1
|
You D, Tong K, Li Y, Zhang T, Wu Y, Wang L, Chen G, Zhang X. PinX1 plays multifaceted roles in human cancers: a review and perspectives. Mol Biol Rep 2024; 51:1163. [PMID: 39550726 PMCID: PMC11570563 DOI: 10.1007/s11033-024-10082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Pin2/TRF1 interacting protein X1 (PinX1), a telomerase inhibitor, is located at human chromosome 8p23. This region is important for telomere length maintenance and chromosome stability, both of which are essential for regulating human ageing and associated diseases. METHODS AND RESULTS We investigated the research progress of PinX1 in human cancers. In cancers, the expression levels of PinX1 mRNA and protein vary according to cancer cell types, and PinX1 plays a critical role in the regulation of cancer development and progression. Additionally, a review of the literature indicates that PinX1 is involved in mitosis and affects the sensitivity of cancer cells to radiation-induced DNA damage. Therefore, PinX1 has therapeutic potential for cancer, and understanding the function of PinX1 in the regulation of cancers is crucial for improving treatment. In this review, we discuss the expression level of PinX1 in a variety of cancers and how it affects the implicated pathways. Additionally, we outline the function of PinX1 in cancer cells and provide a theoretical basis for PinX1-related cancer therapy. CONCLUSIONS PinX1 has promising prospects in future cancer therapeutics. This review may provide theoretical support for researchers in this field.
Collapse
Affiliation(s)
- Dian You
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Kaiwen Tong
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Yuan Li
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Ting Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | | | - Ling Wang
- Botuvac Biotechnology Co., Ltd, Beijing, China
| | - Guangming Chen
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Xiaoying Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China.
| |
Collapse
|
2
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
3
|
Kang J, Park JH, Kong JS, Kim MJ, Lee SS, Park S, Myung JK. PINX1 promotes malignant transformation of thyroid cancer through the activation of the AKT/MAPK/β-catenin signaling pathway. Am J Cancer Res 2021; 11:5485-5495. [PMID: 34873474 PMCID: PMC8640828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023] Open
Abstract
Although thyroid cancer is the most prevalent endocrine malignancy, overall patients with thyroid cancer have a good long-term survival. However, a small percentage of patients with progressive thyroid cancer have poor outcomes, and the genetic drivers playing a key role thyroid cancer progression are mostly unknown. Here, we investigated the role of the PINX1 in thyroid cancer progression. Interestingly, PINX1 expression was significantly higher in ATC than in PTC in both patients and cell lines. When PINX1 was knockdown in ATC cells, cell proliferation rates, colony formation capacity, and cell cycle progression were significantly reduced. Furthermore, cell motility and the expression of EMT drivers were reduced by PINX1 downregulation. In contrast, the overexpression of PINX1 in PTC cells significantly increased those phenotypes of tumor progression, which demonstrates that PINX1 could promote tumor proliferation and malignant transformation in both PTC and ATC cells. To further understand whether PINX1 is also involved in the progression of PTC to ATC, we examined PI3K/AKT, MAPK, and β-catenin signaling activation after PINX1 modulation. Decreased PINX1 expression reduced the levels of p-AKT, p-ERK, p-p38, and β-catenin in ATC cells, but the increase of PINX1 expression upregulated the phosphorylation of AKT, ERK, and p38 and the levels of β-catenin in PTC cells. These results were all confirmed in xenograft mouse tumors. Our findings suggest that PINX1 regulates thyroid cancer progression by promoting cell proliferation, EMT, and signaling activation, and support the hypothesis that PINX1 could be a prognostic marker and a therapeutic target of thyroid cancer.
Collapse
Affiliation(s)
- JiHoon Kang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical SciencesSeoul, Republic of Korea
| | - Ji-Hye Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical SciencesSeoul, Republic of Korea
| | - Jun Suk Kong
- Department of Pathology, Korea Cancer Center HospitalSeoul, Republic of Korea
| | - Min Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical SciencesSeoul, Republic of Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical SciencesSeoul, Republic of Korea
- Department of Pathology, Korea Cancer Center HospitalSeoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical SciencesSeoul, Republic of Korea
- Department of Pathology, Korea Cancer Center HospitalSeoul, Republic of Korea
| | - Jae Kyung Myung
- Department of Pathology, Korea Cancer Center HospitalSeoul, Republic of Korea
- Department of Pathology, College of Medicine, Hanyang UniversitySeoul, Republic of Korea
| |
Collapse
|
4
|
Huang E, Xu K, Gu X, Zhu Q. PinX1 Depletion Improves Liver Injury in a Mouse Model of Nonalcoholic Fatty Liver Disease via Increasing Telomerase Activity and Inhibiting Apoptosis. Cytogenet Genome Res 2021; 161:449-462. [PMID: 34657040 DOI: 10.1159/000518284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) can inhibit tumor growth by inhibiting telomerase activity. However, only few studies investigated the expression and function of PinX1 in nonalcoholic fatty liver disease (NAFLD). Thus, here we aimed to explore the roles of PinX1 in high-fat diet (HFD)-induced NAFLD in mice and in isolated hepatocytes. The mRNA expression of PinX1 and mTERT as well as telomere length were analyzed by RT-PCR. Pathological changes were detected by HE staining and oil red O staining. Triglyceride, cholesterol, alanine aminotransferase, aspartic aminotransferase, and telomerase activity were detected by ELISA. Hepatocyte apoptosis was determined by TUNEL and flow cytometry, and protein expression was analyzed by western blotting. We found that the expression of PinX1 was upregulated in the HFD group compared with the WT group. PinX1 knockout improved HFD-induced liver injury in mice and exhibited less lipid accumulation in hepatocytes. Moreover, telomere length, telomerase activity, and mTERT expression were significantly reduced in liver tissues of HFD-induced mice and palmitic acid-induced hepatocytes, while PinX1 knockout attenuated the effect. Furthermore, HFD-induced PinX1-/- mice exhibited less hepatocyte apoptosis than HFD-induced WT mice. Besides, PinX1 knockout inhibited the increase of cleaved caspase-3 and cleaved PARP expression in vivo and in vitro. Moreover, inhibition of mTERT reversed the effect of PinX1 knockout in hepatocytes. Taken together, our findings indicate that PinX1 promotes hepatocyte apoptosis and lipid accumulation by decreasing telomere length and telomerase activity in the development of NAFLD. PinX1 might be a target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Erjiong Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemei Gu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qihan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Li L, Ye T, Zhang Q, Li X, Ma L, Yan J. The expression and clinical significance of TPM4 in hepatocellular carcinoma. Int J Med Sci 2021; 18:169-175. [PMID: 33390785 PMCID: PMC7738955 DOI: 10.7150/ijms.49906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is known as the fifth most common cancer in the world for its poor prognosis. New diagnostic markers and treatments are urgent to discover. To evaluate the protein expression of Tropomyosin4 (TPM4) and investigate its prognostic value in HCC, we collected 110 patients with different degrees of HCC and 10 patients with normal hepatic tissues and performed immunohistochemistry. Western bot was used to evaluate the expression of TPM4 in three HCC cell lines (HepG2, Huh7, SMMC-7721) and normal liver cell line LO2, as well as 7 HCC tissues and 7 normal hepatic tissues. The results of TPM4 staining revealed that TPM4 expression in HCC was higher than that in normal hepatic tissues, which was positive in 51.8% (n=57) and negative in 48.2% (n=53) while in normal hepatic tissues positive staining was in 10% (n=1) and negative staining was in 90% (n=9) (P=0.011). And the expression of TPM4 was related to pT status, grade and stage (P<0.001, P=0.015 and P<0.001, respectively). Western blot results indicated that TPM4 was high expressed in HCC cell line and HCC tissues. In conclusion, we believe that TPM4 can be applied as a diagnostic and prognostic marker to assist the management of HCC.
Collapse
Affiliation(s)
- Linjing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Tao Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China, 510515
| | - Qingyan Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 510080
| | - Xin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China, 510515
| | - Li Ma
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Yan
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
6
|
Ma X, Cao R, Xiao H, Cao Z. Establishment of a type II insulin-like growth factor receptor gene site-integrated SKBR3 cell line using CRISPR/Cas9. Oncol Lett 2020; 20:354. [PMID: 33123265 PMCID: PMC7586281 DOI: 10.3892/ol.2020.12216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER-2)+ breast cancer has a high recurrence rate and a poor prognosis, with drug resistance contributing to disease progression. The present study aimed to establish a SKBR3 cell line with type II insulin-like growth factor receptor (IGR-IIR) gene site integration using the CRISPR/Cas9 system, and to provide a cell model for exploring the mechanism responsible for the effect of IGF-IIR on trastuzumab resistance in HER-2+ breast cancer cells. In the present study, six single guide (sg)RNA pairs according to the adeno-associated virus integration site 1 (AAVS1) gene sequence were designed and synthesized, and the Universal CRISPR Activity assay CRISPR/Cas9 rapid construction and activity detection kit was used to connect the annealed oligo with the pCS vector. The sgRNA with the highest efficiency was selected to construct a Cas9/sgRNA expression vector using AsiSI + Bstz17I restriction enzymes to cut IGF-IIR. The fragment was ligated into an human AAVS1-KI vector to construct the IGF-IIR targeting vector. The Cas9/sgRNA and IGF-IIR targeting vectors were electroporated into SKBR3 cells, screened using puromycin and identified via PCR, and the mixed cloned cells generated via IGF-IIR gene targeted integration were obtained. The semi-solid and limited dilution methods were used for monoclonal cell preparation, and the results revealed that a Cas9/sgRNA vector that targeted the AAVS1 was successfully constructed. sgRNA activity detection demonstrated that sgRNA2 had the highest efficiency, while enzyme digestion and sequencing confirmed that the IGF-IIR target vector was successfully constructed. The optimum conditions for electrotransfection were 1,200 V, 20 ms and 2 pulses, and the optimal screening concentration of puromycin was 0.5 µg/ml. Using these conditions, the IGF-IIR targeting vector and pCS-sgRNA2 plasmid were successfully transfected into SKBR3 cells, and PCR identification and sequencing verified the correct genotype of mixed clone fragments. The monoclonal cells proliferate slowly and gradually underwent apoptosis. Overall, the present study successfully obtained a mixed clone cell line with site-specific integration of the IGF-IIR gene at the AAVS1.
Collapse
Affiliation(s)
- Xinyu Ma
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Ru Cao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Haiyan Xiao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Zhongwei Cao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| |
Collapse
|
7
|
Chan HC, Lau YT, Ding Q, Li CK, Wong CM, Shaw PC, Waye MMY, Tsang SY. PinX1t, a Novel PinX1 Transcript Variant, Positively Regulates Cardiogenesis of Embryonic Stem Cells. J Am Heart Assoc 2020; 9:e010240. [PMID: 32157956 PMCID: PMC7335523 DOI: 10.1161/jaha.118.010240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Pin2/TRF1‐interacting protein, PinX1, was previously identified as a tumor suppressor. Here, we discovered a novel transcript variant of mPinX1 (mouse PinX1), mPinX1t (mouse PinX1t), in embryonic stem cells (ESCs). The aims of this investigation were (1) to detect the presence of mPinX1 and mPinX1t in ESCs and their differentiation derivatives; (2) to investigate the role of mPinX1 and mPinX1t on regulating the characteristics of undifferentiated ESCs and the cardiac differentiation of ESCs; (3) to elucidate the molecular mechanisms of how mPinX1 and mPinX1t regulate the cardiac differentiation of ESCs. Methods and Results By 5′ rapid amplification of cDNA ends, 3′ rapid amplification of cDNA ends, and polysome fractionation followed by reverse transcription–polymerase chain reaction, mPinX1t transcript was confirmed to be an intact mRNA that is actively translated. Western blot confirmed the existence of mPinX1t protein. Overexpression or knockdown of mPinX1 (both decreased mPinX1t expression) both decreased while overexpression of mPinX1t increased the cardiac differentiation of ESCs. Although both mPinX1 and mPinX1t proteins were found to bind to cardiac transcription factor mRNAs, only mPinX1t protein but not mPinX1 protein was found to bind to nucleoporin 133 protein, a nuclear pore complex component. In addition, mPinX1t‐containing cells were found to have a higher cytosol‐to‐nucleus ratio of cardiac transcription factor mRNAs when compared with that in the control cells. Our data suggested that mPinX1t may positively regulate cardiac differentiation by enhancing export of cardiac transcription factor mRNAs through interacting with nucleoporin 133. Conclusions We discovered a novel transcript variant of mPinX1, the mPinX1t, which positively regulates the cardiac differentiation of ESCs.
Collapse
Affiliation(s)
- Hing Chung Chan
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Yuen Ting Lau
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Qianqian Ding
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Chun Kit Li
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Chi Ming Wong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR
| | - Pang Chui Shaw
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing The Chinese University of Hong Kong Hong Kong SAR.,The Croucher Laboratory for Human Genomics The Chinese University of Hong Kong Hong Kong SAR
| | - Suk Ying Tsang
- School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR.,State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Hong Kong SAR.,Key Laboratory for Regenerative Medicine Ministry of Education The Chinese University of Hong Kong Hong Kong SAR.,Centre for Novel Biomaterials The Chinese University of Hong Kong Hong Kong SAR
| |
Collapse
|
8
|
Mei Y, Cai D, Dai X. Modulating cancer stemness provides luminal a breast cancer cells with HER2 positive-like features. J Cancer 2020; 11:1162-1169. [PMID: 31956362 PMCID: PMC6959057 DOI: 10.7150/jca.37117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancers can be classified into luminal A, luminal B, HER2 positive and triple-negative subtypes, each with a distinct therapeutic response. Tumor stemness drives cancer malignancy that challenges cancer control. Understanding the revolutionary relationships driven by tumor stemness among breast cancer subtypes is fundamental to identifying feasible therapeutic modalities for each breast cancer subtype. Utilizing the endogenous tRNA-processing system, we established a multiplexing CRISPR/dCas9 system in breast cancer cells, and applied it to a four-gene panel controlling cell potency, i.e., OCT4, KLF, MYC, SOX2. The stable cell strain, OKMS#1 was obtained through concomitantly over-expressing these genes in luminal A breast cancer cells. OKMS#1 cells showed increased invasion, proliferation and cancer stemness, shared similar drug response pattern with HER2 positive cells, and exhibited altered MAPK and enhanced NFkB signaling. This study contributes in providing an efficient multiplexing CRISPR/dCas9 system that enriches our genetic modulation tool box, and suggests that HER2 positive cells are potential progenitors of luminal A cells and that these two breast cancer subtypes may share similar treatment strategies once rewired between the two states. Our results also implicate that triple negative breast cancer cells, though sharing similar cancer stemness with HER2 positive cells, represent a distinct type of disease and require unique treatment solutions.
Collapse
Affiliation(s)
- Yi Mei
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Prognostic and Clinicopathological Value of PINX1 in Various Human Tumors: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4621015. [PMID: 30079348 PMCID: PMC6069698 DOI: 10.1155/2018/4621015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023]
Abstract
PINX1 (Pin2/TRF1 interacting protein X1, an intrinsic telomerase inhibitor and putative tumor suppressor gene) may represent a novel prognostic tumor biomarker. However, the results of previous studies are inconsistent and the prognostic value of PINX1 remains controversial. Therefore, we conducted a meta-analysis to determine whether PINX1 expression is associated with overall survival (OS), disease-specific survival (DSS), disease-free survival (DFS), recurrence-free survival (RFS), and clinicopathological characteristics in patients with malignant tumors. A systematic search was performed in the PubMed, Web of Science, and Embase databases in April 2018. Quality assessment was performed according to the modified Newcastle-Ottawa Scale. Pooled odds ratios (ORs) and hazard ratios (HRs) with 95.0% confidence intervals (CIs) were calculated to determine the relationship between PINX1 expression and OS, DSS, DFS/RFS, and clinicopathological characteristics. Due to the heterogeneity across the included studies, subgroup and sensitivity analyses were performed. Fixed-effects models were used when the heterogeneity was not significant and random-effects models were used when the heterogeneity was significant. Fourteen studies of 16 cohorts including 2,624 patients were enrolled. Low PINX1 expression was associated with poor OS (HR: 1.51, 95.0% CI: 1.03-2.20; P = 0.035) and DFS/RFS (HR: 1.78, 95.0% CI: 1.28-2.47; P = 0.001) but not DSS (HR: 0.80, 95.0% CI: 0.38-1.67; P = 0.548). Low PINX1 expression was also associated with lymphatic invasion (OR: 2.23, 95.0% CI: 1.35-3.70; P = 0.002) and advanced tumor-node-metastasis stage (OR: 2.43, 95.0% CI: 1.29-4.57; P = 0.006). No significant associations were observed between low PINX1 expression and sex, depth of invasion, grade of differentiation, and distant metastasis. Low PINX1 expression was associated with poor OS and DFS/RFS and lymphatic invasion and advanced tumor-node-metastasis stage, suggesting that PINX1 expression may be a useful predictor of prognosis in patients with malignant tumors.
Collapse
|
10
|
Liu T, Sun H, Liu S, Yang Z, Li L, Yao N, Cheng S, Dong X, Liang X, Chen C, Wang Y, Zhao X. The suppression of DUSP5 expression correlates with paclitaxel resistance and poor prognosis in basal-like breast cancer. Int J Med Sci 2018; 15:738-747. [PMID: 29910679 PMCID: PMC6001410 DOI: 10.7150/ijms.24981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022] Open
Abstract
Basal-like breast cancer (BLBC) is resistant to endocrinotherapy and targeted therapy and new molecular therapies are needed for BLBC. In this study, we evaluated the role of DUSP1 and DUSP5, negative regulators of mitogen-activated protein kinase pathway, in the aggressiveness of BLBC. MDA-MB-231 cells were given paclitaxel (PTX) treatment and subsequently PTX resistant cell clones were established. Microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR), and online analysis of large cohorts of breast cancer patients were performed. The PTX resistant cells showed stronger cell proliferation ability by exhibiting the upregulation of CENPF, CDC6, MCM3, CLSPN and SMC1A expression. Furthermore, DUSP1 and DUSP5 expression was significantly downregulated in PTX resistant cells. In addition, in large breast cancer patients' database, both DUSP1 and DUSP5 correlated negatively with higher histological grade. DUSP1 low expression was obvious in HER2 positive and basal like while DUSP5 low expression was peculiar for basal like compared with other subtypes. Remarkably, low expression of DUSP5, but not DUSP1, was significantly correlated with poor survival of BLBC patients. In conclusion, our data suggest that loss of DUSP5 expression results in PTX resistance and tumor progression, providing a rationale for a therapeutic agent that restores DUSP5 in BLBC.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Shiqi Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Yang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Linqi Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Nan Yao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Siqi Cheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|