1
|
Wakamori C, De Velasco MA, Sakai K, Kura Y, Matsushita M, Fujimoto S, Hatano K, Nonomura N, Fujita K, Nishio K, Uemura H. A cross-species analysis of fecal microbiomes in humans and mice reveals similarities and dissimilarities associated with prostate cancer risk. Prostate 2024; 84:1375-1386. [PMID: 39113216 DOI: 10.1002/pros.24776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Prostate cancer is a complex disease that develops over time and is influenced by several lifestyle factors that also impact gut microbes. Gut dysbiosis is intricately linked to prostate carcinogenesis, but the precise mechanisms remain poorly understood. Mice are crucial for studying the relationships between gut microbes and prostate cancer, but discovering similarities between humans and mice may aid in elucidating new mechanisms. METHODS We used 16s rRNA sequencing data from stool samples of tumor-bearing prostate-specific conditional Pten-knockout mice, disease-free wildtype mice, and a human cohort suspected of having prostate cancer to conduct taxonomic and metagenomic profiling. Features were associated with prostate cancer status and low risk (a negative biopsy of Gleason grade <2) or high risk (Gleason grade ≥2) in humans. RESULTS In both humans and mice, community composition differed between individuals with and without prostate cancer. Odoribacter spp. and Desulfovibrio spp. were taxa associated with prostate cancer in mice and humans. Metabolic pathways associated with cofactor and vitamin synthesis were common in mouse and human prostate cancer, including bacterial synthesis of folate (vitamin B9), ubiquinone (CoQ10), phylloquinone (vitamin K1), menaquinone (vitamin K2), and tocopherol (vitamin E). CONCLUSIONS Our study provides valuable data that can help bridge the gap between human and mouse microbiomes. Our findings provide evidence to support the notion that certain bacterial-derived metabolites may promote prostate cancer, as well as a preclinical model that can be used to characterize biological mechanisms and develop preventive interventions.
Collapse
Affiliation(s)
- Chisato Wakamori
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Medicine, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Marco A De Velasco
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Saizo Fujimoto
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
2
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
3
|
Ciani L, Libonati A, Dri M, Pomella S, Campanella V, Barillari G. About a Possible Impact of Endodontic Infections by Fusobacterium nucleatum or Porphyromonas gingivalis on Oral Carcinogenesis: A Literature Overview. Int J Mol Sci 2024; 25:5083. [PMID: 38791123 PMCID: PMC11121237 DOI: 10.3390/ijms25105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis is linked to the onset and progression of oral squamous cell carcinoma (OSCC), an epidemiologically frequent and clinically aggressive malignancy. In this context, Fusobacterium (F.) nucleatum and Porphyromonas (P.) gingivalis, two bacteria that cause periodontitis, are found in OSCC tissues as well as in oral premalignant lesions, where they exert pro-tumorigenic activities. Since the two bacteria are present also in endodontic diseases, playing a role in their pathogenesis, here we analyze the literature searching for information on the impact that endodontic infection by P. gingivalis or F. nucleatum could have on cellular and molecular events involved in oral carcinogenesis. Results from the reviewed papers indicate that infection by P. gingivalis and/or F. nucleatum triggers the production of inflammatory cytokines and growth factors in dental pulp cells or periodontal cells, affecting the survival, proliferation, invasion, and differentiation of OSCC cells. In addition, the two bacteria and the cytokines they induce halt the differentiation and stimulate the proliferation and invasion of stem cells populating the dental pulp or the periodontium. Although most of the literature confutes the possibility that bacteria-induced endodontic inflammatory diseases could impact on oral carcinogenesis, the papers we have analyzed and discussed herein recommend further investigations on this topic.
Collapse
Affiliation(s)
- Luca Ciani
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Antonio Libonati
- Department of Surgical Sciences, Catholic University of Our Lady of Good Counsel of Tirane, 1001 Tirana, Albania;
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Vincenzo Campanella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| |
Collapse
|
4
|
Gunduz H, Almammadov T, Dirak M, Acari A, Bozkurt B, Kolemen S. A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and in vivo. RSC Chem Biol 2023; 4:675-684. [PMID: 37654504 PMCID: PMC10467614 DOI: 10.1039/d3cb00070b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrogen sulfide (H2S) as a critical messenger molecule plays vital roles in regular cell function. However, abnormal levels of H2S, especially mitochondrial H2S, are directly correlated with the formation of pathological states including neurodegenerative diseases, cardiovascular disorders, and cancer. Thus, monitoring fluxes of mitochondrial H2S concentrations both in vitro and in vivo with high selectivity and sensitivity is crucial. In this direction, herein we developed the first ever example of a mitochondria-targeted and H2S-responsive new generation 1,2-dioxetane-based chemiluminescent probe (MCH). Chemiluminescent probes offer unique advantages compared to conventional fluorophores as they do not require external light irradiation to emit light. MCH exhibited a dramatic turn-on response in its luminescence signal upon reacting with H2S with high selectivity. It was used to detect H2S activity in different biological systems ranging from cancerous cells to human serum and tumor-bearing mice. We anticipate that MCH will pave the way for development of new organelle-targeted chemiluminescence agents towards imaging of different analytes in various biological models.
Collapse
Affiliation(s)
- Hande Gunduz
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koç University Istanbul 34450 Turkey
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Toghrul Almammadov
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
| | - Berkan Bozkurt
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Graduate School of Health Sciences, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Koç University Surface Science and Technology Center (KUYTAM) Istanbul 34450 Turkey
| |
Collapse
|
5
|
Dirak M, Turan SE, Kolemen S. Hydrogen Sulfide Responsive Phototherapy Agents: Design Strategies and Biological Applications. ACS BIO & MED CHEM AU 2023; 3:305-321. [PMID: 37599789 PMCID: PMC10436264 DOI: 10.1021/acsbiomedchemau.3c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023]
Abstract
Hydrogen sulfide (H2S) is one of the critical gasotransmitters, which play important roles in regular physiological processes, especially in vital signaling pathways. However, fluctuations in endogenous H2S concentration can be linked to serious health problems, such as neurodegenerative diseases, cancer, diabetes, inflammation, cardiovascular diseases, and hypertension. Thus, it has attracted a great deal of attention in therapeutic applications, specifically in the field of phototherapy. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two subclasses of phototherapy, which utilize either reactive oxygen species (ROS) or local temperature increase upon irradiation of a photosensitizer (PS) to realize the therapeutic action. Phototherapies offer unique advantages compared to conventional methods; thus, they are highly promising and popular. One of the design principles followed in new generation PSs is to build activity-based PSs, which stay inactive before getting activated by disease-associated stimuli. These activatable PSs dramatically improve the selectivity and efficacy of the therapy. In this review, we summarize small molecule and nanomaterial-based PDT and PTT agents that are activated selectively by H2S to initiate their cytotoxic effect. We incorporate single mode PDT and PTT agents along with synergistic and/or multimodal photosensitizers that can combine more than one therapeutic approach. Additionally, H2S-responsive theranostic agents, which offer therapy and imaging at the same time, are highlighted. Design approaches, working principles, and biological applications for each example are discussed in detail.
Collapse
Affiliation(s)
- Musa Dirak
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Sarp E. Turan
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Safacan Kolemen
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
- Koç
University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
6
|
Cui X, Liu R, Duan L, Zhang Q, Cao D, Zhang A. Exogenous hydrogen sulfide (H2S) exerts therapeutic potential in triple-negative breast cancer by affecting cell cycle and DNA replication pathway. Biomed Pharmacother 2023; 161:114488. [PMID: 37002576 DOI: 10.1016/j.biopha.2023.114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive subtype with a poor prognosis due to its high rates of proliferation and metastasis. Recently, hydrogen sulfide (H2S) has been recognized as a novel gasotransmitter that plays a significant role in various pathological processes, including cancer. Here, we show that exogenous H2S inhibited TNBC cancer cell proliferation, migration and invasion in vitro, and also decreased cancer malignances in the mouse model of TNBC. To investigate the underlying mechanisms of H2S's anti-cancer effects in TNBC, we performed transcriptome sequencing and bioinformatic analyses. 2121 differentially expressed genes (DEGs) were revealed, and mainly enriched in cell cycle and DNA replication pathways. Further analysis revealed changes in alternative splicing after exogenous H2S treatment. Protein-protein interaction (PPI) network analysis was performed, which identified 458 interactions among 276 DEGs enriched in cell cycle and DNA replication pathways.We identified seven hub genes (MCM3, MCM4, MCM5, MCM6, CDC6, CDC45, and GINS2) through PPI network analysis, which were up-regulated in clinical human breast cancer but down-regulated after H2S treatment. Based on the hub genes selected, we developed a model predicting that exogenous H2S mainly exerts its anti-TNBC role by delaying DNA replication. Our findings suggest that exogenous H2S has potential as a therapeutic agent in TNBC and may exert its therapeutic potential through DNA replication and the cell cycle pathway.
Collapse
|
7
|
Izidoro C, Botelho J, Machado V, Reis AM, Proença L, Barroso H, Alves R, Mendes JJ. Non-Surgical Periodontal Treatment Impact on Subgingival Microbiome and Intra-Oral Halitosis. Int J Mol Sci 2023; 24:ijms24032518. [PMID: 36768839 PMCID: PMC9916745 DOI: 10.3390/ijms24032518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to characterize and compare subgingival microbiome before and after periodontal treatment to learn if any changes of the subgingival microbiome were reflected in intra-oral halitosis. We tested the hypothesis that intra-oral halitosis (Volatile sulfur compounds levels) correlates with corresponding subgingival bacterial levels before and after periodontal treatment. Twenty patients with generalized periodontitis completed the study. Subgingival plaque samples were collected at baseline and 6-8 weeks after nonsurgical periodontal therapy. Full-mouth periodontal status assessed probing depth (PD), clinical attachment loss (CAL), gingival recession (REC), bleeding on probing (BoP), PISA and PESA. Halitosis assessment was made using a volatile sulfur compounds (VSC) detector device. Periodontal measures were regressed across VSC values using adjusted multivariate linear analysis. The subgingival microbiome was characterized by sequencing on an Illumina platform. From a sample of 20 patients referred to periodontal treatment, 70% were females (n = 14), with a mean age of 56.6 (±10.3) years; full-mouth records of PD, CAL, BOP (%) allowed to classify the stage and grade of periodontitis, with 45% (n = 9) of the sample having Periodontitis Stage IV grade C and 95% (n = 19) had generalized periodontitis. The correlation of bacterial variation with VSCs measured in the periodontal diagnosis and in the reassessment after treatment were evaluated. Fusobacterium nucleatum, Capnocytophaga gingivalis and Campylobacter showaei showed correlation with the reduction of VSC after periodontal treatment (p-value = 0.044; 0.047 and 0.004, respectively). Capnocytophaga sputigena had a significant reverse correlation between VSCs variation from diagnosis (baseline) and after treatment. Microbial diversity was high in the subgingival plaque on periodontitis and intra-oral halitosis participants of the study. Furthermore, there were correlations between subgingival plaque composition and VSC counting after periodontal treatment. The subgingival microbiome can offer important clues in the investigation of the pathogenesis and treatment of halitosis.
Collapse
Affiliation(s)
- Catarina Izidoro
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Correspondence: ; Tel.: +351-212-946-737
| | - João Botelho
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ana Mafalda Reis
- Instituto de Ciências Biomédicas Abel Salazar, School of Health and Life Sciences, University of Porto, 4099-002 Porto, Portugal
- Neuroradiology Department, Hospital Pedro Hispano, 4464-513 Matosinhos, Portugal
| | - Luís Proença
- Quantitative Methods for Health Research Unit (MQIS), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Helena Barroso
- Microbiology and Public Health Unit, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ricardo Alves
- Periodontology Department, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - José João Mendes
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| |
Collapse
|
8
|
Li Y, Zhu M, Liu Y, Luo B, Cui J, Huang L, Chen K, Liu Y. The oral microbiota and cardiometabolic health: A comprehensive review and emerging insights. Front Immunol 2022; 13:1010368. [PMID: 36466857 PMCID: PMC9716288 DOI: 10.3389/fimmu.2022.1010368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
There is mounting evidence demonstrating that oral dysbiosis causes periodontal disease and promotes the development of cardiovascular disease. The advancement of omics techniques has driven the optimization of oral microbiota species analysis and has provided a deeper understanding of oral pathogenic bacteria. A bi-directional relationship exists between the oral microbiota and the host, and oral-gut microbiota transfer is known to alter the composition of the gut microbiota and may cause local metabolic disorders. Furthermore, cardiovascular health can also be highly affected by oral microbiota functions and metabolites, including short-chain fatty acids (SCFAs), nitric oxide (NO), hydrogen sulfide (H2S), and some lipid metabolites. Studies have found that trimethylamine oxide (TMAO) may have adverse effects on cardiovascular health, whereas SCFAs, NO, and H2S have cardioprotective effects. SCFAs and H2S exert varying oral and cardiovascular effects, however reports on this specific topic remain controversial. Previous evidences are accustomed to summarizing the functions of oral microbiota in the context of periodontitis. The direct relationship between oral microbiota and cardiovascular diseases is insufficient. By systematically summarizing the methods associated with oral microbiota transplantation (OMT), this review facilitates an investigation into the causal links between oral microbiota and cardiovascular disease. The concomitant development of omics, bioinformatics, bacterial culture techniques, and microbiota transplantation techniques is required to gain a deeper understanding of the relationship between oral microbiota and cardiovascular disease occurrence.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Center for Evidence-based Medicine of Traditional Chinese Medicine (TCM), China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Karpiński TM, Ożarowski M, Stasiewicz M. Carcinogenic microbiota and its role in colorectal cancer development. Semin Cancer Biol 2022; 86:420-430. [PMID: 35090978 DOI: 10.1016/j.semcancer.2022.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The main risk factors for CRC are family history of colon or rectal cancer, familial polyposis syndrome or hereditary nonpolyposis, and chronic inflammatory bowel diseases (ulcerative colitis and Crohn's disease). Recent studies show that the gastrointestinal microbiota play a significant role in colorectal carcinogenesis. In this review we present the microorganisms, whose influence on the development of CRC has been proven: Bacteroides fragilis, Clostridioides and Clostridium spp., Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Helicobacter pylori, Peptostreptococcus anaerobius, Streptococcus bovis group, and sulfate-reducing bacteria. Moreover, the carcinogenic mechanisms of action mediated by the above bacteria are laid out.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants - National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland.
| | - Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
10
|
The Oral Tumor Cell Exosome miR-10b Stimulates Cell Invasion and Relocation via AKT Signaling. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3188992. [PMID: 36072619 PMCID: PMC9398826 DOI: 10.1155/2022/3188992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
An exosome derived from a cancer cell has been identified to regulate intercellular communication. However, the roles of oral cancer-derived ectodomains in tumor metastasis need to be investigated further. We investigated their roles in oral cancer cells in this paper. The enforcing effect on oral cancer cells was attributed primarily to miR-10b, a gene with a high level in exosomes that is transferred to recipient cells via oral cancer-derived exosomes. Exosomes were obtained by exosome isolation reagents. Also, exosome identification and analysis were performed by electron microscopy. The expression of miRNAs was analyzed by qRT-PCR. Protein expression was analyzed by Western blot. Also, invasion and migration experiments were performed to assay and evaluate the function of exosomal miR-10b. Exosome-mediated transfer of miR-10b promoted oral cancer cell behaviors, according to the findings. Finally, it was discovered that AKT signaling participates in regulating exosome-mediated invasion and migration of oral cancer cells and its activation reduced the inhibitory effect of miR-10b knockdown on oral cancer cells. Exosomal miR-10b derived from oral cancer cells enhances cell invasion and migration by activating AKT signaling.
Collapse
|
11
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
12
|
Li TJ, Hao YH, Tang YL, Liang XH. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front Microbiol 2022; 13:919633. [PMID: 35847109 PMCID: PMC9279119 DOI: 10.3389/fmicb.2022.919633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows a striking link between periodontal diseases and various human cancers including oral cancer. And periodontal pathogens, leading to periodontal diseases development, may serve a crucial role in oral cancer. This review elucidated the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens directly engage in their own unique molecular dialogue with the host epithelium to acquire cancer phenotypes, and indirectly induce a proinflammatory environment and carcinogenic substance in favor of cancer development. And functional, rather than compositional, properties of oral microbial community correlated with cancer development are discussed. The effect of periodontal pathogens on periodontal diseases and oral cancer will further detail the pathogenesis of oral cancer and intensify the need of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-hang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Chen Y, Huang Z, Tang Z, Huang Y, Huang M, Liu H, Ziebolz D, Schmalz G, Jia B, Zhao J. More Than Just a Periodontal Pathogen –the Research Progress on Fusobacterium nucleatum. Front Cell Infect Microbiol 2022; 12:815318. [PMID: 35186795 PMCID: PMC8851061 DOI: 10.3389/fcimb.2022.815318] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum is a common oral opportunistic bacterium that can cause different infections. In recent years, studies have shown that F. nucleatum is enriched in lesions in periodontal diseases, halitosis, dental pulp infection, oral cancer, and systemic diseases. Hence, it can promote the development and/or progression of these conditions. The current study aimed to assess research progress in the epidemiological evidence, possible pathogenic mechanisms, and treatment methods of F. nucleatum in oral and systemic diseases. Novel viewpoints obtained in recent studies can provide knowledge about the role of F. nucleatum in hosts and a basis for identifying new methods for the diagnosis and treatment of F. nucleatum-related diseases.
Collapse
Affiliation(s)
- Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| |
Collapse
|
15
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
16
|
Cox-2 Antagonizes the Protective Effect of Sevoflurane on Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis through Inhibiting the Akt Pathway. DISEASE MARKERS 2021; 2021:4114593. [PMID: 34917200 PMCID: PMC8670977 DOI: 10.1155/2021/4114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
Objective To uncover the protective role of sevoflurane on hypoxia/reoxygenation-induced cardiomyocyte apoptosis through the protein kinase B (Akt) pathway. Methods An in vitro hypoxia/reoxygenation (H/R) model was established in cardiomyocyte cell line H9c2. Sevoflurane (SEV) was administrated in H9c2 cells during the reoxygenation period. Viability, layered double hydroxide (LDH) release, and apoptosis in H9c2 cells were determined to assess H/R-induced cell damage. Relative levels of apoptosis-associated genes were examined. Moreover, phosphorylation of Akt was determined. Results H/R injury declined viability and enhanced LDH release and apoptotic rate in H9c2 cells. Cyclooxygenase-2 (Cox-2) was upregulated following H/R injury, which was partially reversed by SEV treatment. In addition, SEV treatment reversed changes in viability and LDH release owing to H/R injury in H9c2 cells, which were further aggravated by overexpression of Cox-2. The Akt pathway was inhibited in H9c2 cells overexpressing Cox-2. Conclusions Sevoflurane protects cardiomyocyte damage following H/R via the Akt pathway, and its protective effect was abolished by overexpression of Cox-2.
Collapse
|
17
|
Zanetti F, Zivkovic Semren T, Battey JND, Guy PA, Ivanov NV, van der Plas A, Hoeng J. A Literature Review and Framework Proposal for Halitosis Assessment in Cigarette Smokers and Alternative Nicotine-Delivery Products Users. FRONTIERS IN ORAL HEALTH 2021; 2:777442. [PMID: 35048075 PMCID: PMC8757736 DOI: 10.3389/froh.2021.777442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Halitosis is a health condition which counts cigarette smoking (CS) among its major risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community, leading to several oral diseases and conditions, including intraoral halitosis. Although the best approach to decrease smoking-related health risks is quitting smoking, this is not feasible for many smokers. Switching to potentially reduced-risk products, like electronic vapor products (EVP) or heated tobacco products (HTP), may help improve the conditions associated with CS. To date, there have been few systematic studies on the effects of CS on halitosis and none have assessed the effects of EVP and HTP use. Self-assessment studies have shown large limitations owing to the lack of reliability in the participants' judgment. This has compelled the scientific community to develop a strategy for meaningful assessment of these new products in comparison with cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and propose a 3-layer approach that combines the use of the most advanced breath analysis techniques and multi-omics analysis to define the interactions between oral bacterial species and their role in halitosis both in vitro and in vivo. Such an approach will allow us to compare the effects of different nicotine-delivery products on oral bacteria and quantify their impact on halitosis. Defining the impact of alternative nicotine-delivery products on intraoral halitosis and its associated bacteria will help the scientific community advance a step further toward understanding the safety of these products and their potentiall risks for consumers.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Qi M, Chen X, Bian L, Zhang H, Ma J. Honokiol combined with curcumin sensitizes multidrug-resistant human lung adenocarcinoma A549/DDP cells to cisplatin. Exp Ther Med 2021; 22:1301. [PMID: 34630656 DOI: 10.3892/etm.2021.10736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/20/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to discuss the effects and underlying mechanisms of honokiol (HNK) and/or curcumin (CUR) in sensitization of multidrug-resistant human lung adenocarcinoma A549/DDP cells to cisplatin (DDP). An MTS assay was performed to detect the cytotoxicity of HNK, CUR and DDP in A549 and A549/DDP cells and compare their sensitivity. The A549/DDP cells were then divided into 8 groups: Control, HNK, CUR, DDP, HNK + CUR, HNK + DDP, CUR + DDP and HNK + CUR + DDP. Cell proliferation was measured by MTS assay and colony formation assay, cell apoptosis was detected by flow cytometry, cell invasion was evaluated by Transwell assay and cell migration was determined by a wound healing assay. In order to investigate the possible mechanisms, P-glycoprotein (P-gp) protein expression was measured by western blotting and immunofluorescence assays. The mRNA expression levels of AKT, Erk1/2, cyclin-dependent kinase inhibitor 1 (P21), caspase 3, cleaved caspase 3, caspase 9, cleaved caspase 9, poly (ADP-ribose) polymerase (PARP), cleaved PARP, matrix metalloproteinase (MMP)-2 and MMP-9 were examined by reverse transcription-quantitative (RT-q) PCR assay, and the protein expression levels of phosphorylated (p)-AKT, p-Erk1/2, P21, caspase 3, cleaved caspase 3, caspase 9, cleaved caspase 9, PARP, cleaved PARP, MMP-2 and MMP-9 proteins expression by western blot assay. The MTS assay demonstrated that HNK (5 µg/ml), CUR (10 µg/ml) and DDP (5 µg/ml) had no obvious toxicity to A549/DDP cells, and HNK, CUR and DDP were more sensitive in A549 cells compared with A549/DDP cells. The optimal concentrations of HNK (5 µg/ml), CUR (10 µg/ml) and DDP (5 µg/ml) were chosen to carry out the further experiments. Compared with the control group, no significant change was observed in cell proliferation, apoptosis, migration, invasion and related mRNA and protein expression in HNK, CUR, DDP and HNK + CUR groups. The cell proliferation rate in the HNK + DDP and CUR + DDP groups was significantly suppressed with cell apoptosis significantly increased, respectively. The invasion cell number and wound healing rate of HNK + DDP and CUR + DDP groups were significantly depressed compared with the control group, respectively. Immunofluorescence demonstrated that the nuclear volume of P-gp in HNK + DDP and CUR + DDP groups were significantly downregulated compared with the control group, respectively. The RT-qPCR assay demonstrated that the AKT, Erk1/2 and P21 mRNA expression levels were significantly decreased and cleaved caspase 3, cleaved caspase 9 and cleaved PARP were increased in HNK + DDP and CUR + DDP groups compared with the control group. The western blotting results were consistent with the RT-qPCR results. NK + CUR + DDP had improved effects on A549/DDP compared with HNK + DDP or CUR + DDP group, respectively. HNK and/or CUR could improve the sensitivity of DDP to A549/DDP cell by the regulation of P-gp, inducing apoptosis, and inhibiting migration and invasion via AKT/ERK signal pathway in an in vitro study.
Collapse
Affiliation(s)
- Mingming Qi
- Department of Febrile Diseases, School of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiaojin Chen
- Hanlin College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Liqun Bian
- Digestive Department, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing 100091, P.R. China
| | - Han Zhang
- Department of Febrile Diseases, School of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jian Ma
- Department of Febrile Diseases, School of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
19
|
Peng W, Zhang ML, Zhang J, Chen G. Potential role of hydrogen sulfide in central nervous system tumors: a narrative review. Med Gas Res 2021; 12:6-9. [PMID: 34472496 PMCID: PMC8447953 DOI: 10.4103/2045-9912.324590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Central nervous system tumors are classified as diseases of special clinical significance with high disability and high mortality. In addition to cerebrovascular diseases and craniocerebral injuries, tumors are the most common diseases of the central nervous system. Hydrogen sulfide, the third endogenous gas signaling molecule discovered in humans besides nitric oxide and carbon monoxide, plays an important role in the pathophysiology of human diseases. It is reported that hydrogen sulfide not only exerts a wide range of biological effects, but also develops a certain relationship with tumor development and neovascularization. A variety of studies have shown that hydrogen sulfide acts as a vasodilator and angiogenetic factor to facilitate growth, proliferation, migration and invasion of cancer cells. In this review, the pathological mechanisms and the effect of hydrogen sulfide on the central nervous system tumors are introduced.
Collapse
Affiliation(s)
- Wei Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Meng-Ling Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
20
|
MUNTEANU C, MUNTEANU D, ONOSE G. Hydrogen sulfide (H2S) - therapeutic relevance in rehabilitation and balneotherapy Systematic literature review and meta-analysis based on the PRISMA paradig. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background. An active molecule in sulfurous mineral - therapeutic waters and also in sapropelic mud is H2S, a hormetic gaseous molecule that can actively penetrate the skin. While high levels of H2S are extremely toxic, low levels are tolerated and have potential cytoprotective effects, with anti-inflammatory and antioxidant applications.
Objective. This systematic review aims to rigorously select related articles and identify within their content the main possible uses of hydrogen sulfide from balneary sources and to explain its physiological mechanisms and therapeutic properties.
Methods. To elaborate our systematic review, we have searched for relevant open access articles in 6 international databases: Cochrane , Elsevier , NCBI/PubMed , NCBI/PMC , PEDro , and ISI Web of Knowledge/Science , published from January 2016 until July 2021. The contextually quested keywords combinations/ syntaxes used are specified on this page. The eligible articles were analyzed in detail regarding pathologies addressed by hydrogen sulfide. All articles with any design (reviews, randomized controlled trials, non-randomized controlled trials, case-control studies, cross-sectional studies), if eligible according to the above-mentioned selection methodology, containing in the title the selected combinations, were included in the analysis. Articles were excluded in the second phase if they did not reach the relevance criterion.
Results. Our search identified, first, 291 articles. After eliminating the duplicates and non-ISI articles, remained 121 papers. In the second phase, we applied a PEDro selection filter, resulting in 108 articles that passed the relevance criterion and were included in this systematic review.
Conclusions. H2S biology and medical relevance are not fully understood and used adequately for sanogenic or medical purposes. More research is needed to fully understand the mechanisms and importance of this therapeutic gase. The link between balneotherapy and medical rehabilitation regarding the usage of hydrogen sulfide emphasises the unity for this medical speciality.
Collapse
Affiliation(s)
- Constantin MUNTEANU
- 1 University of Medicine and Pharmacy “Grigore T. Popa, 16 University Street, Iasi, Romania
| | - Diana MUNTEANU
- National Institute of Rehabilitation, Physical Medicine and Balneoclimatology, Bucharest, Romania
| | - Gelu ONOSE
- Teaching Emergency Hospital ”Bagdasar-Arseni”, Bucharest, Romania , Faculty of Medicine, Department of Physical and Rehabilitation Medicine, University of Medicine and Pharmacy ”Carol Davila”, Bucharest,
| |
Collapse
|
21
|
Wan M, Liu Z, Li T, Chen H, Wang Q, Chen T, Tao Y, Mao C. Zwitterion-Based Hydrogen Sulfide Nanomotors Induce Multiple Acidosis in Tumor Cells by Destroying Tumor Metabolic Symbiosis. Angew Chem Int Ed Engl 2021; 60:16139-16148. [PMID: 33914416 DOI: 10.1002/anie.202104304] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 12/17/2022]
Abstract
Destruction of tumor metabolism symbiosis is an attractive cancer treatment method which targets tumor cells with little harm to normal cells. Yet, a single intervention strategy and poor penetration of the drug in tumor tissue result in limited effect. Herein, we propose a zero-waste zwitterion-based hydrogen sulfide (H2 S)-driven nanomotor based on the basic principle of reaction in human body. When loaded with monocarboxylic acid transporter inhibitor α-cyano-4-hydroxycinnamic acid (α-CHCA), the nanomotor can move in tumor microenvironment and induce multiple acidosis of tumor cells and inhibit tumor growth through the synergistic effect of motion effect, driving force H2 S and α-CHCA. Given the good biosafety of the substrate and driving gas of this kind of nanomotor, as well as the limited variety of nanomotors currently available to move in the tumor microenvironment, this kind of nanomotor may provide a competitive candidate for the active drug delivery system of cancer treatment.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tiantian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yingfang Tao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
22
|
Wan M, Liu Z, Li T, Chen H, Wang Q, Chen T, Tao Y, Mao C. Zwitterion‐Based Hydrogen Sulfide Nanomotors Induce Multiple Acidosis in Tumor Cells by Destroying Tumor Metabolic Symbiosis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Tiantian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yingfang Tao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
23
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
24
|
Ascenção K, Dilek N, Augsburger F, Panagaki T, Zuhra K, Szabo C. Pharmacological induction of mesenchymal-epithelial transition via inhibition of H2S biosynthesis and consequent suppression of ACLY activity in colon cancer cells. Pharmacol Res 2021; 165:105393. [PMID: 33484818 DOI: 10.1016/j.phrs.2020.105393] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter mediator, which regulates a variety of cellular functions in autocrine and paracrine manner. The enzymes responsible for the biological generation of H2S include cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). Increased expression of these enzymes and overproduction of H2S has been implicated in essential processes of various cancer cells, including the stimulation of metabolism, maintenance of cell proliferation and cytoprotection. Cancer cell identity is characterized by so-called "transition states". The progression from normal (epithelial) to transformed (mesenchymal) state is termed epithelial-to-mesenchymal transition (EMT) whereby epithelial cells lose their cell-to-cell adhesion capacity and gain mesenchymal characteristics. The transition process can also proceed in the opposite direction, and this process is termed mesenchymal-to-epithelial transition (MET). The current project was designed to determine whether inhibition of endogenous H2S production in colon cancer cells affects the EMT/MET balance in vitro. Inhibition of H2S biosynthesis in HCT116 human colon cancer cells was achieved either with aminooxyacetic acid (AOAA) or 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE). These inhibitors induced an upregulation of E-cadherin and Zonula occludens-1 (ZO-1) expression and downregulation of fibronectin expression, demonstrating that H2S biosynthesis inhibitors can produce a pharmacological induction of MET in colon cancer cells. These actions were functionally reflected in an inhibition of cell migration, as demonstrated in an in vitro "scratch wound" assay. The mechanisms involved in the action of endogenously produced H2S in cancer cells in promoting (or maintaining) EMT (or tonically inhibiting MET) relate, at least in part, in the induction of ATP citrate lyase (ACLY) protein expression, which occurs via upregulation of ACLY mRNA (via activation of the ACLY promoter). ACLY in turn, regulates the Wnt-β-catenin pathway, an essential regulator of the EMT/MET balance. Taken together, pharmacological inhibition of endogenous H2S biosynthesis in cancer cells induces MET. We hypothesize that this may contribute to anti-cancer / anti-metastatic effects of H2S biosynthesis inhibitors.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Nahzli Dilek
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Fiona Augsburger
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Theodora Panagaki
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Karim Zuhra
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
25
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci 2021; 17:73-88. [PMID: 33390834 PMCID: PMC7757040 DOI: 10.7150/ijbs.47850] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shams Uz Zaman
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
26
|
Zou X, Wang Y, Wang Y, Yang J, Guo H, Cai Z. Paeoniflorin Alleviates Abnormalities in Rats with Functional Dyspepsia by Stimulating the Release of Acetylcholine. Drug Des Devel Ther 2020; 14:5623-5632. [PMID: 33376306 PMCID: PMC7764555 DOI: 10.2147/dddt.s260703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xuan Zou
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian116001, People’s Republic of China
- Institute (College) Integrative Medicine, Dalian Medical University, Dalian116044, People’s Republic of China
| | - Yang Wang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian116001, People’s Republic of China
- Institute (College) Integrative Medicine, Dalian Medical University, Dalian116044, People’s Republic of China
| | - Yuheng Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian116001, People’s Republic of China
| | - Junting Yang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian116001, People’s Republic of China
| | - Huishu Guo
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian116001, People’s Republic of China
- Institute (College) Integrative Medicine, Dalian Medical University, Dalian116044, People’s Republic of China
- Huishu Guo Central Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian116001, People’s Republic of ChinaTel +86-411-83635963 ext 7255 Email
| | - Zhengxu Cai
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian116001, People’s Republic of China
- Correspondence: Zhengxu Cai Department of Neurology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian116001, People’s Republic of China Email
| |
Collapse
|
27
|
Wu D, Zhong P, Wang Y, Zhang Q, Li J, Liu Z, Ji A, Li Y. Hydrogen Sulfide Attenuates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Inhibiting Apoptosis and Promoting Autophagy via Reactive Oxygen Species/Phosphatidylinositol 3-Kinase/AKT/Mammalian Target of Rapamycin Signaling Pathway. Front Pharmacol 2020; 11:585860. [PMID: 33390956 PMCID: PMC7774297 DOI: 10.3389/fphar.2020.585860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. Hydrogen sulfide (H2S) is involved in a wide range of physiological and pathological processes. Nevertheless, the mechanism of action of H2S in NAFLD development has not been fully clarified. Here, the reduced level of H2S was observed in liver cells treated with oleic acid (OA). Administration of H2S increased the proliferation of OA-treated cells. The results showed that H2S decreased apoptosis and promoted autophagy through reactive oxygen species (ROS)-mediated phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) cascade in OA-treated cells. In addition, administration of H2S relieved high-fat diet (HFD)-induced NAFLD via inhibition of apoptosis and promotion of autophagy. These findings suggest that H2S could ameliorate HFD-induced NAFLD by regulating apoptosis and autophagy through ROS/PI3K/AKT/mTOR signaling pathway. Novel H2S-releasing donors may have therapeutic potential for the treatment of NAFLD.
Collapse
Affiliation(s)
- Dongdong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Peiyu Zhong
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yizhen Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Qianqian Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jianmei Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Zhengguo Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ailing Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| |
Collapse
|
28
|
Zhang J, Ye J, Yuan C, Fu Q, Zhang F, Zhu X, Wang L, Gao P, Shu G, Wang S, Liu Q, Jiang Q. Hydrogen sulfide is a regulator of mammary gland development in prepubescent female mice. Mol Med Rep 2020; 22:4061-4069. [PMID: 33000185 DOI: 10.3892/mmr.2020.11462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of exogenous H2S on mammary gland development in pubescent mice and to explore the underlying mechanism. The mouse mammary epithelial cell line HC11, along with C57BL/6J mice, were treated with different concentrations of sodium hydrosulfide (NaHS), which is a donor of H2S. The HC11 cell viability, pubescent mammary gland development, and the involvement of proliferative proteins and pathways were assessed by CCK‑8 assay, EdU assay, whole mount staining, H&E staining, western blotting and reverse transcription‑quantitative PCR. Both in vitro and in vivo, a low concentration of NaHS (100 µM in vitro; 9 mg/kg in vivo) significantly promoted the viability of HC11 cells and the development of mammary glands by increasing the expression of the proliferative markers cyclin D1/3 and proliferating cell nuclear antigen. However, a high concentration of NaHS (1,000 µM in vitro; 18 mg/kg in vivo) inhibited HC11 cell viability, mammary gland development and the expression levels of proteins involved in proliferation. Subsequent experiments revealed that NaHS regulated the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt)‑mammalian target of rapamycin (mTOR) signaling pathway during this process. In vivo, intraperitoneal injection of low concentration NaHS (9 mg/kg) activated the PI3K/Akt‑mTOR pathway in mammary glands of pubescent mice, increased the secretion of insulin‑like growth factor 1 (IGF‑1) and estradiol (E2), and then stimulated mammary gland ductal development. Whereas a high concentration of NaHS (18 mg/kg) elicited the opposite effects to those of low‑dose NaHS. In conclusion, the present study demonstrated that exogenous H2S supplied by NaHS may exert bidirectional effects on mammary gland ductal development; promoting ductal development at a low concentration and inhibiting it at a high concentration. The effects of H2S may occur via the intracellular PI3K/Akt‑mTOR signaling pathway, or by regulation of the secretion of IGF‑1 and E2.
Collapse
Affiliation(s)
- Jing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Jiayi Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
29
|
Wu S, Huang D, Su X, Yan H, Ma A, Li L, Wu J, Sun Z. The prostaglandin synthases, COX-2 and L-PGDS, mediate prostate hyperplasia induced by low-dose bisphenol A. Sci Rep 2020; 10:13108. [PMID: 32753632 PMCID: PMC7403327 DOI: 10.1038/s41598-020-69809-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
This study aimed to identify prostaglandin synthases (PGS) that mediate bisphenol A (BPA)-induced prostatic hyperplasia and explore their underlying mechanisms. In an in vivo study, male adult Sprague–Dawley rats were treated with different concentrations of BPA (10, 30, 90, or 270 μg/kg, i.g., daily), or with vehicle for 4 weeks. Results revealed that low-dose BPA induced prostatic hyperplasia with increased PCNA/TUNEL ratio. It significantly upregulated the expression of cyclooxygenase-2 (COX-2) and NF-κB in the dorsolateral prostate (P < 0.05) and the expression of lipocalin-type prostaglandin D synthase (L-PGDS) in ventral prostate (P < 0.05). The level of estradiol (E2)/testosterone (T) and expression of androgen receptor (AR) and estrogen receptor α (ERα) were also altered. In vitro studies showed that low-dose BPA (0.1–10 nM) promoted the proliferation of human prostate fibroblasts and epithelial cells, and significantly upregulated the expression of COX-2 and L-PGDS in the cells. The two types of cell proliferation induced by BPA were inhibited by COX-2 inhibitor (NS398) and L-PGDS inhibitor (AT56), with increased apoptosis level. These findings suggested that COX-2 and L-PGDS could mediate low-dose BPA-induced prostatic hyperplasia through pathways involved in cell proliferation and apoptosis, which might be related to the functions of ERα and AR. The role of COX-2/NF-κB pathway in dorsolateral prostate requires further research.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Pharmacy School of Fudan University, Shanghai, 201203, China.,National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Dongyan Huang
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Xin Su
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Han Yan
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Aicui Ma
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Lei Li
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Jianhui Wu
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China. .,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China. .,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China.
| | - Zuyue Sun
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| |
Collapse
|
30
|
Hampelska K, Jaworska MM, Babalska ZŁ, Karpiński TM. The Role of Oral Microbiota in Intra-Oral Halitosis. J Clin Med 2020; 9:E2484. [PMID: 32748883 PMCID: PMC7465478 DOI: 10.3390/jcm9082484] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Halitosis is a common ailment concerning 15% to 60% of the human population. Halitosis can be divided into extra-oral halitosis (EOH) and intra-oral halitosis (IOH). The IOH is formed by volatile compounds, which are produced mainly by anaerobic bacteria. To these odorous substances belong volatile sulfur compounds (VSCs), aromatic compounds, amines, short-chain fatty or organic acids, alcohols, aliphatic compounds, aldehydes, and ketones. The most important VSCs are hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl mercaptan. VSCs can be toxic for human cells even at low concentrations. The oral bacteria most related to halitosis are Actinomyces spp., Bacteroides spp., Dialister spp., Eubacterium spp., Fusobacterium spp., Leptotrichia spp., Peptostreptococcus spp., Porphyromonas spp., Prevotella spp., Selenomonas spp., Solobacterium spp., Tannerella forsythia, and Veillonella spp. Most bacteria that cause halitosis are responsible for periodontitis, but they can also affect the development of oral and digestive tract cancers. Malodorous agents responsible for carcinogenesis are hydrogen sulfide and acetaldehyde.
Collapse
Affiliation(s)
- Katarzyna Hampelska
- Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (K.H.); (M.M.J.)
- Central Microbiology Laboratory, H. Święcicki Clinical Hospital, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Marcelina Maria Jaworska
- Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (K.H.); (M.M.J.)
| | - Zuzanna Łucja Babalska
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
31
|
Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R, Parama D, Rana V, Shabnam B, Khatoon E, Kumar AP, Kunnumakkara AB. Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. Int J Mol Sci 2020; 21:ijms21093285. [PMID: 32384682 PMCID: PMC7246494 DOI: 10.3390/ijms21093285] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.
Collapse
Affiliation(s)
- Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Elina Khatoon
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| |
Collapse
|
32
|
Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral Oncol 2020; 107:104710. [PMID: 32371264 DOI: 10.1016/j.oraloncology.2020.104710] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/16/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Previous studies have proved that periodontitis is an independent risk factor of oral squamous cell carcinoma (OSCC) epidemiologically. Along with the important role of microbiota in the cancer process and the specific anatomical position, our study explored the microbial composition and functions in periodontitis and gingival squamous cell carcinoma (GSCC). MATERIALS AND METHODS GSCC patients (n = 10), matched periodontitis patients (n = 15), and healthy individuals (n = 15) were recruited. Saliva, subgingival plaque, tongue dorsum, buccal mucosa, cancerous tissue, and paracancerous tissue samples were collected. 16S rDNA amplicon sequencing and functional prediction were applied for the taxonomic analysis. RESULTS Periodontal pathogens occupied 46% in GSCC. Besides, the mutual operational taxonomy unites (OTU) generated from the subgingival plaque occupied 38.36% and 44.13% from saliva. Fusobacterium, Peptostreptococcus, and Prevotella were more abundant in cancerous tissues, while Streptococcus, Neisseria, and Haemophilus were more enriched in saliva or soft mucosa. PCoA exhibited similar cluster between tongue dorsum and saliva in GSCC. GSCC showed lower richness than periodontitis. In saliva and subgingival plaque, Atopobium was more prevalent in GSCC than periodontitis and controls in descending order. Lipopolysaccharide (LPS) biosynthesis increased in subgingival plaque of GSCC compared with the other two groups. CONCLUSION Periodontal pathogens were abundant in GSCC. Cancerous tissues harbor enriched periodontal pathogens while saliva or soft mucosa harbored more periodontal health related bacteria. A high level of Atopobium in saliva and LPS biosynthesis have the potential for increasing the risk of suffering from GSCC in individuals with periodontitis, which needs more evidence to clarify it.
Collapse
|
33
|
Tripartite Motif Containing 11 Interacts with DUSP6 to Promote the Growth of Human Osteosarcoma Cells through Regulating ERK1/2 Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9612125. [PMID: 31950060 PMCID: PMC6948331 DOI: 10.1155/2019/9612125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/30/2019] [Indexed: 01/25/2023]
Abstract
Tripartite Motif Containing 11 (TRIM11), an E3 ubiquitin ligase, is identified as a carcinogen causing certain human cancers. However, the specific role of TRIM11 is still uncovered in human osteosarcoma (OS) cells. To explore the role of TRIM11 in OS cells, TRIM11 was induced by silencing and overexpression in OS cells using RNA interference (RNAi) and lentiviral vector, respectively. qRT-PCR and western blot were used to examine the transcription and translation levels of the target gene. Cell count kit-8 (CCK-8) assays were established to analyze cell proliferation. Cell apoptosis ratio was determined via flow cytometry. In our analyses, TRIM11 was suggested to be upregulated, and it functioned as a pro-proliferation and antiapoptosis factor in OS cells. Moreover, the extracellular-signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 was used to examine the relationship between TRIM11 and ERK1/2 in OS cells. Results demonstrated that the role of TRIM11 was significantly disrupted by the ERK1/2 inhibitor PD98059. Interestingly, we found TRIM11 overexpression did not affect dual-specificity phosphatase 6 (DUSP6) transcription, but improved its translation in OS cells. Co-immunoprecipitation (Co-IP) analyses revealed that TRIM11 interacted with DUSP6. Importantly, overexpression of TRIM11 enhanced DUSP6 ubiquitination in OS cells. Therefore, TRIM11 might suppress the translation of DUSP6 via improving its ubiquitination. Additionally, TRIM11 silencing in OS cells significantly reduced its tumorigenicity in vivo. Overall, our findings firstly revealed that TRIM11 was an oncogene gene in the growth of OS cells and illustrated its potential function as a target in the treatment of OS.
Collapse
|
34
|
Javadinia SA, Shahidsales S, Fanipakdel A, Mostafapour A, Joudi-Mashhad M, Ferns GA, Avan A. The Esophageal Cancer and the PI3K/AKT/mTOR Signaling Regulatory microRNAs: a Novel Marker for Prognosis, and a Possible Target for Immunotherapy. Curr Pharm Des 2019; 24:4646-4651. [PMID: 30636576 DOI: 10.2174/1381612825666190110143258] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 01/25/2023]
Abstract
The Phosphatidylinositol 3-kinase/AKT/Mammalian Target of Rapamycin (PI3K/AKT/mTOR) pathway has a critical regulatory role in cell biology including translation, transcription, and autophagy. Dysregulation of this pathway is involved in the pathogenesis, development, and prognosis of esophageal cancer that has been assessed in the recent years and its potential as a target in therapy. This report summarizes the current knowledge about PI3K/AKT/mTOR pathway and its cross-talk with a focus on the value of targeting this pathway as a potential therapeutic target in the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Seyed A Javadinia
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mostafapour
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Joudi-Mashhad
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, United Kingdom
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Cox-2 Negatively Affects the Protective Role of Propofol against Hypoxia/Reoxygenation Induced Cardiomyocytes Apoptosis through Suppressing Akt Signaling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7587451. [PMID: 31380437 PMCID: PMC6662450 DOI: 10.1155/2019/7587451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/12/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023]
Abstract
Nowadays, the prevention of severe myocardium injury resulting from myocardial ischemia/reperfusion injury (I/R) has been recognized as an important subject in the field of ischemic heart disease. In this study, H9c2 cardiomyocytes were exposed to cycles of hypoxia/reoxygenation (H/R) to mimic myocardial I/R injury. Western blot analysis and qRT-PCR were performed to detect the expression of Cox-2, Akt and p-Akt. Cell viability, LDH release and activity of Caspase-3 were assessed to determine the protective effect of propofol. The results proved that the protective effect of propofol for H/R challenged cardiomyocytes was associated with Akt phosphorylation. We also revealed that treatment of propofol suppressed the expression of Cox-2 in cardiomyocytes which was up-regulated after H/R treatment. Conversely, the over-expression of Cox-2 inhibited Akt phosphorylation while enhancing cardiomyocytes apoptosis. Interestingly, Akt activator exhibited similar protective effect with propofol and could diminish the influences brought by over-expression of Cox-2. Thus, it could be concluded that Cox-2 negatively affects the protective effect of propofol against hypoxia/reoxygenation induced cardiomyocyte apoptosis by suppressing Akt phosphorylation.
Collapse
|
36
|
Yang CT, Wang Y, Marutani E, Ida T, Ni X, Xu S, Chen W, Zhang H, Akaike T, Ichinose F, Xian M. Data-Driven Identification of Hydrogen Sulfide Scavengers. Angew Chem Int Ed Engl 2019; 58:10898-10902. [PMID: 31194894 DOI: 10.1002/anie.201905580] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/09/2019] [Indexed: 11/10/2022]
Abstract
Hydrogen sulfide (H2 S) is an important signaling molecule whose up- and down-regulation have specific biological consequences. Although significant advances in H2 S up-regulation, by the development of H2 S donors, have been achieved in recent years, precise H2 S down-regulation is still challenging. The lack of potent/specific inhibitors for H2 S-producing enzymes contributes to this problem. We expect the development of H2 S scavengers is an alternative approach to address this problem. Since chemical sensors and scavengers of H2 S share the same criteria, we constructed a H2 S sensor database, which summarizes key parameters of reported sensors. Data-driven analysis led to the selection of 30 potential compounds. Further evaluation of these compounds identified a group of promising scavengers, based on the sulfonyl azide template. The efficiency of these scavengers in in vitro and in vivo experiments was demonstrated.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, China
| | - Yingying Wang
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Eizo Marutani
- Dept. Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University, Sendai, 980-8575, Japan
| | - Xiang Ni
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Shi Xu
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Wei Chen
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, China
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University, Sendai, 980-8575, Japan
| | - Fumito Ichinose
- Dept. Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02114, USA
| | - Ming Xian
- Dept. Chemistry, Washington State University, Pullman, 99164, WA, USA
| |
Collapse
|
37
|
Yang C, Wang Y, Marutani E, Ida T, Ni X, Xu S, Chen W, Zhang H, Akaike T, Ichinose F, Xian M. Data‐Driven Identification of Hydrogen Sulfide Scavengers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chun‐tao Yang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 510095 China
| | - Yingying Wang
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Eizo Marutani
- Dept. Anesthesia Critical Care and Pain Medicine Massachusetts General Hospital/Harvard Medical School Boston MA 02114 USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology Tohoku University Sendai 980-8575 Japan
| | - Xiang Ni
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Shi Xu
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Wei Chen
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 510095 China
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology Tohoku University Sendai 980-8575 Japan
| | - Fumito Ichinose
- Dept. Anesthesia Critical Care and Pain Medicine Massachusetts General Hospital/Harvard Medical School Boston MA 02114 USA
| | - Ming Xian
- Dept. Chemistry Washington State University Pullman 99164 WA USA
| |
Collapse
|
38
|
Zhang X, Feng Y, Liu X, Ma J, Li Y, Wang T, Li X. Beyond a chemopreventive reagent, aspirin is a master regulator of the hallmarks of cancer. J Cancer Res Clin Oncol 2019; 145:1387-1403. [PMID: 31037399 DOI: 10.1007/s00432-019-02902-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Aspirin, one of the most commonly used nonsteroidal anti-inflammatory drugs (NAIDS), not only shows cancer chemoprevention effects but also improves cancer therapeutic effects when combined with other therapies. Studies that focus on aspirin regulation of the hallmarks of cancer and the associated molecular mechanisms facilitate a more thorough understanding of aspirin in mediating chemoprevention and may supply additional information for the development of novel cancer therapeutic agents. METHODS The relevant literatures from PubMed have been reviewed in this article. RESULTS Current studies have revealed that aspirin regulates almost all the hallmarks of cancer. Within tumor tissue, aspirin suppresses the bioactivities of cancer cells themselves and deteriorates the tumor microenvironment that supports cancer progression. In addition to tumor tissues, blocking of platelet activation also contributes to the ability of aspirin to inhibit cancer progression. In terms of the molecular mechanism, aspirin targets oncogenes and cancer-related signaling pathways and activates certain tumor suppressors. CONCLUSION Beyond a chemopreventive agent, aspirin is a master regulator of the hallmarks of cancer.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Yukuan Feng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xi Liu
- Center of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jianhui Ma
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Yafei Li
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, 150086, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
39
|
Chen M, Li X, Shi Q, Zhang Z, Xu S. Hydrogen sulfide exposure triggers chicken trachea inflammatory injury through oxidative stress-mediated FOS/IL8 signaling. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:243-254. [PMID: 30684762 DOI: 10.1016/j.jhazmat.2019.01.054] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is well known to cause irritation and damage to airway following inhalation, but the mechanism by which H2S contributes to airway toxicity is unclear. In order to assess the respiratory toxicity of H2S inhalation in chicken trachea, we investigated the change of oxidative stress parameters, tracheal tissue structure and transcriptome profiles of chicken trachea exposed to H2S for 42 days. The results showed H2S exposure induced oxidative stress and inflammation in trachea. The ultrastructural analysis revealed loss of cilia and accumulation of mucus in tracheal epithelium. Differentially expressed genes (DEGs) analysis indicated 454 genes were significantly changed, including 136 genes upregulated and 318 genes downregulated. Gene ontology and KEGG analysis showed many genes involved in response to oxidative stress, inflammatory and immune response, which might contribute to H2S-induced tracheal inflammatory injury. Among those genes, N-acetyl-L-cysteine (NAC) treatment blocked the H2S-triggered expression of FOS and IL8. Silencing FOS by siRNA inhibited H2S-induced expression of IL8. Taken together, we concluded that H2S induced oxidative stress leads to tracheal inflammation through FOS/IL8 signaling, leading to excessive mucus secretion and absence of cilia. These results provide new insights for unveiling the biological effects of H2S in vivo and in vitro.
Collapse
Affiliation(s)
- Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
40
|
Significance of immunohistochemical overexpression of cyclooxygenase-2 in overall and disease-free survival of oral squamous cell carcinoma patients. The Journal of Laryngology & Otology 2019; 132:1102-1109. [PMID: 30674365 DOI: 10.1017/s0022215118002207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In Pakistan, oral cancer ranks as the most common malignancy in males and the second most common malignancy in females. Cyclooxygenase-2 has been explored as an agent of carcinogenesis in oral and other neoplasms. This study aimed to observe the expression of cyclooxygenase-2 in oral squamous cell carcinoma, and to correlate the expression with patients' clinical features and overall and disease-free survival. METHODS Immunohistochemistry for cyclooxygenase-2 was performed on a total of 100 oral squamous cell carcinoma formalin-fixed, paraffin-embedded blocks. Expression was correlated with patients' clinicopathological variables and overall and disease-free survival. RESULTS Cyclooxygenase-2 was overexpressed in 55 per cent of oral squamous cell carcinoma patients. Overexpression was correlated with overall survival (p = 0.013) and disease-free survival (p = 0.001) on univariate analysis. However, on multivariate analysis, cyclooxygenase-2 was associated with only disease-free survival (p = 0.044) and not overall survival (p = 0.208). CONCLUSION Expression of cyclooxygenase-2 is associated with poorer overall survival and higher rates of recurrence in oral squamous cell carcinoma patients.
Collapse
|
41
|
Meram AT, Chen J, Patel S, Kim DD, Shirley B, Covello P, Coppola D, Wei EX, Ghali G, Kevil CG, Shackelford RE. Hydrogen Sulfide Is Increased in Oral Squamous Cell Carcinoma Compared to Adjacent Benign Oral Mucosae. Anticancer Res 2018; 38:3843-3852. [PMID: 29970504 PMCID: PMC7771275 DOI: 10.21873/anticanres.12668] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Hydrogen sulfide (H2S) and the enzymes that synthesize it, cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, are increased in different human malignancies. Due to its short half-life, H2S concentrations have not been directly measured in a human malignancy. Here we directly measured in vivo H2S levels within oral squamous cell carcinoma (OSCC). PATIENTS AND METHODS Punch biopsies of OSCC and benign mucosae from 15 patients were analyzed by HPLC, western blotting, and tissue microarray analyses. RESULTS H2S concentrations were significantly higher in OSCC compared to adjacent benign oral mucosae. Western blot and tissue microarray studies revealed significantly increased cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, phopho-Stat3, mitoNEET, hTERT, and MAPK protein levels in OSCC. CONCLUSION H2S concentrations and the enzymes that synthesize it are significantly increased in OSCC. Here, for the first time H2S concentrations within a living human malignancy were measured and compared to adjacent counterpart benign tissue.
Collapse
Affiliation(s)
- Andrew T Meram
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Jie Chen
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Stavan Patel
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Dongsoo D Kim
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Brett Shirley
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Paul Covello
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Eric X Wei
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Ghali Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Rodney E Shackelford
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A.
| |
Collapse
|
42
|
Zhang J, Ye J, Yuan C, Fu Q, Zhang F, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Exogenous H 2 S exerts biphasic effects on porcine mammary epithelial cells proliferation through PI3K/Akt-mTOR signaling pathway. J Cell Physiol 2018; 233:7071-7081. [PMID: 29744857 DOI: 10.1002/jcp.26630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the effects of exogenous H2 S on the proliferation of porcine mammary gland epithelial cells (PMECs) and explore the underlying mechanisms. We found that exposure of PMECs to NaHS, at concentrations ranging from 10 to 200 µM, stimulated cell proliferation. However, high concentration of NaHS (600 µM) inhibited PMECs proliferation. Accordingly, 10 µM NaHS significantly increased the percentage of cells undergoing DNA replication, elevated the mRNA and/or protein expression of Cyclin A2, Cyclin D1/3, Cyclin E2 and PCNA, and decreased p21 mRNA expression. In contrast, 600 µM NaHS elicited the opposite effects to that of 10 µM NaHS. In addition, PI3 K/Akt and mTOR signaling pathways were activated or inhibited in response to 10 or 600 µM NaHS, respectively. Furthermore, the promotion of PMECs proliferation, the change of proliferative genes expression, and the activation of mTOR signaling pathway induced by 10 µM NaHS were effectively blocked by PI3 K inhibitor Wortmannin. Similarly, inhibition of mTOR with Rapamycin totally abolished the 10 µM NaHS-induced stimulation of PMECs proliferation and alteration of proliferative genes expression, with no influence on PI3 K/Akt signaling pathway. Moreover, constitutive activation of Akt pathway via transfection of Akt-CA completely eliminated the inhibition of PMECs proliferation and mTOR signaling pathway, and the change of proliferative genes expression induced by 600 µM NaHS. In conclusion, our findings provided evidence that exogenous H2 S supplied by NaHS exerted biphasic effects on PMECs proliferation, with stimulation at lower doses and suppression at high dose, through the intracellular PI3 K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Jiayi Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
43
|
Oláh G, Módis K, Törö G, Hellmich MR, Szczesny B, Szabo C. Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochem Pharmacol 2018; 149:186-204. [PMID: 29074106 PMCID: PMC5866187 DOI: 10.1016/j.bcp.2017.10.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
The role of the three gasotransmitter systems - nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) - in cancer cells has not yet been studied simultaneously in the same experimental system. We measured the expression of NO and CO and H2S generating enzymes in primary colon cancer tissues and HCT116 colon cancer cells, and evaluated the effect of their pharmacological inhibition or pharmacological donation on cell proliferation. Increased expression of iNOS, nNOS, HO-1, CBS and 3-MST was detected in colon cancer. Inhibitors of NOS, HO-1/2, CBS/CSE and 3-MST, at lower concentrations, slightly stimulated HCT116 cell proliferation, but inhibited proliferation at higher concentrations. Donors of NO, CO or H2S inhibited HCT116 proliferation in a concentration-dependent manner. Inhibition of the cGMP/VASP pathway, Akt and p44/42 MAPK (Erk1/2) inhibited HCT116 cell proliferation. Endogenous NO and H2S biosynthesis were found to play a role in the maintenance of the activity of the cGMP/VASP pathway in HCT116 cells. We conclude that each of the three gasotransmitters play similar, bell-shaped roles in the control of HCT116 cell proliferation: endogenously produced NO, CO and H2S, at an optimal concentration, support HCT116 proliferation; inhibition of their production (which decreases gasotransmitter levels below optimal concentrations) as well as exogenous delivery of these gasotransmitters (which increases gasotransmitter levels above optimal concentrations) suppresses colon cancer cell proliferation. The current data give a mechanistic explanation for the paradoxical finding that both inhibitors and donors of NO, CO and H2S exert anticancer actions in cancer cells.
Collapse
Affiliation(s)
- Gabor Oláh
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Törö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
44
|
Chao C, Zatarain JR, Ding Y, Coletta C, Mrazek AA, Druzhyna N, Johnson P, Chen H, Hellmich JL, Asimakopoulou A, Yanagi K, Olah G, Szoleczky P, Törö G, Bohanon FJ, Cheema M, Lewis R, Eckelbarger D, Ahmad A, Módis K, Untereiner A, Szczesny B, Papapetropoulos A, Zhou J, Hellmich MR, Szabo C. Cystathionine-beta-synthase inhibition for colon cancer: Enhancement of the efficacy of aminooxyacetic acid via the prodrug approach. Mol Med 2016; 22:361-379. [PMID: 27257787 DOI: 10.2119/molmed.2016.00102] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/17/2023] Open
Abstract
Colon cancer cells contain high levels of cystathionine-beta-synthase (CBS). Its product, hydrogen sulfide (H2S) promotes the growth and proliferation of colorectal tumor cells. In order to improve the antitumor efficacy of the prototypical CBS inhibitor aminooxyacetic acid (AOAA), we have designed and synthesized YD0171, a methyl ester derivative of AOAA. The antiproliferative effect of YD0171 exceeded the antiproliferative potency of AOAA in HCT116 human colon cancer cells. The esterase inhibitor paraoxon prevented the cellular inhibition of CBS activity by YD0171. YD0171 suppressed mitochondrial respiration and glycolytic function and induced G0/G1 arrest, but did not induce tumor cell apoptosis or necrosis. Metabolomic analysis in HCT116 cells showed that YD0171 affects multiple pathways of cell metabolism. The efficacy of YD0171 as an inhibitor of tumor growth was also tested in nude mice bearing subcutaneous HCT116 cancer cell xenografts. Animals were treated via subcutaneous injection of vehicle, AOAA (1, 3 or 9 mg/kg/day) or YD0171 (0.1, 0.5 or 1 mg/kg/day) for 3 weeks. Tumor growth was significantly reduced by 9 mg/kg/day AOAA, but not at the lower doses. YD0171 was more potent: tumor volume was significantly inhibited at 0.5 and 1 mg/kg/day. Thus, the in vivo efficacy of YD0171 is 9-times higher than that of AOAA. YD0171 (1 mg/kg/day) attenuated tumor growth and metastasis formation in the intracecal HCT116 tumor model. YD0171 (3 mg/kg/day) also reduced tumor growth in patient-derived tumor xenograft (PDTX) bearing athymic mice. YD0171 (3 mg/kg/day) induced the regression of established HCT116 tumors in vivo. A 5-day safety study in mice demonstrated that YD0171 at 20 mg/kg/day (given in two divided doses) does not increase plasma markers of organ injury, nor does it induce histological alterations in the liver or kidney. YD0171 caused a slight elevation in plasma homocysteine levels. In conclusion, the prodrug approach improves the pharmacological profile of AOAA; YD0171 represents a prototype for CBS inhibitory anticancer prodrugs. By targeting colorectal cancer bioenergetics, an emerging important hallmark of cancer, the approach exemplified herein may offer direct translational opportunities.
Collapse
Affiliation(s)
- Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John R Zatarain
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ye Ding
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amy A Mrazek
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nadiya Druzhyna
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Paul Johnson
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Judy L Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Antonia Asimakopoulou
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kazunori Yanagi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Petra Szoleczky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gabor Törö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Fredrick J Bohanon
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Minal Cheema
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rachel Lewis
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David Eckelbarger
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Akbar Ahmad
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Katalin Módis
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America,Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ashley Untereiner
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andreas Papapetropoulos
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|