1
|
Lin CY, Huang KY, Kao SH, Lin MS, Lin CC, Yang SC, Chung WC, Chang YH, Chein RJ, Yang PC. Small-molecule PIK-93 modulates the tumor microenvironment to improve immune checkpoint blockade response. SCIENCE ADVANCES 2023; 9:eade9944. [PMID: 37027467 PMCID: PMC10081850 DOI: 10.1126/sciadv.ade9944] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-L1 immunotherapy are state-of-the-art treatments for advanced non-small cell lung cancer (NSCLC). However, the treatment response of certain patients with NSCLC is unsatisfactory because of an unfavorable tumor microenvironment (TME) and poor permeability of antibody-based ICIs. In this study, we aimed to discover small-molecule drugs that can modulate the TME to enhance ICI treatment efficacy in NSCLC in vitro and in vivo. We identified a PD-L1 protein-modulating small molecule, PIK-93, using a cell-based global protein stability (GPS) screening system. PIK-93 mediated PD-L1 ubiquitination by enhancing the PD-L1-Cullin-4A interaction. PIK-93 reduced PD-L1 levels on M1 macrophages and enhanced M1 antitumor cytotoxicity. Combined PIK-93 and anti-PD-L1 antibody treatment enhanced T cell activation, inhibited tumor growth, and increased tumor-infiltrating lymphocyte (TIL) recruitment in syngeneic and human peripheral blood mononuclear cell (PBMC) line-derived xenograft mouse models. PIK-93 facilitates a treatment-favorable TME when combined with anti-PD-L1 antibodies, thereby enhancing PD-1/PD-L1 blockade cancer immunotherapy.
Collapse
Affiliation(s)
- Chia-Yi Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kuo-Yen Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Han Kao
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ming-Shiu Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chih-Chien Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wei-Chia Chung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
2
|
Alghamdi RH, Ahmed F, Ibrahim SM, Pushparaj PN, Schulten HJ, Abuzenadah AM, Almalki AL. Molecular determinants of etoposide resistance in HL60 cells. Bioinformation 2022; 18:894-899. [PMID: 37654838 PMCID: PMC10465782 DOI: 10.6026/97320630018894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 09/02/2023] Open
Abstract
Chemotherapy resistance is the main reason for treatment failure in acute myeloid leukemia (AML) and the major cause of its mortality. Etoposide is a DNA topoisomerase-II inhibitor that is used either as a single agent or in combination with cytarabine, azacytidine, vinca alkaloids, and anthracyclines for the treatment of relapsed /refractory AML. In this study, we sought to determine and understand the mechanism of etoposide resistance in AML using the HL60 cell line.HL60 cells were treated with incremental doses of etoposide and resistant colonies were isolated by culturing the resistant cells in semi-solid culture media. Three clones were selected for etoposide resistance namely, HL60-EtopR H1A, HL60-EtopR H1B, and HL60-EtopR H1C which demonstrated 4.78, 2.39, and 4.42-fold higher resistance to etoposide compared with the parental cells. To determine molecular differences between the etoposide-resistant HL60-EtopR cells and the parental cells, microarray-based gene expression profiling was performed. We found up regulation of members of the src tyrosine kinase family genes in the etoposide resistant cells. Further studies are required to evaluate the role of Src inhibitors in targeting etoposide resistant cells.
Collapse
Affiliation(s)
- Rasha H Alghamdi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah21589, Kingdom of Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80218, Jeddah21589, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Taif University, P. O. Box 11099, Taif 21944, Kingdom of Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah21589, Kingdom of Saudi Arabia
- Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Sara M Ibrahim
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80218, Jeddah21589, Kingdom of Saudi Arabia
| | - Peter N Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah21589, Kingdom of Saudi Arabia
- Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Hans Jurgen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah21589, Kingdom of Saudi Arabia
| | - Adel M Abuzenadah
- Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
- King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah21589, Kingdom of Saudi Arabia
| | - Abdulrahman L Almalki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80218, Jeddah21589, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Abdelrahman S, Alghrably M, Campagna M, Hauser CAE, Jaremko M, Lachowicz JI. Metal Complex Formation and Anticancer Activity of Cu(I) and Cu(II) Complexes with Metformin. Molecules 2021; 26:4730. [PMID: 34443319 PMCID: PMC8401132 DOI: 10.3390/molecules26164730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/13/2023] Open
Abstract
Metformin has been used for decades in millions of type 2 diabetes mellitus patients. In this time, correlations between metformin use and the occurrence of other disorders have been noted, as well as unpredictable metformin side effects. Diabetes is a significant cancer risk factor, but unexpectedly, metformin-treated diabetic patients have lower cancer incidence. Here, we show that metformin forms stable complexes with copper (II) ions. Both copper(I)/metformin and copper(II)/metformin complexes form adducts with glutathione, the main intracellular antioxidative peptide, found at high levels in cancer cells. Metformin reduces cell number and viability in SW1222 and K562 cells, as well as in K562-200 multidrug-resistant cells. Notably, the antiproliferative effect of metformin is enhanced in the presence of copper ions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, 09124 Cagliari, Italy;
| | - Charlotte Armgard Emma Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, 09124 Cagliari, Italy;
| |
Collapse
|
4
|
Mokou M, Lygirou V, Angelioudaki I, Paschalidis N, Stroggilos R, Frantzi M, Latosinska A, Bamias A, Hoffmann MJ, Mischak H, Vlahou A. A Novel Pipeline for Drug Repurposing for Bladder Cancer Based on Patients' Omics Signatures. Cancers (Basel) 2020; 12:E3519. [PMID: 33255925 PMCID: PMC7759896 DOI: 10.3390/cancers12123519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Multi-omics signatures of patients with bladder cancer (BC) can guide the identification of known de-risked therapeutic compounds through drug repurposing, an approach not extensively explored yet. In this study, we target drug repurposing in the context of BC, driven by tissue omics signatures. To identify compounds that can reverse aggressive high-risk Non-Muscle Invasive BC (NMIBC) to less aggressive low-risk molecular subtypes, the next generation Connectivity Map (CMap) was employed using as input previously published proteomics and transcriptomics respective signatures. Among the identified compounds, the ATP-competitive inhibitor of mTOR, WYE-354, showed a consistently very high score for reversing the aggressive BC molecular signatures. WYE-354 impact was assessed in a panel of eight multi-origin BC cell lines and included impaired colony growth and proliferation rate without any impact on apoptosis. Overall, with this study we introduce a promising pipeline for the repurposing of drugs for BC treatment, based on patients' omics signatures.
Collapse
Affiliation(s)
- Marika Mokou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (A.L.); (H.M.)
| | - Vasiliki Lygirou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| | - Ioanna Angelioudaki
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Rafael Stroggilos
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| | - Maria Frantzi
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (A.L.); (H.M.)
| | | | - Aristotelis Bamias
- Haematology-Oncology Unit, Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (A.L.); (H.M.)
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| |
Collapse
|
5
|
Kalamegam G, Alfakeeh SM, Bahmaid AO, AlHuwait EA, Gari MA, Abbas MM, Ahmed F, Abu-Elmagd M, Pushparaj PN. In vitro Evaluation of the Anti-inflammatory Effects of Thymoquinone in Osteoarthritis and in silico Analysis of Inter-Related Pathways in Age-Related Degenerative Diseases. Front Cell Dev Biol 2020; 8:646. [PMID: 32793594 PMCID: PMC7391788 DOI: 10.3389/fcell.2020.00646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a common underlying factor in osteoarthritis (OA) and most age-related degenerative diseases. As conventional therapies help only in partial alleviation of symptoms in OA, stem cell-based therapies and herbal supplements are being widely explored. Thymoquinone (TQ), an active ingredient of Nigella sativa is reported to have immunomodulatory, anti-inflammatory and antioxidant properties. We evaluated the effects of TQ on bone marrow MSCs (BM-MSCs) derived from OA patients and its interrelated pathways in inflammation and age-related degenerative diseases using Ingenuity Pathway Analysis (IPA) as well as possible molecular targets using SwissTargetPrediction. BM-MSCs were derived from OA patients and their stemness properties were characterized by studying the MSCs related CD surface marker expression and differentiation into adipocytes, osteoblasts, and chondrocytes. Treatment with TQ (100 nM-5 μM) demonstrated cell death, especially at higher concentrations. MTT assay demonstrated a significant concentration-dependent decrease in cell viability which ranged from 20.04% to 69.76% with higher doses (300 nM, 1 μM, and 5 μM), especially at 48h and 72h. Additional cell viability testing with CellTiter-Blue also demonstrated a significant concentration-dependent decrease in cell viability which ranged from 27.80 to 73.67% with higher doses (300 nM, 1 μM, 3 μM, and 5 μM). Gene expression analysis following treatment of BM-MSCs with TQ (1 and 3 μM) for 48h showed upregulation of the anti-inflammatory genes IL-4 and IL-10. In contrast, the pro-inflammatory genes namely IFN-γ, TNF-α, COX-2, IL-6, IL-8, IL-16, and IL-12A although were upregulated, compared to the lower concentration of TQ (1 μM) they were all decreased at 3 μM. The pro-apoptotic BAX gene was downregulated while the SURVIVIN gene was upregulated. IPA of the molecular interaction of TQ in inflammation and age-related degenerative diseases identified canonical pathways directly related to synaptogenesis, neuroinflammation, TGF-β, and interleukin signaling. Further screening led to the identification of 36 molecules that are involved in apoptosis, cell cycle regulation, cytokines, chemokines, and growth factors. SwissTargetPrediction of TQ identified potential molecular targets with high probability. TQ exerted anti-inflammatory effects and therefore can be a useful adjuvant along with conventional therapies against inflammation in OA and other age-related degenerative diseases.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Medicine, Asian Institute of Medicine, Science and Technology, AIMST University, Bedong, Malaysia
| | - Saadiah M Alfakeeh
- Department of Biochemistry, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan Omar Bahmaid
- Department of Biochemistry, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Etimad A AlHuwait
- Department of Biochemistry, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh A Gari
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M Abbas
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Orthopaedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammed Abu-Elmagd
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Wang J, Yang DH, Yang Y, Wang JQ, Cai CY, Lei ZN, Teng QX, Wu ZX, Zhao L, Chen ZS. Overexpression of ABCB1 Transporter Confers Resistance to mTOR Inhibitor WYE-354 in Cancer Cells. Int J Mol Sci 2020; 21:ijms21041387. [PMID: 32092870 PMCID: PMC7073023 DOI: 10.3390/ijms21041387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
The overexpressing ABCB1 transporter is one of the key factors leading to multidrug resistance (MDR). Thus, many ABCB1 inhibitors have been found to be able to overcome ABCB1-mediated MDR. However, some inhibitors also work as a substrate of ABCB1, which indicates that in order to achieve an effective reversal dosage, a higher concentration is needed to overcome the pumped function of ABCB1, which may concurrently increase the toxicity. WYE-354 is an effective and specific mTOR (mammalian target of rapamycin) inhibitor, which recently has been reported to reverse ABCB1-mediated MDR. In the current study, 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out to determine the cell viability and reversal effect of WYE-354 in parental and drug-resistant cells. Drug accumulation was performed to examine the effect of WYE-354 on the cellular accumulation of chemotherapeutic drugs. The ATPase (adenosine triphosphatase) activity of the ABCB1 transporter in the presence or absence of WYE-354 was conducted in order to determine the impact of WYE-354 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate the protein molecules related to MDR. In addition, the interaction between the WYE-354 and ABCB1 transporter was investigated via in silico analysis. We demonstrated that WYE-354 is a substrate of ABCB1, that the overexpression of the ABCB1 transporter decreases the efficacy of WYE-354, and that the resistant WYE-354 can be reversed by an ABCB1 inhibitor at a pharmacological achievable concentration. Furthermore, WYE-354 increased the intracellular accumulation of paclitaxel in the ABCB1-mediated MDR cell line, without affecting the corresponding parental cell line, which indicated that WYE-354 could compete with other chemotherapeutic drugs for the ABCB1 transporter substrate binding site. In addition, WYE-354 received a high score in the docking analysis, indicating a strong interaction between WYE-354 and the ABCB1 transporter. The results of the ATPase analysis showed that WYE-354 could stimulate ABCB1 ATPase activity. Treatment with WYE-354 did not affect the protein expression or subcellular localization of the ABCB1. This study provides evidence that WYE-354 is a substrate of the ABCB1 transporter, implicating that WYE-354 should be avoided for use in ABCB1-mediated MDR cancer.
Collapse
Affiliation(s)
- Jingqiu Wang
- Department of Pharmacy, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, China;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Linguo Zhao
- Department of Pharmacy, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, China;
- Correspondence: (L.Z.); (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
- Correspondence: (L.Z.); (Z.-S.C.)
| |
Collapse
|