1
|
Ghorbani Alvanegh A, Esmaeili Gouvarchin Ghaleh H, Mohammad Ganji S. The Growth of A549 Cell Line is Inhibited by Pemetrexed Through Up-regulation of hsa-MiR-320a Expression. Adv Biomed Res 2024; 13:50. [PMID: 39411702 PMCID: PMC11478724 DOI: 10.4103/abr.abr_483_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background Lung cancer deaths are increasing worldwide and the most common form of lung cancer treatment is chemotherapy. Pemetrexed (PMX) has been shown to be effective as a second-line treatment for advanced patients. Drugs can alter the expression of MicroRNAs, and MicroRNAs also can either enhance or reduce the drug's effectiveness and this is a two-way relationship. Hsa-MiR-320a is known to play a crucial role in the lung cancer. This study aims to investigate the expression of hsa-MiR-320a in lung cancer cells after treatment with PMX. Materials and Methods A549 cells were cultured and treated with varying concentrations of PMX. Various parameters were measured, including cell viability, reactive oxygen species (ROS) production, lactate dehydrogenase (LDH) release, apoptosis assay, caspase 3 and 7 enzyme activity, and scratch assay. Additionally, gene expression profiles of hsa-MiR-320a, VDAC1, STAT3, BAX, and BCL2 were evaluated. Results PMX reduced the viability and increased apoptosis. After 48 h, ROS production was 3.366-fold higher than in control cells and the LDH release rate was increased by 39%. PMX also up-regulated the expression of hsa-MiR-320a by about 12-fold change. Conclusion Changes in the expression of MicroRNAs occur after chemotherapy, and these changes play a crucial role in regulating the growth of cancer cells. Identifying these MicroRNAs can be helpful in predicting the efficacy of the chemotherapy or introducing it as combination therapy. Our research has been shown that hsa-MiR-320a can serve as a biomarker of PMX efficacy and also has the potential to be used in combination therapy.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Liu Z, Bao Z, Yu B, Chen L, Yang G. Pemetrexed ameliorates Con A-induced hepatic injury by restricting M1 macrophage activation. Int Immunopharmacol 2023; 125:111158. [PMID: 37925950 DOI: 10.1016/j.intimp.2023.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Autoimmune hepatitis (AIH), characterized by immune-driven liver destruction and cytokine production, is a progressive inflammatory liver condition that may progress to hepatic cirrhosis or tumors. However, the underlying mechanism is not well understood, and the treatment options for this disease are limited. Pemetrexed (PEM), a clinically used anti-folate drug for treating various tumors, was found to inhibit the nuclear factor (NF)-κB signaling pathways that exert an important role in the development of AIH. Here, we investigated the impact of PEM on immune-mediated hepatic injuries using a murine model of Concanavalin A (Con A)-induced hepatitis, a well-established model for AIH. Mice received intraperitoneal PEM injections 3 times at 12-hour intervals, and two hours later, they were challenged with Con A. Liver samples and serum were collected after 10 h. The results indicate that PEM significantly improved mouse survival rates and lowered serum transaminase levels. Moreover, PEM effectively alleviated oxidative stress, reduced histopathological liver damage, and mitigated hepatocyte apoptosis. Notably, it reduced the activation of M1-type macrophages in the liver. The expression of proinflammatory cytokines and genes associated with M1 macrophages, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-12, IL-1β, and inducible nitric oxide synthase (iNOS), was also decreased. Finally, the results indicated that PEM regulates M1 macrophage activation by modulating the NF-κB signaling pathways. Overall, these results demonstrate that PEM effectively guards against immune-mediated hepatic injuries induced by Con A by inhibiting M1 macrophage activation through the NF-κB signaling pathways and indicate the potential of PEM as a practical treatment option for AIH in clinical settings.
Collapse
Affiliation(s)
- Zhaiyi Liu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China; School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhiyue Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Yu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China; School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
3
|
Yu J, Zhang Q, Li J, Si Z, Guo Y, Xu X, Wu K. Sequential administration of pemetrexed and cisplatin reprograms tumor immune microenvironment and potentiates PD-1/PD-L1 treatment in a lung cancer model. J Investig Med 2021; 70:792-799. [PMID: 34872935 DOI: 10.1136/jim-2021-002159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/28/2022]
Abstract
This article aimed to investigate the effects of the administration method of pemetrexed and cisplatin on the efficacy and safety of treating non-small cell lung cancer (NSCLC) and the intrinsic molecular mechanism. Subcutaneous injection of A549 cells into BALB/C nude mice was used to explore the efficacy of different administration methods of pemetrexed and cisplatin in vivo. Immunogenic cell death (ICD) was evaluated by ATP secretion, ecto-CALR expression, and high mobility group protein 1 release. Western blot, qRT-PCR, and immunohistochemical staining were applied to detect the expression of apoptosis, cell cycle, and stimulator of interferon genes (STING) pathway-related markers. Immune microenvironment was evaluated by secretion of cytokines, infiltration of CD8+ T cells, and expression of programmed death molecular ligand-1 (PD-L1). Sequential treatment with pemetrexed and cisplatin inhibited A549 cell-driven tumor formation in nude mice and regulated the expression of apoptosis and cell cycle-related genes. STING pathway and ICD were further activated by sequential treatment with pemetrexed and cisplatin. This sequential administration method increased the levels of interferon β, tumor necrosis factor α, interleukin 12, and C-X-C motif chemokine ligand 10, enhanced the infiltration of CD8+ T cells, and upregulated the expression of PD-L1. Sequential administration of pemetrexed and cisplatin in the treatment of mouse NSCLC model may have a better effect than combination of drugs, providing theoretical basis and potential guidance for clinical medication.
Collapse
Affiliation(s)
- Jinxiang Yu
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward Ⅱ, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Qianyun Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward Ⅱ, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Jie Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Zhaohui Si
- Department of Laboratory, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Yuanyuan Guo
- Department of Child Rehabilitation, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Xin Xu
- Department of Traditional Chinese Medicine 1, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Kanjin Wu
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward Ⅱ, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| |
Collapse
|
4
|
Takegahara K, Usuda J, Inoue T, Sonokawa T, Matsui T, Matsumoto M. Antiaging gene Klotho regulates epithelial-mesenchymal transition and increases sensitivity to pemetrexed by inducing lipocalin-2 expression. Oncol Lett 2021; 21:418. [PMID: 33841579 PMCID: PMC8020392 DOI: 10.3892/ol.2021.12679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is considered to serve an important role in the metastatic/invasive ability of cancer cells, in the acquisition of drug resistance, and in metabolic reprogramming. In the present study, it was hypothesized that the Klotho gene is involved in the metastatic/invasive ability of lung cancer. We previously reported an association between Klotho expression and overall survival in patients with small cell lung cancer and large cell neuroendocrine cancer. We also found that Klotho expression was associated with EMT-related molecules in lung squamous cell carcinoma. The present study aimed to analyze the function of the Klotho gene and to elucidate its relevance to the regulation of the EMT. For this purpose, GFP-Klotho plasmids were transfected into lung adenocarcinoma cells (A549) and cell lines with stable expression (A549/KL-1 and A549/KL-2) were established. A549/KL-1 cells expressed higher levels of Klotho protein by western blot analysis compared with A549/KL-2 cells. In western blotting of A549 and A549/KL-1 cells, the expression of the mesenchymal marker N-cadherin was found to be completely inhibited in A549/KL-1 cells suggesting that Klotho expression may regulate the EMT in cancer cells via the inhibition of N-cadherin. The results of the sensitivity tests demonstrated that A549/KL-1 cells were significantly more sensitive to pemetrexed compared with A549 cells (IC50 A549/KL-1 vs. A549 cells, 0.1 µM vs. 0.7 µM). The results of the microarray analysis demonstrated that a very high level of lipocalin-2 (LCN2) expression was induced in the A549/KL-1 cells. Klotho overexpression completely suppressed the expression of mesenchymal markers, such as N-cadherin and Snail1 (Snail). The results of the present study suggested that there may be a new mechanism of action for the antitumor effects of pemetrexed, namely, LCN2-mediated modulation of N-cadherin expression. Klotho expression during cancer treatment has great potential as a predictor for efficacy of pemetrexed and as a factor in the selection of personalized medicine for postoperative adjuvant chemotherapy.
Collapse
Affiliation(s)
- Kyoshiro Takegahara
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Tatsuya Inoue
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takumi Sonokawa
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takuma Matsui
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Mitsuo Matsumoto
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
5
|
Du X, Zhang C, Yin C, Wang W, Yan X, Xie D, Zheng X, Zheng Q, Li M, Song Z. High BLM Expression Predicts Poor Clinical Outcome and Contributes to Malignant Progression in Human Cholangiocarcinoma. Front Oncol 2021; 11:633899. [PMID: 33828983 PMCID: PMC8019910 DOI: 10.3389/fonc.2021.633899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular mechanisms underlying the tumorigenesis of a highly malignant cancer, cholangiocarcinoma (CCA), are still obscure. In our study, the CCA expression profile data were acquired from The Cancer Genome Atlas (TCGA) database, and differentially expressed genes (DEGs) in the TCGA-Cholangiocarcinoma (TCGA-CHOL) data set were utilized to construct a co-expression network via weighted gene co-expression network analysis (WGCNA). The blue gene module associated with the histopathologic grade of CCA was screened. Then, five candidate hub genes were screened by combining the co-expression network with protein–protein interaction (PPI) network. After progression and survival analyses, bloom syndrome helicase (BLM) was ultimately identified as a real hub gene. Moreover, the receiver operating characteristic (ROC) curve analysis suggested that BLM had a favorable diagnostic and predictive recurrence value for CCA. The gene set enrichment analysis (GSEA) results for a single hub gene revealed the importance of cell cycle-related pathways in the CCA progression and prognosis. Furthermore, we detected the BLM expression in vitro, and the results demonstrated that the expression level of BLM was much higher in the CCA tissues and cells relative to adjacent non-tumor samples and normal bile duct epithelial cells. Additionally, after further silencing the BLM expression by small interfering RNA (siRNA), the proliferation and migration ability of CCA cells were all inhibited, and the cell cycle was arrested. Altogether, a real hub gene (BLM) and cell cycle-related pathways were identified in the present study, and the gene BLM may be involved in the CCA progression and could act as a reliable biomarker for potential diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueke Yan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen J, Wang Z, Gao S, Wu K, Bai F, Zhang Q, Wang H, Ye Q, Xu F, Sun H, Lu Y, Liu Y. Human drug efflux transporter ABCC5 confers acquired resistance to pemetrexed in breast cancer. Cancer Cell Int 2021; 21:136. [PMID: 33632224 PMCID: PMC7908708 DOI: 10.1186/s12935-021-01842-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Aim Pemetrexed, a new generation antifolate drug, has been approved for the treatment of locally advanced or metastatic breast cancer. However, factors affecting its efficacy and resistance have not been fully elucidated yet. ATP-binding cassette (ABC) transporters are predictors of prognosis as well as of adverse effects of several xenobiotics. This study was designed to explore whether ABC transporters affect pemetrexed resistance and can contribute to the optimization of breast cancer treatment regimen. Methods First, we measured the expression levels of ABC transporter family members in cell lines. Subsequently, we assessed the potential role of ABC transporters in conferring resistance to pemetrexed in primary breast cancer cells isolated from 34 breast cancer patients and the role of ABCC5 in mediating pemetrexed transport and apoptotic pathways in MCF-7 cells. Finally, the influence of ABCC5 expression on the therapeutic effect of pemetrexed was evaluated in an in vivo xenograft mouse model of breast cancer. Results The expression levels of ABCC2, ABCC4, ABCC5, and ABCG2 significantly increased in the pan-resistant cell line, and the ABCC5 level in the MCF-7-ADR cell line was 5.21 times higher than that in the control group. ABCC5 expression was inversely correlated with pemetrexed sensitivity (IC50, r = 0.741; p < 0.001) in breast cancer cells derived from 34 patients. Furthermore, we found that the expression level of ABCC5 influenced the efflux and cytotoxicity of pemetrexed in MCF-7 cells, with IC50 values of 0.06 and 0.20 μg/mL in ABCC5 knockout and over-expression cells, respectively. In the in vivo study, we observed that ABCC5 affected the sensitivity of pemetrexed in breast tumor-bearing mice, and the tumor volume was much larger in the ABCC5-overexpressing group than in the control group when compared with their own initial volumes (2.7-fold vs. 1.3-fold). Conclusions Our results indicated that ABCC5 expression was associated with pemetrexed resistance in vitro and in vivo, and it may serve as a target or biomarker for the optimization of pemetrexed regimen in breast cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01842-x.
Collapse
Affiliation(s)
- Jihui Chen
- Department of Pharmacy, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Qiqiang Zhang
- Department of Pharmacy, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hongyu Wang
- Department of Pharmacy, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qin Ye
- Department of Pharmacy, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fengjing Xu
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hong Sun
- Department of Pharmacy, Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yunshu Lu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Yan Liu
- Department of Pharmacy, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
7
|
MTAP-deficiency could predict better treatment response in advanced lung adenocarcinoma patients initially treated with pemetrexed-platinum chemotherapy and bevacizumab. Sci Rep 2020; 10:843. [PMID: 31965001 PMCID: PMC6972892 DOI: 10.1038/s41598-020-57812-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
To investigate the predictive value of methylthioadenosine phosphorylase (MTAP) on treatment response and survival in advanced lung adenocarcinoma. MTAP expression was detected by immunohistochemistry. Treatment response and survival were compared according to MTAP expression level. The results indicated MTAP-low expression was observed in 61.2% (101/165) of all patients. The objective response rate and disease control rate improved in the MTAP-low group (64.4% vs 46.9%, p = 0.035; 92.1% vs. 79.7%, p = 0.03; respectively). The median progression-free survival and survival time in the MTAP-low group were significantly lower than that in the MTAP-high group (8.1 vs. 13.1 months, p = 0.002; 22 vs. 32 months, p = 0.044). Multivariate analysis demonstrated that brain metastasis (HR 1.55, p = 0.046), thoracic radiation (HR 0.52, p = 0.026), and MTAP-low expression (HR 1.36, p = 0.038) were independent factors on survival. It is concluded that MTAP-low expression could predict improved treatment response but worsened survival in advanced lung adenocarcinoma.
Collapse
|
8
|
Park JH, Kwon BS, Park SJ, Ji W, Yoon S, Choi CM, Lee JC. Exceptional pemetrexed sensitivity can predict therapeutic benefit from subsequent chemotherapy in metastatic non-squamous non-small cell lung cancer. J Cancer Res Clin Oncol 2019; 145:1897-1905. [PMID: 31144157 DOI: 10.1007/s00432-019-02941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Based on an exceptionally durable response to pemetrexed observed in some patients with metastatic NSCLC, the predictive value of pemetrexed sensitivity to outcomes of subsequent systemic treatment was investigated. METHODS We retrospectively reviewed the patients with metastatic non-squamous NSCLC treated with pemetrexed monotherapy as their first- or second-line chemotherapy between November 2006 and February 2015. Good (top 5% longest) and poor responders (bottom 12% shortest) were defined according to the duration of pemetrexed maintenance. The first and second post-pemetrexed (PP) systemic treatments were defined as PP1 and PP2 therapies, respectively, to define their progression-free survivals (PFS) as PFS1 and PFS2. RESULTS In a total of 100 patients, 86% of patients received pemetrexed as their second-line chemotherapy, and 34% were classified as good responders. Good and poor responder groups showed 20.5 months and 0.7 months of the median duration of responses, respectively. PP1 and PP2 therapies were done in 74% and 41.9% of patients after failure to pemetrexed. To our surprise, disease control rate (DCR) was significantly higher in the good responder group than poor responder group (69.6% vs 37.3%, p = 0.010) in patients treated with PP1 therapy, and median PFS1 was also significantly longer (5.2 vs 2.2 months, p < 0.01) regardless of the type of subsequent systemic treatment. Meanwhile, pemetrexed sensitivity did not affect DCR or PFS of patients who received PP2 therapies. CONCLUSIONS Patients who achieved durable response to pemetrexed might obtain greater therapeutic benefits from subsequent systemic treatment in metastatic non-squamous NSCLC without targets, which could potentiate more effective post-pemetrexed treatment strategy.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Hemato-Oncology, College of Medicine, Konkuk University Medical Center, University of Konkuk, Seoul, Korea
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Byoung Soo Kwon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - So Jung Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.
| |
Collapse
|
9
|
Tan B, Li Y, Zhao Q, Fan L, Wang D. ZNF139 increases multidrug resistance in gastric cancer cells by inhibiting miR-185. Biosci Rep 2018; 38:BSR20181023. [PMID: 30126848 PMCID: PMC6123064 DOI: 10.1042/bsr20181023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/05/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
It has been reported that the expression of zinc finger protein 139 (ZNF139) and microRNA-185 (miR-185) were associated with proliferation, drug resistance of gastric cancer (GC) cells. However, the detailed mechanisms have not been fully investigated. The expression of ZNF139 in both GC tissues and cell lines was tested, then SGC7901/ADR or SGC7901 cells were transfected with ZNF139-siRNA, miR-185 analog, or pcDNA-ZNF139. Cell activity was determined by MTT assay. Real-time PCR and Western blot were utilized to detect ZNF139, miR-185, and multidrug resistance (MDR) related genes including MDR1/P-gp, GST-π, MRP-1, Bcl-2, TS and Bax. ChIP and dual luciferase activity assay were used to investigate regulation between ZNF139 and miR-185 Increased ZNF139 and decreased miR-185 expression were detected in GC tissues and cell lines. Transfection with ZNF139-siRNA into SGC7901/ADR cells markedly increased expression of miR-185, and treating with chemotherapeutic drugs ADR, 5-FU, L-OHP, the survival rate of SGC7901/ADR cells obviously decreased after ZNF139-siRNA transfection. On the other hand, transfection with pcDNA-ZNF139 in GC cell line SGC7901 resulted in an increased expression level of ZNF139 and a decline in the expression level of miR-185, meanwhile drug resistance of GC cells was clearly enhanced to ADR, 5-FU, L-OHP. Dual luciferase activity assay demonstrated that ZNF139 inhibited transcriptional activities of miR-185's promoter in cells transfected with the reporter plasmid encompassing the upstream promoter region of miR-185 along with pcDNA-ZNF139. Our data reveal that ZNF139 might promote MDR gene MDR1/P-gp, MRP-1 and Bcl-2 by prohibiting miR-185.
Collapse
Affiliation(s)
- Bibo Tan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050011, China
| | - Yong Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050011, China
| | - Qun Zhao
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050011, China
| | - Liqiao Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050011, China
| | - Dong Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050011, China
| |
Collapse
|
10
|
Increase in resistance to anticancer drugs involves occludin in spheroid culture model of lung adenocarcinoma A549 cells. Sci Rep 2018; 8:15157. [PMID: 30310131 PMCID: PMC6181945 DOI: 10.1038/s41598-018-33566-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a serious issue in the therapy of many cancers, but the molecular mechanism is little understood. The mRNA level of occludin (OCLN), a tight junctional protein, was increased in the cisplatin (CDDP), doxorubicin (DXR), 7-ethyl-10-hydroxy-camptothecin, or gemcitabine-resistant human lung adenocarcinoma A549 cells. Here, we investigated the regulatory mechanism and pathophysiological role of OCLN. OCLN was mainly localized at tight junctions in A549 and CDDP-resistant A549 (A549/CDDP) cells. The level of p-Akt in A549/CDDP cells was higher than that in A549 cells, and the mRNA and protein levels of OCLN were suppressed by a phosphoinositide 3-kinase (PI3K)/Akt pathway inhibitor, LY-294002, suggesting that a PI3K/Akt pathway is involved in the elevation of OCLN expression. The overexpression of OCLN in A549 cells decreased paracellular permeability to DXR. Cytotoxicity to CDDP was unaffected by OCLN-overexpression in 2D culture model. In 3D culture model, the spheroid size, hypoxic level, and cell viability were significantly elevated by CDDP resistance, but not by OCLN-overexpression. The accumulation inside the spheroids and toxicity of DXR were correlated with OCLN expression. Our data suggest that OCLN is not directly involved in the chemoresistance, but it enhances chemoresistance mediated by suppression of accumulation of anticancer drugs inside the spheroids.
Collapse
|