1
|
Zhang W, Li J, Yamamoto K, Goyama S. Modeling and therapeutic targeting of t(8;21) AML with/without TP53 deficiency. Int J Hematol 2024; 120:186-193. [PMID: 38702444 PMCID: PMC11284192 DOI: 10.1007/s12185-024-03783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-ETO is one of the most common subtypes of AML. Although t(8;21) AML has been classified as favorable-risk, only about half of patients are cured with current therapies. Several genetic abnormalities, including TP53 mutations and deletions, negatively impact survival in t(8;21) AML. In this study, we established Cas9+ mouse models of t(8;21) AML with intact or deficient Tpr53 (a mouse homolog of TP53) using a retrovirus-mediated gene transfer and transplantation system. Trp53 deficiency accelerates the in vivo development of AML driven by RUNX1-ETO9a, a short isoform of RUNX1-ETO with strong leukemogenic potential. Trp53 deficiency also confers resistance to genetic depletion of RUNX1 and a TP53-activating drug in t(8;21) AML. However, Trp53-deficient t(8;21) AML cells were still sensitive to several drugs such as dexamethasone. Cas9+ RUNX1-ETO9a cells with/without Trp53 deficiency can produce AML in vivo, can be cultured in vitro for several weeks, and allow efficient gene depletion using the CRISPR/Cas9 system, providing useful tools to advance our understanding of t(8;21) AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/etiology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/deficiency
- Animals
- Mice
- Chromosomes, Human, Pair 8/genetics
- Translocation, Genetic
- Chromosomes, Human, Pair 21/genetics
- Humans
- Disease Models, Animal
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/deficiency
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Jingmei Li
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
2
|
Sheikhi M, Rostami M, Ferns G, Ayatollahi H, Siyadat P, Ayatollahi Y, Khoshnegah Z. Prognostic significance of ASXL1 mutations in acute myeloid leukemia: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:202-214. [PMID: 38807730 PMCID: PMC11129077 DOI: 10.22088/cjim.15.2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2024]
Abstract
Background Although genetic mutations in additional sex-combs-like 1 (ASXL1) are prevalent in acute myeloid leukemia (AML), their exact impact on the AML prognosis remains uncertain. Hence, the present article was carried out to explore the prognostic importance of ASXL1 mutations in AML. Methods We thoroughly searched electronic scientific databases to find eligible papers. Twenty-seven studies with an overall number of 8,953 participants were selected for the current systematic review. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were extracted from all studies with multivariate or univariate analysis. Pooled HRs and p-values were also calculated as a part of our work. Results The pooled HR for OS in multivariable analysis indicated that ASXL1 significantly diminished survival in AML patients (pooled HR: 1.67; 95% CI: 1.342-2.091). Conclusions ASXL1 mutations may confer a poor prognosis in AML. Hence, they may be regarded as potential prognostic factors. However, more detailed studies with different ASXL1 mutations are suggested to shed light on this issue.
Collapse
Affiliation(s)
- Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rostami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Siyadat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Yasamin Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Xu D, Yang Y, Yin Z, Tu S, Nie D, Li Y, Huang Z, Sun Q, Huang C, Nie X, Yao Z, Shi P, Zhang Y, Jiang X, Liu Q, Yu G. Risk-directed therapy based on genetics and MRD improves the outcomes of AML1-ETO-positive AML patients, a multi-center prospective cohort study. Blood Cancer J 2023; 13:168. [PMID: 37957175 PMCID: PMC10643486 DOI: 10.1038/s41408-023-00941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Affiliation(s)
- Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qixin Sun
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou, China
| | - Changfen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaqi Nie
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zurong Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Qin G, Han X. The Prognostic Value of TP53 Mutations in Adult Acute Myeloid Leukemia: A Meta-Analysis. Transfus Med Hemother 2023; 50:234-244. [PMID: 37435002 PMCID: PMC10331159 DOI: 10.1159/000526174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Mutations of the tumor protein p53 (TP53) gene were considered to be associated with an unfavorable prognosis in acute myeloid leukemia (AML). This meta-analysis aimed to systematically elucidate the prognostic value of TP53 mutation in adult patients with AML. METHOD A comprehensive literature search was conducted for eligible studies published before August 2021. The primary endpoint was overall survival (OS). Pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) were calculated for prognostic parameters. Subgroup analyses based on intensive treatment were performed. RESULTS Thirty-two studies with 7,062 patients were included. As compared to wild-type carriers, AML patients with TP53 mutations had significantly shorter OS (HR: 2.40, 95% CI: 2.16-2.67, I2: 46.6%). Similar results were found in DFS (HR: 2.87, 95% CI: 1.88-4.38), EFS (HR: 2.56, 95% CI: 1.97-3.31), and RFS (HR: 2.40, 95% CI: 1.79-3.22). Mutant TP53 predicted inferior OS (HR: 2.77, 95% CI: 2.41-3.18) in the intensively treated AML subgroup, compared with the non-intensively treated group (HR: 1.89, 95% CI: 1.58-2.26). Among intensively-treated AML patients, the age of 65 did not affect the prognostic value of TP53 mutations. Besides, TP53 mutation was also strongly associated with an elevated risk of adverse cytogenetics, which conferred a dismal OS in AML patients (HR: 2.03, 95% CI: 1.74-2.37). CONCLUSION TP53 mutation exhibits a promising potential for discriminating AML patients with a worse prognosis, thus being capable of serving as a novel tool for prognostication and therapeutic decision-making in the management of AML.
Collapse
Affiliation(s)
- Guoxiang Qin
- Department of Hematology, Jincheng People's Hospital, Jincheng, China
| | - Xueling Han
- Hospital Office, Zezhou People's Hospital, Jincheng, China
| |
Collapse
|
5
|
Yang M, Zhao B, Wang J, Zhang Y, Hu C, Liu L, Qin J, Lou F, Cao S, Wang C, Yu W, Tong H, Meng H, Huang J, Zhu H, Jin J. A Predictor Combining Clinical and Genetic Factors for AML1-ETO Leukemia Patients. Front Oncol 2022; 11:783114. [PMID: 35096581 PMCID: PMC8796117 DOI: 10.3389/fonc.2021.783114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Core Binding Factor (CBF)-AML is one of the most common somatic mutations in acute myeloid leukemia (AML). t(8;21)/AML1-ETO-positive acute myeloid leukemia accounts for 5-10% of all AMLs. In this study, we consecutively included 254 AML1-ETO patients diagnosed and treated at our institute from December 2009 to March 2020, and evaluated molecular mutations by 185-gene NGS platform to explore genetic co-occurrences with clinical outcomes. Our results showed that high KIT VAF(≥15%) correlated with shortened overall survival compared to other cases with no KIT mutation (3-year OS rate 26.6% vs 59.0% vs 69.6%, HR 1.50, 95%CI 0.78-2.89, P=0.0005). However, no difference was found in patients’ OS whether they have KIT mutation in two or three sites. Additionally, we constructed a risk model by combining clinical and molecular factors; this model was validated in other independent cohorts. In summary, our study showed that c-kit other than any other mutations would influence the OS in AML1-ETO patients. A proposed predictor combining both clinical and genetic factors is applicable to prognostic prediction in AML1-ETO patients.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Bide Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Chao Hu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | | | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jian Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| |
Collapse
|
6
|
Gopal AK, Popat R, Mattison RJ, Menne T, Bloor A, Gaymes T, Khwaja A, Juckett M, Chen Y, Cotter MJ, Mufti GJ. A Phase I trial of talazoparib in patients with advanced hematologic malignancies. Int J Hematol Oncol 2021; 10:IJH35. [PMID: 34840720 PMCID: PMC8609999 DOI: 10.2217/ijh-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: The objective of this study was to establish the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of talazoparib. Patients & methods: This Phase I, two-cohort, dose-escalation trial evaluated talazoparib monotherapy in advanced hematologic malignancies (cohort 1: acute myeloid leukemia/myelodysplastic syndrome; cohort 2: chronic lymphocytic leukemia/mantle cell lymphoma). Results: Thirty-three (cohort 1: n = 25; cohort 2: n = 8) patients received talazoparib (0.1–2.0 mg once daily). The MTD was exceeded at 2.0 mg/day in cohort 1 and at 0.9 mg/day in cohort 2. Grade ≥3 adverse events were primarily hematologic. Eighteen (54.5%) patients reported stable disease. Conclusion: Talazoparib is relatively well tolerated in hematologic malignancies, with a similar MTD as in solid tumors, and shows preliminary anti leukemic activity. Clinical trial registration: NCT01399840 (ClinicalTrials.gov) The objective of this study was to define the highest dose of talazoparib that people with various types of leukemia (mainly various blood cancers) could tolerate. People were assigned into two cohorts based on their type of leukemia: cohort 1 included 25 people with acute myeloid leukemia or myelodysplastic syndrome; cohort 2 included 8 people with chronic lymphocytic leukemia or mantle cell lymphoma. Similar to what researchers observed for people with solid tumors, the highest tolerated dose was 1.35 mg per day in cohort 1, and it was estimated to be ∼0.9 mg per day in cohort 2. Side effects that occurred during the study were expected, given the types of leukemia being treated. Talazoparib also showed promising anti leukemic effects in some patients. In this Phase I talazoparib trial in hematologic malignancies (cohort 1: AML/MDS, n = 25; cohort 2: CLL/MCL, n = 8), the maximum tolerated dose was exceeded at 2.0 and 0.9 mg/day in cohorts 1 and 2, respectively. Stable disease and transfusion independence were also observed.
Collapse
Affiliation(s)
- Ajay K Gopal
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rakesh Popat
- National Institute for Health Research University College London Hospitals Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ryan J Mattison
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Tobias Menne
- Department of Hematology, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Adrian Bloor
- The Christie NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Terry Gaymes
- Department of Biomolecular Science, Kingston University, London, UK
| | - Asim Khwaja
- University College London Cancer Institute & University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark Juckett
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | | | | | - Ghulam J Mufti
- Department of Hematology, King's College London, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Prognostic values of D816V KIT mutation and peri-transplant CBFB-MYH11 MRD monitoring on acute myeloid leukemia with CBFB-MYH11. Bone Marrow Transplant 2021; 56:2682-2689. [PMID: 34183780 DOI: 10.1038/s41409-021-01384-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Given the controversies in the prognostic value of KIT mutations and optimal thresholds and time points of MRD monitoring for AML with CBFB-MYH11, we retrospectively evaluated 88 patients who underwent allogeneic hematopoietic stem cell transplantation (Allo-HSCT, n = 60) or autologous HSCT (Auto-HSCT, n = 28). The D816V KIT mutation was significantly associated with post-transplant relapse, contrasting with other types of mutations in KIT. Pre- and post-transplant (3 months after transplant) CBFB-MYH11 MRD assessments were useful in predicting post-transplant relapse and poor survival. The optimal threshold was determined as a 2 log reduction at both time points. In multivariate analysis, the D816V KIT mutation and CBFB-MYH11 MRD assessments were independently associated with post-transplant relapse and survival. Stratification by D816V KIT and pre-transplant CBFB-MYH11 MRD status further distinguished the risk of relapse and survival. Auto-HSCT was superior to Allo-HSCT in MRD negative patients without D816V KIT, while Allo-HSCT trended to be superior to Auto-HSCT in patients with MRD positivity or the D816V KIT mutation. In conclusion, this study demonstrated the differentiated prognostic value of the D816V KIT mutation in AML with CBFB-MYH11 and clarified optimal time points and thresholds for CBFB-MYH11 MRD monitoring in the setting of HSCT.
Collapse
|
8
|
Cho BS, Min GJ, Park SS, Park S, Jeon YW, Shin SH, Yahng SA, Yoon JH, Lee SE, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Kim DW, Wook-Lee J, Kim MS, Kim YG, Kim HJ. Prognostic Impacts of D816V KIT Mutation and Peri-Transplant RUNX1-RUNX1T1 MRD Monitoring on Acute Myeloid Leukemia with RUNX1-RUNX1T1. Cancers (Basel) 2021; 13:cancers13020336. [PMID: 33477584 PMCID: PMC7831332 DOI: 10.3390/cancers13020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) with RUNX1-RUNX1T1 is a heterogeneous disease entailing different prognoses. Patients with high-risk features can benefit from allogeneic hematopoietic stem cell transplantation (HSCT) or autologous HSCT. However, insufficient data about major risk factors, such as KIT mutations and measurable residual disease (MRD) status for relapse, make it difficult to clarify the benefit of each transplant strategy. Moreover, limited data are available to elucidate the exact prognostic impacts of different types of KIT mutations and optimal thresholds or time points for RUNX1–RUNX1T1 MRD assessment, particularly in the setting of HSCT. Given the lack of prospective study, the current retrospective study, including a large cohort of high-risk AML patients with RUNX1–RUNX1T1, firstly demonstrated the differentiated prognostic impact of D816V KIT mutation among various KIT mutations and clarified optimal time points and thresholds for RUNX1–RUNX1T1 MRD monitoring in the setting of HSCT. Abstract The prognostic significance of KIT mutations and optimal thresholds and time points of measurable residual disease (MRD) monitoring for acute myeloid leukemia (AML) with RUNX1-RUNX1T1 remain controversial in the setting of hematopoietic stem cell transplantation (HSCT). We retrospectively evaluated 166 high-risk patients who underwent allogeneic (Allo-HSCT, n = 112) or autologous HSCT (Auto-HSCT, n = 54). D816V KIT mutation, a subtype of exon 17 mutations, was significantly associated with post-transplant relapse and poor survival, while other types of mutations in exons 17 and 8 were not associated with post-transplant relapse. Pre- and post-transplant RUNX1–RUNX1T1 MRD assessments were useful for predicting post-transplant relapse and poor survival with a higher sensitivity at later time points. Survival analysis for each stratified group by D816V KIT mutation and pre-transplant RUNX1–RUNX1T1 MRD status demonstrated that Auto-HSCT was superior to Allo-HSCT in MRD-negative patients without D816V KIT mutation, while Allo-HSCT was superior to Auto-HSCT in MRD-negative patients with D816V KIT mutation. Very poor outcomes of pre-transplant MRD-positive patients with D816V KIT mutation suggested that this group should be treated in clinical trials. Risk stratification by both D816V KIT mutation and RUNX1–RUNX1T1 MRD status will provide a platform for decision-making or risk-adapted therapeutic approaches.
Collapse
Affiliation(s)
- Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gi-June Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Soo Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Seung-Hwan Shin
- Department of Hematology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Seung-Ah Yahng
- Department of Hematology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
| | - Dong-Wook Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jong Wook-Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
| | - Myung-Shin Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (M.-S.K.); (Y.-G.K.)
| | - Yong-Goo Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (M.-S.K.); (Y.-G.K.)
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6054; Fax: +82-2-599-3589
| |
Collapse
|