1
|
Miyako S, Koma YI, Nakanishi T, Tsukamoto S, Yamanaka K, Ishihara N, Azumi Y, Urakami S, Shimizu M, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. Periostin in Cancer-Associated Fibroblasts Promotes Esophageal Squamous Cell Carcinoma Progression by Enhancing Cancer and Stromal Cell Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:828-848. [PMID: 38320632 DOI: 10.1016/j.ajpath.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are involved in the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). CAF-like cells were generated through direct co-culture of human bone marrow-derived mesenchymal stem cells, one of CAF origins, with ESCC cells. Periostin (POSTN) was found to be highly expressed in CAF-like cells. After direct co-culture, ESCC cells showed increased malignant phenotypes, such as survival, growth, and migration, as well as increased phosphorylation of Akt and extracellular signal-regulated kinase (Erk). Recombinant human POSTN activated Akt and Erk signaling pathways in ESCC cells, enhancing survival and migration. The suppression of POSTN in CAF-like cells by siRNA during direct co-culture also suppressed enhanced survival and migration in ESCC cells. In ESCC cells, knockdown of POSTN receptor integrin β4 inhibited Akt and Erk phosphorylation, and survival and migration increased by POSTN. POSTN also enhanced mesenchymal stem cell and macrophage migration and endowed macrophages with tumor-associated macrophage-like properties. Immunohistochemistry showed that high POSTN expression in the cancer stroma was significantly associated with tumor invasion depth, lymphatic and blood vessel invasion, higher pathologic stage, CAF marker expression, and infiltrating tumor-associated macrophage numbers. Moreover, patients with ESCC with high POSTN expression exhibited poor postoperative outcomes. Thus, CAF-secreted POSTN contributed to tumor microenvironment development. These results indicate that POSTN may be a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaki Shimizu
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Atri Y, Bharti H, Sahani N, Sarkar DP, Nag A. CUL4A silencing attenuates cervical carcinogenesis and improves Cisplatin sensitivity. Mol Cell Biochem 2024; 479:1041-1058. [PMID: 37285039 DOI: 10.1007/s11010-023-04776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/21/2023] [Indexed: 06/08/2023]
Abstract
CUL4A is an ubiquitin ligase deregulated in numerous pathologies including cancer and even hijacked by viruses for facilitating their survival and propagation. However, its role in Human papilloma virus (HPV)-mediated cervical carcinogenesis remains elusive. The UALCAN and GEPIA datasets were analyzed to ascertain the transcript levels of CUL4A in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients. Subsequently, various biochemical assays were employed to explore the functional contribution of CUL4A in cervical carcinogenesis and to shed some light on its involvement in Cisplatin resistance in cervical cancer. Our UALCAN and GEPIA datasets analyses reveal elevated CUL4A transcript levels in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients that correlate with adverse clinicopathological parameters such as tumor stage and lymph node metastasis. Kaplan-Meier plot and GEPIA assessment depict poor prognosis of CESC patients having high CUL4A expression. Varied biochemical assays illustrate that CUL4A inhibition severely curtails hallmark malignant properties such as cellular proliferation, migration, and invasion of cervical cancer cells. We also show that CUL4A knockdown in HeLa cells causes increased susceptibility and better apoptotic induction toward Cisplatin, a mainstay drug used in cervical cancer treatment. More interestingly, we find reversion of Cisplatin-resistant phenotype of HeLa cells and an augmented cytotoxicity towards the platinum compound upon CUL4A downregulation. Taken together, our study underscores CUL4A as a cervical cancer oncogene and illustrates its potential as a prognosis indicator. Our investigation provides a novel avenue in improving current anti-cervical cancer therapy and overcoming the bottle-neck of Cisplatin resistance.
Collapse
Affiliation(s)
- Yama Atri
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Sahani
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
3
|
Wang Y, Yan F, Nasar A, Chen ZS, Altorki NK, Stiles B, Narula N, Zhou P. CUL4 high Lung Adenocarcinomas Are Dependent on the CUL4-p21 Ubiquitin Signaling for Proliferation and Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1638-1650. [PMID: 34119472 PMCID: PMC8420861 DOI: 10.1016/j.ajpath.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022]
Abstract
Cullin (CUL) 4A and 4B ubiquitin ligases are often highly accumulated in human malignant neoplasms and are believed to possess oncogenic properties. However, the underlying mechanisms by which CUL4A and CUL4B promote pulmonary tumorigenesis remain largely elusive. This study reports that CUL4A and CUL4B are highly expressed in patients with non-small cell lung cancer (NSCLC), and their high expression is associated with disease progression, chemotherapy resistance, and poor survival in adenocarcinomas. Depletion of CUL4A (CUL4Ak/d) or CUL4B (CUL4Bk/d) leads to cell cycle arrest at G1 and loss of proliferation and viability of NSCLC cells in culture and in a lung cancer xenograft model, suggesting that CUL4A and 4B are oncoproteins required for tumor maintenance of certain NSCLCs. Mechanistically, increased accumulation of the cell cycle-dependent kinase inhibitor p21/Cip1/WAF1 was observed in lung cancer cells on CUL4 silencing. Knockdown of p21 rescued the G1 arrest of CUL4Ak/d or CUL4Bk/d NSCLC cells, and allowed proliferation to resume. These findings reveal that p21 is the primary downstream effector of lung adenocarcinoma dependence on CUL4, highlight the notion that not all substrates respond equally to abrogation of the CUL4 ubiquitin ligase in NSCLCs, and imply that CUL4Ahigh/CUL4Bhigh may serve as a prognostic marker and therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Yannan Wang
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Fan Yan
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Abu Nasar
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, New York
| | - Nasser Khaled Altorki
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Brendon Stiles
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York.
| |
Collapse
|
4
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
5
|
Liu Y, Duan C, Zhang C. E3 Ubiquitin Ligase in Anticancer Drugdsla Resistance: Recent Advances and Future Potential. Front Pharmacol 2021; 12:645864. [PMID: 33935743 PMCID: PMC8082683 DOI: 10.3389/fphar.2021.645864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Drug therapy is the primary treatment for patients with advanced cancer. The use of anticancer drugs will inevitably lead to drug resistance, which manifests as tumor recurrence. Overcoming chemoresistance may enable cancer patients to have better therapeutic effects. However, the mechanisms underlying drug resistance are poorly understood. E3 ubiquitin ligases (E3s) are a large class of proteins, and there are over 800 putative functional E3s. E3s play a crucial role in substrate recognition and catalyze the final step of ubiquitin transfer to specific substrate proteins. The diversity of the set of substrates contributes to the diverse functions of E3s, indicating that E3s could be desirable drug targets. The E3s MDM2, FBWX7, and SKP2 have been well studied and have shown a relationship with drug resistance. Strategies targeting E3s to combat drug resistance include interfering with their activators, degrading the E3s themselves and influencing the interaction between E3s and their substrates. Research on E3s has led to the discovery of possible therapeutic methods to overcome the challenging clinical situation imposed by drug resistance. In this article, we summarize the role of E3s in cancer drug resistance from the perspective of drug class.
Collapse
Affiliation(s)
- Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
6
|
Weng SW, Liu TT, Eng HL, You HL, Huang WT. Autophagy Plays a Role in the CUL4A-Related Poor Prognosis of Intrahepatic Cholangiocarcinoma. Pathol Oncol Res 2021; 27:602714. [PMID: 34257560 PMCID: PMC8262180 DOI: 10.3389/pore.2021.602714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022]
Abstract
CUL4A regulate the termination of autophagy in a physical process. However, the relationship between CUL4A and autophagy in cancer is unclear. We retrospectively investigated 99 intrahepatic cholangiocarcinoma (iCCA) cases. Whole sections were used for immunohistochemical analysis for p62, and LC3B expression. Q-score was defined as the sum of the labeling intensity and proportion. The cut-off point for immunoreactivity was set. CUL4A was overexpressed in cell lines and autophagy reflux was compared after manipulation. The iCCA cases with CUL4A overexpression had significantly higher prevalence of intact activated autophagy (42.4 vs. 15.2%; p = 0.003), which was significantly associated with advance tumor stage (34.1% vs. 15.4%; p = 0.032), less extensive necrosis (8.3 vs. 49.3%; p < 0.001), and shortened disease-free survival (mean, 19.6 vs. 65.5 months, p = 0.015). In vitro, iCCA cells with CUL4A overexpression significantly increased LC3II level as compared to the cells under basal condition. Although both cell types showed intact autophagy with increased LC3II expression after bafilomycin A1 treatment, the accumulation of LC3II was higher in CUL4A-overexpressing cells. CUL4A overexpression increased the proliferation of cells as compared with control cells. After treatment with bafilomycin A1, proliferation was inhibited in both cell types, but the effects were more prominent in the cells overexpressing CUL4A. CUL4A promotes autophagy, and exhibits significantly higher autophagic flux which affects the proliferation of iCCA cells; these effects correlated with advance tumor stage and poor prognosis. Thus, targeting autophagy may be potentially therapeutic in iCCA.
Collapse
Affiliation(s)
- Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan
| | - Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Hung MS, Chen YC, Lin P, Li YC, Hsu CC, Lung JH, You L, Xu Z, Mao JH, Jablons DM, Yang CT. Cul4A Modulates Invasion and Metastasis of Lung Cancer Through Regulation of ANXA10. Cancers (Basel) 2019; 11:cancers11050618. [PMID: 31052599 PMCID: PMC6562482 DOI: 10.3390/cancers11050618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
: Cullin 4A (Cul4A) is overexpressed in a number of cancers and has been established as an oncogene. This study aimed to elucidate the role of Cul4A in lung cancer invasion and metastasis. We observed that Cul4A was overexpressed in non-small cell lung cancer (NSCLC) tissues and the overexpression of Cul4A was associated with poor prognosis after surgical resection and it also decreased the expression of the tumor suppressor protein annexin A10 (ANXA10). The knockdown of Cul4A was associated with the upregulation of ANXA10, and the forced expression of Cul4A was associated with the downregulation of ANXA10 in lung cancer cells. Further studies showed that the knockdown of Cul4A inhibited the invasion and metastasis of lung cancer cells, which was reversed by the further knockdown of ANXA10. In addition, the knockdown of Cul4A inhibited lung tumor metastasis in mouse tail vein injection xenograft models. Notably, Cul4A regulated the degradation of ANXA10 through its interaction with ANXA10 and ubiquitination in lung cancer cells. Our findings suggest that Cul4A is a prognostic marker in NSCLC patients, and Cul4A plays important roles in lung cancer invasion and metastasis through the regulation of the ANXA10 tumor suppressor.
Collapse
Affiliation(s)
- Ming-Szu Hung
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi 61363, Taiwan.
| | - Yi-Chuan Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - PaulYann Lin
- Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan.
| | - Ya-Chin Li
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Chia-Chen Hsu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Jr-Hau Lung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA.
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Cheng-Ta Yang
- Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan branch 33378, Taiwan.
| |
Collapse
|
8
|
Yan L, Ma J, Wang Y, Zan J, Wang Z, Zhu Y, Zhu Y, Ling L, Cao L, Liu X, Li S, Xu L, Qi Z, Nie L, Zhang Y. miR-21-5p induces cell proliferation by targeting TGFBI in non-small cell lung cancer cells. Exp Ther Med 2018; 16:4655-4663. [PMID: 30542417 PMCID: PMC6257667 DOI: 10.3892/etm.2018.6752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
The mortality rate of non-small cell lung cancer (NSCLC) remains high worldwide. miR-21-5p plays an important part in many cancer types, including NSCLC. However, the effect of miR-21-5p in NSCLC tumorigenesis remains poorly understood. The present study investigated whether miR-21-5p promoted NSCLC cell proliferation in vitro. In order to study the molecular mechanism by which miR-21-5p contributes to NSCLC progression, three bioinformatics algorithms were used to predict the genes which miR-21-5p targeted. TGFBI was identfieid as a putative direct target in NSCLC cells via the luciferase reporter assay. Furthermore, miR-21-5p downregulated TGFBI protein expression by a post-transcriptional mechanism via western blotting and a reverse transcription-quantitative polymerase chain reaction analysis. Finally, TGFBI exhibited opposing effects to those of miR-21-5p on NSCLC cells, suggesting that miR-21-5p may promote cell proliferation by negative regulation of TGFBI. These results suggest miR-21-5p promote the proliferation of NSCLC cells via inhibiting TGFBI expression.
Collapse
Affiliation(s)
- Liang Yan
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.,Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Jinzhu Ma
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yi Wang
- Department of Clinical Teaching, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Jiawei Zan
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China
| | - Zhen Wang
- Department of Chemistry, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yu Zhu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yiping Zhu
- Department of Chemistry, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liefeng Ling
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China
| | - Long Cao
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xin Liu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Shu Li
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lei Xu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zhilin Qi
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liuwang Nie
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China
| | - Yao Zhang
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
9
|
He H, Sinha I, Fan R, Haldosen LA, Yan F, Zhao C, Dahlman-Wright K. c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer. Oncogene 2018; 37:2586-2600. [DOI: 10.1038/s41388-018-0165-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
|