanjuan Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Tao Li
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Yu Wei
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.
| | - Ying Long
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.
| | - Weijia He
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.
| | - Xueyan Shi
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
6
|
Tian M, Yang J, Han J, He J, Liao W. A novel immune checkpoint-related seven-gene signature for predicting prognosis and immunotherapy response in melanoma. Int Immunopharmacol 2020; 87:106821. [PMID: 32731180 DOI: 10.1016/j.intimp.2020.106821] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND New emergence of immunotherapy has significantly improved clinical outcome of melanoma patients with advanced and metastatic diseases. We aimed to develop a gene signature based on the expression of PD-1/PD-L1 signaling pathway genes to predict prognosis and immunotherapy response in melanoma patients. METHODS Melanoma samples from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) were used as the training set and external validation sets respectively. Prognostic genes for overall survival (OS) were identified by univariate Cox regression analysis. Then a multi-gene risk signature was established with the Least Absolute Shrinkage and Selector Operation (LASSO) regression and multivariate Cox regression. The predictive and prognostic value of gene signature was evaluated by Kaplan Meier curve, Time-dependent receiver operating characteristic (ROC) curve, and area under curve (AUC). Gene set enrichment analysis (GSEA) was performed to investigate the discrepantly enriched biological processes between low-risk and high-risk group of melanoma patients. RESULTS A seven-gene risk signature (BATF2, CTLA4, EGFR, HLA-DQB1, IKBKG, PIK3R2, PPP3CA) was constructed. The signature was an independent risk factor for OS (hazard ratio = 1.544, p < 0.001) and it could robustly predict OS in both training and validation sets. Besides, high risk scores indicated advanced clinical stage and no response to immunotherapy for melanoma patients. GSEA demonstrated that high risk score was intimately associated with immune response and immune regulation. In conclusion, the novel seven-gene signature could serve as a robust biomarker for prognosis and a potential indicator of immunotherapy response in melanoma.
Collapse
Affiliation(s)
- Maolang Tian
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangping Yang
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Han
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinlan He
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenjun Liao
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
BATF2 inhibits chemotherapy resistance by suppressing AP-1 in vincristine-resistant gastric cancer cells. Cancer Chemother Pharmacol 2019; 84:1279-1288. [DOI: 10.1007/s00280-019-03958-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023]
|
8
|
Antitumor effect of Batf2 through IL-12 p40 up-regulation in tumor-associated macrophages. Proc Natl Acad Sci U S A 2017; 114:E7331-E7340. [PMID: 28808017 DOI: 10.1073/pnas.1708598114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The development of effective treatments against cancers is urgently needed, and the accumulation of CD8+ T cells within tumors is especially important for cancer prognosis. Although their mechanisms are still largely unknown, growing evidence has indicated that innate immune cells have important effects on cancer progression through the production of various cytokines. Here, we found that basic leucine zipper transcription factor ATF-like 2 (Batf2) has an antitumor effect. An s.c. inoculated tumor model produced fewer IL-12 p40+ macrophages and activated CD8+ T cells within the tumors of Batf2-/- mice compared with WT mice. In vitro studies also revealed that the IL-12 p40 expression was significantly lower in Batf2-/- macrophages following their stimulation by toll-like receptor ligands, such as R848. Additionally, we found that BATF2 interacts with p50/p65 and promotes IL-12 p40 expression. In conclusion, Batf2 has an antitumor effect through the up-regulation of IL-12 p40 in tumor-associated macrophages, which eventually induces CD8+ T-cell activation and accumulation within the tumor.
Collapse
|