1
|
Rong H, Jiang Y. METTL14 suppresses the migration and invasion of hepatocellular carcinoma cells by m6A methylation of RPLP2. Sci Rep 2025; 15:5660. [PMID: 39955344 PMCID: PMC11830075 DOI: 10.1038/s41598-025-87701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Fluctuating N(6)-methyladenosine (m6A) levels affect the progression of hepatocellular carcinoma (HCC). METTL14, a m6A methyltransferase, acts as a tumor suppressor in HCC; however, its underlying mechanisms need further clarification. This study aimed to clarify the role of METTL14 in HCC and the underlying molecular mechanism. Cellular behaviors were evaluated using cell counting kit-8, EdU, and Transwell assays. The molecular mechanism was analyzed using methylated RNA binding protein immunoprecipitation, dual-luciferase reporter assay, and RNA stability determination. The results demonstrated that METTL14 expression was decreased in HCC tissues and cells, and its overexpression suppressed cellular proliferation, migration, and invasion. Moreover, RPLP2 was negatively correlated to METTL14, and it was highly expressed in HCC tissues and cells. METTL14 promoted the m6A modification of RPLP2 and reduced its stability, thereby inhibiting malignant behaviors. Besides, YTHDC2 decreased RPLP2 expression and reversed the stability induced by METTL14. In conclusion, METTL14 inhibits HCC progression by regulating the YTHDC2-m6A-RPLP2 axis.
Collapse
Affiliation(s)
- Haiyan Rong
- Laboratory Medicine Diagnostic Centre, The First Affiliated Hospital, Xinjiang Medical University, No.118, Liyushan Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Yan Jiang
- Laboratory Medicine Diagnostic Centre, The First Affiliated Hospital, Xinjiang Medical University, No.118, Liyushan Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
2
|
Xiao L, De Jesus DF, Ju CW, Wei JB, Hu J, DiStefano-Forti A, Gonzales VS, Tsuji T, Wei S, Blüher M, Tseng YH, He C, Kulkarni RN. Divergent roles of m 6A in orchestrating brown and white adipocyte transcriptomes and systemic metabolism. Nat Commun 2025; 16:533. [PMID: 39788955 PMCID: PMC11718074 DOI: 10.1038/s41467-024-55694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
N6-methyladenosine (m6A) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that m6A methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity. Mettl14-knockout in BAT promotes prostaglandin secretion, improving systemic insulin sensitivity. Conversely, Mettl14-knockout in WAT triggers adipocyte apoptosis and systemic insulin resistance. m6A-seq and RNA-seq integration revealed upregulated prostaglandin biosynthesis pathways in BAT and apoptotic pathways in WAT with Mettl14 deficiency. Stable METTL14-knockout hBAs/hWAs show METTL14-mediated m6A promotes mRNA decay of PTGES2 and CBR1 in hBAs and TRAIL and TNFR1 in hWAs. These data shed light on the ability of m6A to impact metabolism in a cell-type-specific manner with implications for influencing the pathophysiology of metabolic diseases.
Collapse
MESH Headings
- Animals
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Transcriptome
- Humans
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Mice
- Mice, Knockout
- Insulin Resistance/genetics
- Adipocytes, White/metabolism
- Apoptosis/genetics
- Male
- Adipose Tissue, White/metabolism
- Adipose Tissue, Brown/metabolism
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Mice, Inbred C57BL
- Adipocytes, Brown/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA Stability
Collapse
Affiliation(s)
- Ling Xiao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng-Wei Ju
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, USA
| | - Jiang-Bo Wei
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ava DiStefano-Forti
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Valeria Salerno Gonzales
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center; Department of Medicine, BIDMC, Harvard Medical School; Harvard Stem Cell Institute, Boston, MA, USA
| | - Siying Wei
- Section of Islet Cell and Regenerative Biology, and CRISPR Screen Core Laboratory, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Medical School, Boston, MA, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, HI, Leipzig, Germany
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center; Department of Medicine, BIDMC, Harvard Medical School; Harvard Stem Cell Institute, Boston, MA, USA
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Rupareliya M, Shende P. Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:79-103. [PMID: 39259424 DOI: 10.1007/5584_2024_820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
4
|
Jayasree PJ, Dutta S, Karemore P, Khandelia P. Crosstalk Between m6A RNA Methylation and miRNA Biogenesis in Cancer: An Unholy Nexus. Mol Biotechnol 2024; 66:3042-3058. [PMID: 37831403 DOI: 10.1007/s12033-023-00921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent internal reversible chemical modification of RNAs in eukaryotes, which has attracted widespread attention recently owing to its regulatory roles in a plethora of normal developmental processes and human diseases like cancer. Deposition of the m6A mark on RNAs is mediated by the dynamic interplay between m6A regulatory proteins such as m6A RNA methyltransferases (m6A writers), m6A RNA demethylases (m6A erasers) and m6A RNA binding proteins (m6A readers). m6A regulators are ectopically expressed in various cancer types, often leading to aberrant expression of tumor-suppressor and oncogenic mRNAs either directly or indirectly via regulating the biogenesis of non-coding RNAs like miRNAs. miRNAs are tiny regulators of gene expression, which often impact various hallmarks of cancer and thus influence tumorigenesis. It is becoming increasingly clear that m6A RNA modification impacts biogenesis and function of miRNAs, and recent studies have interestingly, uncovered many miRNAs whose biogenesis and function are regulated by m6A writers, erasers and readers. In this review, we discuss various mechanisms by which m6A RNA methylation regulates miRNA biogenesis, the functional crosstalk between m6A RNA methylation and miRNAs and how it modulates various aspects of tumorigenesis. The potential of m6A RNA methylation regulated miRNAs as biomarkers and novel therapeutic targets to treat various cancers is also addressed.
Collapse
Affiliation(s)
- P J Jayasree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Shalmoli Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Pragati Karemore
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
5
|
Zhang G, Cheng C, Wang X, Wang S. N6-Methyladenosine methylation modification in breast cancer: current insights. J Transl Med 2024; 22:971. [PMID: 39468547 PMCID: PMC11514918 DOI: 10.1186/s12967-024-05771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer is the most common cancer type among women. Despite advanced treatment strategies, some patients still face challenges in disease control, prompting the exploration of new therapeutic approaches. N6-Methyladenosine (m6A) methylation modification regulates RNA and plays a crucial role in various tumor biological processes, closely linked to breast cancer occurrence, development, prognosis, and treatment. M6A regulators impact breast cancer progression, development, and drug resistance by modulating RNA metabolism and tumor-related pathways. Researchers have begun to understand the regulatory mechanisms of m6A methylation in breast cancer. This paper discusses the roles of m6A regulators in breast cancer progression, prognosis, and treatment, offering new perspectives for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Guangwen Zhang
- First Clinical Medical College of Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Chen Cheng
- Department of General Surgery, Jincheng General Hospital, Shanxi Medical University, Financial Street, Jincheng, 048006, Shanxi, China
| | - Xinle Wang
- First Clinical Medical College of Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Shiming Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Jiang L, Zhang Y, Qian J, Zhou X, Ma L, Zhu S, Wang L, Wang W, Yang W, Luo Y, Lang W, Xu G, Ren Y, Mei C, Ye L, Zhang Q, Liu X, Jin J, Sun J, Tong H. The m 6A methyltransferase METTL14 promotes cell proliferation via SETBP1-mediated activation of PI3K-AKT signaling pathway in myelodysplastic neoplasms. Leukemia 2024; 38:2246-2258. [PMID: 39054337 PMCID: PMC11436359 DOI: 10.1038/s41375-024-02350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification in mammalian mRNA. Recent studies have revealed m6A is involved in the pathogenesis of various malignant tumors including hematologic neoplasms. Nevertheless, the specific roles of m6A modification and m6A regulators in myelodysplastic neoplasms (MDS) remain poorly understood. Herein, we demonstrated that m6A level and the expression of m6A methyltransferase METTL14 were elevated in MDS patients with bone marrow blasts ≥5%. Additionally, m6A level and METTL14 expression were upregulated as the disease risk increased and significantly associated with adverse clinical outcomes. Knockdown of METTL14 inhibited cell proliferation and colony formation ability of MDS cells. Moreover, in vivo experiments showed METTL14 knockdown remarkably reduced tumor burden and prolonged the survival of mice. Mechanistically, METTL14 facilitated the m6A modification of SETBP1 mRNA by formation of METTL3-METTL14 complex, leading to increased stabilization of SETBP1 mRNA and subsequent activation of the PI3K-AKT signaling pathway. Overall, this study elucidated the involvement of the METTL14/m6A/SETBP1/PI3K-AKT signaling axis in MDS, highlighting the therapeutic potential of targeting METTL3-METTL14 complex-mediated m6A modification for MDS therapy.
Collapse
Affiliation(s)
- Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yudi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gaixiang Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
8
|
Yang L, Liu J, Zhang J, Shao F, Jin Y, Xing J, Zhou H, Yu A. Anticancer effects of Erzhimaoling decoction in high-grade serous ovarian cancer in vitro and in vivo. Eur J Med Res 2024; 29:405. [PMID: 39103890 PMCID: PMC11299366 DOI: 10.1186/s40001-024-01968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a common gynecologic malignancy with a poor prognosis. The traditional Chinese medicine formula Erzhimaoling decoction (EZMLD) has anticancer potential. This study aims to elucidate the anticancer effects of EZMLD on HGSOC in vitro and in vivo. MATERIALS AND METHODS EZMLD-containing serum was prepared from Sprague-Dawley rats for treating SKOV3 ovarian cancer cells at varying concentrations for 24 h and 48 h to determine the IC50. Concentrations of 0%, 5%, and 10% for 24 h were chosen for subsequent in vitro experiments. The roles of METTL3 and METTL14 in SKOV3 cells were explored by overexpressing these genes and combining EZMLD with METTL3/14 knockdown. Investigations focused on cell viability and apoptosis, apoptosis-related protein expression, and KRT8 mRNA m6A modification. For in vivo studies, 36 BALB/c nude mice were divided into six groups involving EZMLD (6.75, 13.5, and 27 g/kg) and METTL3 or METTL14 knockdowns, with daily EZMLD gavage for two weeks. RESULTS In vitro, EZMLD-containing serum had IC50 values of 8.29% at 24 h and 5.95% at 48 h in SKOV3 cells. EZMLD-containing serum decreased SKOV3 cell viability and increased apoptosis. EZMLD upregulated METTL3/14 and FAS-mediated apoptosis proteins, while downregulating Keratin 8 (KRT8). EZMLD increased KRT8 mRNA m6A methylation. METTL3/14 overexpression reduced SKOV3 cell viability and increased apoptosis, while METTL3/14 knockdown mitigated EZMLD's effects. In vivo, EZMLD suppressed SKOV3 xenografts growth, causing significant apoptosis and modulating protein expression. CONCLUSIONS EZMLD has therapeutic potential for ovarian cancer and may be considered for other cancer types. Future research may explore its broader effects beyond cell apoptosis.
Collapse
MESH Headings
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Neoplasm Grading
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Rats, Sprague-Dawley
- Cell Line, Tumor
- Humans
- Female
- Animals
- Rats
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Gene Knockdown Techniques
- Inhibitory Concentration 50
- Cell Survival/drug effects
- Apoptosis/drug effects
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Neoplastic/drug effects
- Keratin-8/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Ovarian Epithelial/drug therapy
- Carcinoma, Ovarian Epithelial/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Li Yang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Jingfang Liu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Jiejie Zhang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Feng Shao
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Yanlu Jin
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Jie Xing
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Heran Zhou
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Aijun Yu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
9
|
Wang R, Gao X, Xie L, Lin J, Ren Y. METTL16 regulates the mRNA stability of FBXO5 via m6A modification to facilitate the malignant behavior of breast cancer. Cancer Metab 2024; 12:22. [PMID: 39061113 PMCID: PMC11282785 DOI: 10.1186/s40170-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) regulates the progression of breast cancer (BC). We aimed to investigate the action and mechanism involved of methyltransferase-like protein 16 (METTL16) in BC growth and metastasis. METHODS RT-qPCR, immunoblotting, and IHC were performed to test the levels of gene expression. CCK-8, clone formation, wound healing, and transwell assays were applied to measure the cell proliferation, migration, and invasion. m6A RNA methylation and MeRIP assay were utilized to confirm the m6A level of total RNA and FBXO5 mRNA. RIP was utilized to ascertain the interaction between METTL16 and FBXO5 mRNA. The in vivo murine subcutaneous tumor and metastasis model were constructed to further confirm the action of METTL16. RESULTS METTL16 was overexpression in BC cells and tissues. Inhibition of METTL16 restrained the growth and metastasis of BC. Furthermore, the METTL16 level and FBXO5 level was positively correlated in BC tissues, and METTL16 aggrandized the stability of FBXO5 mRNA depending on the m6A modification. Overexpression of FBXO5 antagonized the restrained function of METTL16 knockdown on BC cells' proliferation, migration, invasion, and EMT. CONCLUSION METTL16 boosts the mRNA stability of FBXO5 via m6A modification to facilitate the malignant action of BC in vitro and in vivo, offering new latent targets for cure of BC.
Collapse
Affiliation(s)
- Runying Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian City, 116024, Liaoning Province, P.R. China
| | - Xingjie Gao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian City, 116044, Liaoning Province, P.R. China
| | - Luhan Xie
- Deparment of Pathology and Forensic Medicine, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian City, 116044, Liaoning Province, P.R. China
| | - Jiaqi Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian City, 116024, Liaoning Province, P.R. China.
| | - Yanying Ren
- Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian City, 116023, Liaoning Province, P.R. China.
| |
Collapse
|
10
|
Zhao X, Lu J, Wu W, Li J. METTL14 inhibits the malignant processes of gastric cancer cells by promoting N6-methyladenosine (m6A) methylation of TAF10. Heliyon 2024; 10:e32014. [PMID: 38882361 PMCID: PMC11176857 DOI: 10.1016/j.heliyon.2024.e32014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
N6-methyladenosine (m6A) methylation mediates cancer development by regulating cell proliferation and metastasis. This study aimed to identify whether methyltransferase 14 (METTL14) affects gastric cancer (GC) cellular functions and its underlying mechanism. METTL14 and TATA-box binding protein associated factor 10 (TAF10) levels were examined using quantitative real-time PCR, immunohistochemical assay, and Western blot. Biological functions were assessed using cell counting kit-8, colony formation, and transwell assays. The interaction between METTL14 and TAF10 was analyzed using RNA immunoprecipitation, methylated RNA immunoprecipitation, and luciferase reporter assay. A xenograft tumor mouse model was established to assess the role of METTL14 in vivo. The results suggested that METTL14 was low expressed and TAF10 was highly expressed in GC tissues and cells. METTL14 overexpression inhibited GC cell viability, colony, migration, and invasion. TAF10 was predicted and confirmed to be negatively related to METTL14. METTL14 promoted m6A methylation of TAF10 and inhibited TAF10 stability. Moreover, TAF10 counteracted the cellular behaviors regulated by METTL14. Overexpression of METTL14 inhibited tumor growth and histopathology. In conclusion, METTL14 inhibits GC progression by attenuating GC cell proliferation, migration, and invasion. Mechanistically, METTL14 promoted m6A methylation of TAF10, suppressed the stability of TAF10, and thus downregulated the TAF10 levels, These results provide a new insight into GC therapy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of General Surgery, The 928th Hospital of the Joint Logistic Support Force of the People's Liberation Army, 100 Longkun South Road, Longhua District, Haikou, 570100, Hainan, China
| | - Jingfen Lu
- Department of Hemato-oncology, The 928th Hospital of the Joint Logistic Support Force of the People's Liberation Army, 100 Longkun South Road, Longhua District, Haikou, 570100, Hainan, China
| | - Weimin Wu
- Department of General Surgery, The 928th Hospital of the Joint Logistic Support Force of the People's Liberation Army, 100 Longkun South Road, Longhua District, Haikou, 570100, Hainan, China
| | - Jiahui Li
- Department of Medical Imaging, The 74th Military Medical Hospital of Chinese People's Liberation Army CN, 468 Xingang Middle Road, Haizhu District, Guangzhou, 510318, Guangdong, China
| |
Collapse
|
11
|
Liu X, Xie X, Sui C, Liu X, Song M, Luo Q, Zhan P, Feng J, Liu J. Unraveling the cross-talk between N6-methyladenosine modification and non-coding RNAs in breast cancer: Mechanisms and clinical implications. Int J Cancer 2024; 154:1877-1889. [PMID: 38429857 DOI: 10.1002/ijc.34900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
In recent years, breast cancer (BC) has surpassed lung cancer as the most common malignant tumor worldwide and remains the leading cause of cancer death in women. The etiology of BC usually involves dysregulation of epigenetic mechanisms and aberrant expression of certain non-coding RNAs (ncRNAs). N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, widely exists in ncRNAs to affect its biosynthesis and function, and is an important regulator of tumor-related signaling pathways. Interestingly, ncRNAs can also regulate or target m6A modification, playing a key role in cancer progression. However, the m6A-ncRNAs regulatory network in BC has not been fully elucidated, especially the regulation of m6A modification by ncRNAs. Therefore, in this review, we comprehensively summarize the interaction mechanisms and biological significance of m6A modifications and ncRNAs in BC. Meanwhile, we also focused on the clinical application value of m6A modification in BC diagnosis and prognosis, intending to explore new biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuelong Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Chentao Sui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Miao Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
13
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Zhao C, Li J. METTL14-mediated N6-methyladenosine modification induces the ferroptosis of hypoxia/reoxygenation-induced cardiomyocytes. J Cardiothorac Surg 2024; 19:265. [PMID: 38664788 PMCID: PMC11044313 DOI: 10.1186/s13019-024-02711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Hypoxia/reoxygenation (H/R) induces cardiomyocyte ferroptosis, a core remodeling event in myocardial ischemia/reperfusion injury. Methyltransferase-like 14 (METTL14) emerges as a writer of N6-methyladenosine (m6A) modification. This study was conducted to decipher the role of METTL14 in H/R-induced cardiomyocyte ferroptosis. METHODS Mouse cardiomyocytes HL-1 were cultured and underwent H/R treatment. The degree of ferroptosis after H/R treatment was appraised by the cell counting kit-8 assay, assay kits (ROS/GSH/Fe2+), and Western blotting (GPX4/ACSL4). The intracellular expressions of METTL14, pri-miR-146a-5p, miR-146a-5p, or adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) were examined by real-time quantitative polymerase chain reaction or Western blotting, with m6A quantification analysis and RNA immunoprecipitation to determine the total m6A level and the expression of pri-miR-146a-5p bound to DiGeorge critical region 8 (DGCR8) and m6A-modified pri-miR-146a-5p. The binding of miR-146a-5p to APPL1 was testified by the dual-luciferase assay. RESULTS H/R treatment induced cardiomyocyte ferroptosis (increased ROS, Fe2+, and ACSL4 and decreased GSH and GPX4) and upregulated METTL14 expression. METTL14 knockdown attenuated H/R-induced cardiomyocyte ferroptosis. METTL14 induced the recognition of pri-miR-146a-5p by DGCR8 by increasing m6A modification on pri-miR-146a-5p, which promoted the conversion of pri-miR-146a-5p into miR-146a-5p and further repressed APPL1 transcription. miR-146a-5p upregulation or APPL1 downregulation limited the inhibitory effect of METTL14 downregulation on H/R-induced cardiomyocyte ferroptosis. CONCLUSION METTL14 promoted miR-146a-5p expression through the recognition and processing of pri-miR-146a-5p by DGCR8, which repressed APPL1 transcription and triggered H/R-induced cardiomyocyte ferroptosis.
Collapse
Affiliation(s)
- Chunyu Zhao
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, Heilongjiang, 150000, China
| | - Jianing Li
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
15
|
Tan L, Wang S, Huang S, Tie Y, Sai N, Mao Y, Zhao S, Hou Y, Dou H. FoxO1 promotes ovarian cancer by increasing transcription and METTL14-mediated m 6A modification of SMC4. Cancer Sci 2024; 115:1224-1240. [PMID: 38403332 PMCID: PMC11006996 DOI: 10.1111/cas.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The transcription factor forkhead box protein O1 (FoxO1) is closely related to the occurrence and development of ovarian cancer (OC), however its role and molecular mechanisms remain unclear. Herein, we found that FoxO1 was highly expressed in clinical samples of OC patients and was significantly correlated with poor prognosis. FoxO1 knockdown inhibited the proliferation of OC cells in vitro and in vivo. ChIP-seq combined with GEPIA2 and Kaplan-Meier database analysis showed that structural maintenance of chromosome 4 (SMC4) is a downstream target of FoxO1, and FoxO1 promotes SMC4 transcription by binding to its -1400/-1390 bp promoter. The high expression of SMC4 significantly blocked the tumor inhibition effect of FoxO1 knockdown. Furtherly, FoxO1 increased SMC4 mRNA abundance by transcriptionally activating methyltransferase-like 14 (METTL14) and increasing SMC4 m6A methylation on its coding sequence region. The Cancer Genome Atlas dataset analysis confirmed a significant positive correlation between FoxO1, SMC4, and METTL14 expression in OC. In summary, this study revealed the molecular mechanisms of FoxO1 regulating SMC4 and established a clinical link between the expression of FoxO1/METTL14/SMC4 in the occurrence of OC, thus providing a potential diagnostic target and therapeutic strategy.
Collapse
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shuangan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shijia Huang
- General Clinical Research Center, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yujuan Tie
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Na Sai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Yichen Mao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| |
Collapse
|
16
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Ramasamy D, Thippannah M, Maharajan HRP, Balaiah M, Seshadri RA, Kodous AS, Herceg Z, Mehta A, Rao AKDM, Mani S. Transcriptome-wide profiling identifies colon cancer-associated m6A transcripts and potential RNA methyl modifiers. Mol Biol Rep 2024; 51:299. [PMID: 38345740 DOI: 10.1007/s11033-024-09217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a prevalent and crucial RNA methylation modification that plays a significant role in various biological and pathological processes. The dysregulation of m6A has been linked to the initiation, progression, and metastasis of several cancer types, including colon cancer. The transcriptome of colon cancer indeed provides insight into dysregulated coding and non-coding RNAs, but it does not reveal the mechanisms, such as m6A modifications, that determine post-transcriptional and pre-translational regulations. This study using MeRIP sequencing aims to explain the distribution of m6A modification across altered gene expression and its association with colon cancer. METHODS AND RESULTS The levels of m6A in different colon cancer cell lines were quantified and correlated with the expression of m6A modifiers such as writers, readers, and erasers. Our results showed that global m6A levels in colon cancer were associated with METTL14, YTHDF2, and YTHDC1. We performed Epi-transcriptome profiling of m6A in colon cancer cell lines using Methylated RNA Immunoprecipitation (MeRIP) sequencing. The differential methylation analysis revealed 7312 m6A regions among the colon cancer cell lines. Our findings indicated that the m6A RNA methylation modifications were mainly distributed in the last exonic and 3' untranslated regions. We also discovered that non-coding RNAs such as miRNA, lncRNA, and circRNA carry m6A marks. Gene set enrichment and motif analysis suggested a strong association of m6A with post-transcriptional events, particularly splicing control. Overall, our study sheds light on the potential role of m6A in colon cancer and highlights the importance of further investigation in this area. CONCLUSION This study reports m6A enrichment in the last exonic regions and 3' UTRs of mRNA transcripts in colon cancer. METTL14, YTHDF2, and YTHDC1 were the most significant modifiers in colon cancer cells. The functions of m6A-modified genes were found to be RNA methylation and RNA capping. Overall, the study illustrates the transcriptome-wide distribution of m6A and its eminent role in mRNA splicing and translation control of colon cancer.
Collapse
Affiliation(s)
- Deepa Ramasamy
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | - Megha Thippannah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Meenakumari Balaiah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
- Radiation Biology Department, National Centre for Radiation Research & Technology, Egyptian Atomic-Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Zdenko Herceg
- Epigenomics Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anurag Mehta
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India
| | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India.
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India.
| |
Collapse
|
18
|
Wang H. The RNA m6A writer RBM15 contributes to the progression of esophageal squamous cell carcinoma by regulating miR-3605-5p/KRT4 pathway. Heliyon 2024; 10:e24459. [PMID: 38312624 PMCID: PMC10835169 DOI: 10.1016/j.heliyon.2024.e24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Cancer progression can be modulated by N6-methyladenosine (m6A) modification. RNA binding motif protein 15 (RBM15) is an essential RNA m6A writer that influences carcinogenesis, however its significance in esophageal squamous cell carcinoma (ESCC) is uncertain. This research is intended to examine how RBM15 regulates the development of ESCC. We performed qRT-PCR analysis to evaluate the expression of RBM15, microRNA (miR-3605-5p) as well as keratin 4 (KRT4) in ESCC. Target relationship between miR-3605-5p and KRT4 was validated by dual luciferase reporter assay. Western blotting analyzed the protein levels of KRT4, p53, and p21. To demonstrate that RBM15 is responsible for the m6A alteration of miR-3605-5p, RIP and Me-RIP experiments were carried out concurrently. m6A content was measured by m6A quantification assay. Cell growth and migration were assessed using the CCK-8 and transwell assays. In addition, the role of RBM15 in vivo was examined using a mouse tumor xenograft model. RBM15 and miR-3605-5p were both substantially expressed in ESCC, however KRT4 was not expressed highly. Overexpressed RBM15 triggered cell proliferation and migration in ESCC. Besides, RBM15/m6A could mediate pri-3605-5p to form the mature miR-3605-5p, and miR-3605-5p further targeted KRT4. Further investigations showed that upregulation of KRT4 overturned the promoting impact of RBM15 overexpression on cell proliferation as well as on cell migration in ESCC by activating p53 signaling pathway. This work implied the carcinogenic activity of RBM15/m6A in ESCC via miR-3605-5p/KRT4 pathway, providing a novel m6A modification pattern in the tumorigenesis of ESCC.
Collapse
Affiliation(s)
- Huan Wang
- General practice section, Wuhan University of Science and Technology Hospital, Wuhan, 430070, Hubei, China
| |
Collapse
|
19
|
Tao X, Wang G, Wei W, Su J, Chen X, Shi M, Liao Y, Qin T, Wu Y, Lu B, Liang H, Ye L, Jiang J. A bibliometric analysis of m6A methylation in viral infection from 2000 to 2022. Virol J 2024; 21:20. [PMID: 38238848 PMCID: PMC10797797 DOI: 10.1186/s12985-024-02294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation has become an active research area in viral infection, while little bibliometric analysis has been performed. In this study, we aim to visualize hotspots and trends using bibliometric analysis to provide a comprehensive and objective overview of the current research dynamics in this field. METHODS The data related to m6A methylation in viral infection were obtained through the Web of Science Core Collection form 2000 to 2022. To reduce bias, the literature search was conducted on December 1, 2022. Bibliometric and visual analyzes were performed using CiteSpace and Bibliometrix package. After screening, 319 qualified records were retrieved. RESULTS These publications mainly came from 28 countries led by China and the United States (the US), with the US ranking highest in terms of total link strength.The most common keywords were m6A, COVID-19, epitranscriptomics, METTL3, hepatitis B virus, innate immunity and human immunodeficiency virus 1. The thematic map showed that METTL3, plant viruses, cancer progression and type I interferon (IFN-I) reflected a good development trend and might become a research hotspot in the future, while post-transcriptional modification, as an emerging or declining theme, might not develop well. CONCLUSIONS In conclusion, m6A methylation in viral infection is an increasingly important topic in articles. METTL3, plant viruses, cancer progression and IFN-I may still be research hotspots and trends in the future.
Collapse
Affiliation(s)
- Xing Tao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Minjuan Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yinlu Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Tongxue Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuting Wu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Beibei Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China.
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China.
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China.
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
20
|
Xie J, Gan L, Xue B, Wang X, Pei X. Emerging roles of interactions between ncRNAs and other epigenetic modifications in breast cancer. Front Oncol 2023; 13:1264090. [PMID: 37901333 PMCID: PMC10602744 DOI: 10.3389/fonc.2023.1264090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Up till the present moment, breast cancer is still the leading cause of cancer-related death in women worldwide. Although the treatment methods and protocols for breast cancer are constantly improving, the long-term prognosis of patients is still not optimistic due to the complex heterogeneity of the disease, multi-organ metastasis, chemotherapy and radiotherapy resistance. As a newly discovered class of non-coding RNAs, ncRNAs play an important role in various cancers. Especially in breast cancer, lncRNAs have received extensive attention and have been confirmed to regulate cancer progression through a variety of pathways. Meanwhile, the study of epigenetic modification, including DNA methylation, RNA methylation and histone modification, has developed rapidly in recent years, which has greatly promoted the attention to the important role of non-coding RNAs in breast cancer. In this review, we carefully and comprehensively describe the interactions between several major classes of epigenetic modifications and ncRNAs, as well as their different subsequent biological effects, and discuss their potential for practical clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Luan Z, Wang Y. Association between ankylosing spondylitis and m6A methylation. J Orthop Surg Res 2023; 18:757. [PMID: 37805597 PMCID: PMC10559441 DOI: 10.1186/s13018-023-04254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND N6-methyl adenosine (m6A) is the most common reversible mRNA modification in eukaryotes implicated in key roles in various biological processes. The purpose of our analysis was to examine the association of ankylosing spondylitis (AS) with m6A methylation. METHOD We obtained 72 samples from the data set GSE73754, including 52 AS patients and 20 healthy people. We divided the samples into two groups: the experimental group and the control group, and then observed the differences of 26 m6A related genes in the two groups. We also analyzed the correlation between different m6A genes. We used a random forest tree model to screen seven m6A signature genes associated with AS to evaluate its prevalence. Next, the samples were classified according to the m6a content and differential genes. Immune analysis, gene ontology, and KEGG enrichment analyses were performed. Finally, we scored each sample with m6a and analyzed the relationship between different samples and inflammation-related factors. RESULTS AND CONCLUSION In conclusion, we screened out AS-related genes and the nomogram showed that they were negatively correlated with the incidence of AS. And we found that AS may have some relationship with immunity. Our analysis results could provide further insights into the treatment of AS.
Collapse
Affiliation(s)
- Zhiwei Luan
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yansong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
22
|
Phannasil P, Akekawatchai C, Jitrapakdee S. MicroRNA expression profiles associated with the metastatic ability of MDA‑MB‑231 breast cancer cells. Oncol Lett 2023; 26:339. [PMID: 37427352 PMCID: PMC10326657 DOI: 10.3892/ol.2023.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is an important worldwide public health concern. The incidence rate of breast cancer increases every year. The primary cause of death is metastasis, a process by which cancer cells spread from a primary site to secondary organs. MicroRNAs (miRs/miRNAs) are small non-coding RNAs that control gene expression at the post-transcriptional level. Dysregulation of certain miRNAs is involved in carcinogenesis, cancer cell proliferation and metastasis. Therefore, the present study assessed miRNAs associated with breast cancer metastasis using two breast cancer cell lines, the low-metastatic MCF-7 and the highly metastatic MDA-MB-231. miRNA array analysis of both cell lines indicated that 46 miRNAs were differentially expressed when compared between the two cell lines. A total of 16 miRNAs were upregulated in MDA-MB-231 compared with MCF-7 cells, which suggested that their expression levels may be associated with the highly invasive phenotype of MDA-MB-231 cells. Among these miRNAs, miR-222-3p was selected for further study and its expression was confirmed by reverse transcription-quantitative PCR (RT-qPCR). Under both non-adherent and adherent culture conditions, the expression levels of miR-222-3p in the MDA-MB-231 cell line were higher than those noted in the MCF-7 cell line under the same conditions. Suppression of endogenous miR-222-3p expression in MDA-MB-231 cells using a miR-222-3p inhibitor resulted in a 20-40% reduction in proliferation, and a ~30% reduction in migration, which suggested that the aggressive phenotype of MDA-MB-231 cells was partly regulated by miR-222-3p. Bioinformatic analysis of miR-222-3p using TargetScan 8.0, miRDB and PicTar identified 25 common mRNA targets, such as cyclin-dependent kinase inhibitor 1B, ADP-ribosylation factor 4, iroquois homeobox 5 and Bcl2 modifying factor. The results of the present study indicated that miR-222-3p was potentially associated with the proliferation and migratory ability of the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12121, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Liu Z, Gao L, Cheng L, Lv G, Sun B, Wang G, Tang Q. The roles of N6-methyladenosine and its target regulatory noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic implications. Exp Mol Med 2023; 55:487-501. [PMID: 36854773 PMCID: PMC10073155 DOI: 10.1038/s12276-023-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 03/02/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the epigenetic modifications of RNA. The addition of this chemical mark to RNA molecules regulates gene expression by affecting the fate of the RNA molecules. This posttranscriptional RNA modification is reversible and regulated by methyltransferase "writers" and demethylase "erasers". The fate of m6A-modified RNAs depends on the function of different "readers" that recognize and bind to them. Research on m6A methylation modification has recently increased due to its important role in regulating cancer progression. Noncoding RNAs (ncRNAs) are a class of RNA molecules that are transcribed from the genome but whose roles have been overlooked due to their lack of well-defined potential for translation into proteins or peptides. However, this misconception has now been completely overturned. ncRNAs regulate various diseases, especially tumors, and it has been confirmed that they play either tumor-promoting or tumor-suppressing roles in almost all types of tumors. In this review, we discuss the m6A modification of different types of ncRNA and summarize the mechanisms involved. Finally, we discuss the progress of research on clinical treatment and discuss the important significance of the m6A modification of ncRNAs in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gaoyuan Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Qiushi Tang
- Chinese Journal of Practical Surgery, Chinese Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
24
|
Lothion-Roy J, Haigh DB, Harris AE, Metzler VM, Alsaleem M, Toss MS, Kariri Y, Ntekim A, Robinson BD, Khani F, Gudas LJ, Allegrucci C, James VH, Madhusudan S, Mather M, Emes RD, Archer N, Fray RG, Rakha E, Jeyapalan JN, Rutland CS, Mongan NP, Woodcock CL. Clinical and molecular significance of the RNA m 6A methyltransferase complex in prostate cancer. Front Genet 2023; 13:1096071. [PMID: 36733939 PMCID: PMC9887525 DOI: 10.3389/fgene.2022.1096071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal mRNA modification and is dynamically regulated through distinct protein complexes that methylate, demethylate, and/or interpret the m6A modification. These proteins, and the m6A modification, are involved in the regulation of gene expression, RNA stability, splicing and translation. Given its role in these crucial processes, m6A has been implicated in many diseases, including in cancer development and progression. Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men and recent studies support a role for m6A in PCa. Despite this, the literature currently lacks an integrated analysis of the expression of key components of the m6A RNA methyltransferase complex, both in PCa patients and in well-established cell line models. For this reason, this study used immunohistochemistry and functional studies to investigate the mechanistic and clinical significance of the METTL3, METTL14, WTAP and CBLL1 components of the m6A methyltransferase complex in PCa specimens and cell lines. Expression of METTL3 and CBLL1, but not METTL14 and WTAP, was associated with poorer PCa patient outcomes. Expression of METTL3, METTL14, WTAP and CBLL1 was higher in PCa cells compared with non-malignant prostate cells, with the highest expression seen in castrate-sensitive, androgen-responsive PCa cells. Moreover, in PCa cell lines, expression of METTL3 and WTAP was found to be androgen-regulated. To investigate the mechanistic role(s) of the m6A methyltransferase complex in PCa cells, short hairpin RNA (shRNA)-mediated knockdown coupled with next generation sequencing was used to determine the transcriptome-wide roles of METTL3, the catalytic subunit of the m6A methyltransferase complex. Functional depletion of METTL3 resulted in upregulation of the androgen receptor (AR), together with 134 AR-regulated genes. METTL3 knockdown also resulted in altered splicing, and enrichment of cell cycle, DNA repair and metabolic pathways. Collectively, this study identified the functional and clinical significance of four essential m6A complex components in PCa patient specimens and cell lines for the first time. Further studies are now warranted to determine the potential therapeutic relevance of METTL3 inhibitors in development to treat leukaemia to benefit patients with PCa.
Collapse
Affiliation(s)
- Jennifer Lothion-Roy
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Veronika M. Metzler
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Mansour Alsaleem
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom,Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Yousif Kariri
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom,Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Atara Ntekim
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,Department of Radiation Oncology, University Hospital Ibadan, University of Ibadan, Ibadan, Nigeria
| | - Brian D. Robinson
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Cinzia Allegrucci
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Victoria H. James
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Srinivasan Madhusudan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Melissa Mather
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Richard D. Emes
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nathan Archer
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Rupert G. Fray
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Emad Rakha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Catrin S. Rutland
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Nigel P. Mongan, , ; Corinne L. Woodcock,
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,*Correspondence: Nigel P. Mongan, , ; Corinne L. Woodcock,
| |
Collapse
|
25
|
Feng H, Yuan X, Wu S, Yuan Y, Cui L, Lin D, Peng X, Liu X, Wang F. Effects of writers, erasers and readers within miRNA-related m6A modification in cancers. Cell Prolif 2023; 56:e13340. [PMID: 36162823 DOI: 10.1111/cpr.13340] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As one of the most abundant post-transcriptional mRNA modifications, N6-methyladenosine (m6A) has attracted extensive attention from scientists. Emerging evidence indicates that m6A modification plays a significant role in cancer-related signalling pathways. Existing research demonstrates that m6A modifications were also identified in miRNAs and contribute to cancer-related signalling pathways. METHODS A literature retrieval has been performed to collect m6A-miRNA-related original articles published in recent years. Later, a systematic analysis has been conducted to abstract and classify the relationships between m6A modification and miRNAs, and their contributions to tumorigenesis and cancer development. RESULTS Accumulating literature provides important insights into multiple relationships between m6A modifications and miRNAs. Mechanically, m6A writer and eraser alter pri-miRNAs m6A levels, and m6A readers could dually modulate pri-miRNAs processing and pri-miRNAs degradation. It is also been demonstrated that miRNAs impair m6A regulators' translation to influence m6A medication function in return. Aberrant expressions of m6A regulators and miRNAs could dysregulate proliferative, apoptosis, cell adhesion-related, and malignant transformation signalling pathways, and contribute to tumour occurrence and development. CONCLUSION This review summarizes the interrelationship between m6A modification and miRNAs; highlights the combined effects of each type of m6A regulator and miRNAs in cancers. These findings enhance our understanding of m6A-miRNAs' multiple interactions and significant modulatory role in tumorigenesis and progression.
Collapse
Affiliation(s)
- Huiru Feng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiaofei Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Shuting Wu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Yue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Linchong Cui
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Danfan Lin
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiaohong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Wen H, Tang J, Cui Y, Hou M, Zhou J. m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle 2023; 22:100-116. [PMID: 35949109 PMCID: PMC9769451 DOI: 10.1080/15384101.2022.2109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The aim is to explore the underlying mechanism of basic leucine zipper ATF-like transcription factor 2 (BATF2) in tongue squamous cell carcinoma (TSCC). The expression of BATF2 in TSCC tissues and corresponding adjacent normal TSCC tissues, human TSCC cell lines (SCC-15 and CAL-27) and human normal tongue epithelial cells NTEC was detected. Then, SCC-15 cells with stable BATF2 knockdown and CAL-27 cells with BATF2 overexpression were established to investigate the functional effect of BATF2 on TSCC. Thereafter, the effect of BATF2 on TSCC angiogenesis and BATF2 m6A methylation was also examined. BATF2 was significantly downregulated in TSCC tissues and cell lines, and BATF2 overexpression could suppress growth, metastasis and angiogenesis of TSCC. Mechanistically, vascular endothelial growth factor A (VEGFA) was identified as a downstream gene of BATF2, and it was confirmed that BATF2 suppressed growth, metastasis and angiogenesis of TSCC via inhibiting VEGFA. In addition, the N6-methyladenosine (m6A) modification of BATF2 mRNA mediated by METTL14 suppressed its expression in TSCC. METTL14/BATF2 axis could serve as a novel promising therapeutic candidate against angiogenesis for TSCC.
Collapse
Affiliation(s)
- Haojie Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Jinyong Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Yi Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Minhua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Juan Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| |
Collapse
|
27
|
Wang X, Zou C, Li M, Hou C, Jiang W, Bian Z, Zhu L. METTL14 upregulates TCF1 through m6A mRNA methylation to stimulate osteogenic activity in osteoporosis. Hum Cell 2023; 36:178-194. [PMID: 36401086 DOI: 10.1007/s13577-022-00825-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
Alteration of N6-methyladenosine (m6A) is closely linked to spanning biological processes including osteoporosis (OP) development. This research focuses on the function of methyltransferase like 14 (METTL14) in bone turnover and its interaction with T cell factor 1 (TCF1). A mouse model of OP was established by ovariectomy (OVX). The bone mass parameters were evaluated by micro-CT analysis. Mouse MC3T3-E1 cells and mouse bone marrow macrophages (BMMs) were induced for osteogenic or osteoclastic differentiation, respectively, for in vitro experiments. The osteogenesis or osteoclasis activity was analyzed by measuring the biomarkers such as OPG, ALP, NFATC1, CTSK, RANKL, and TRAP. RT-qPCR and IHC assays identified reduced METTL14 expression in bone tissues of osteoporotic patients and ovariectomized mice. Artificial METTL14 overexpression increased bone mass of mice and promoted osteogenesis whereas suppressed osteoclasis both in vivo and in vitro. METTL14 promoted TCF1 expression through m6A mRNA methylation, and TCF1 increased the osteogenic activity by elevating the protein level of RUNX2, a key molecule linked to bone formation. In rescue experiments, TCF1 restored the RUNX2 level and osteogenic activity of cells suppressed by METTL14 silencing. In summary, this research demonstrates that METTL14 plays a protective role against OP by promoting the TCF1/RUNX2 axis.
Collapse
Affiliation(s)
- Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Chunchun Zou
- Department of Obstetrics and Gynecology, Hangzhou Third People's Hospital, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Changju Hou
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Wu Jiang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhenyu Bian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Huang J, Zhou W, Hao C, He Q, Tu X. The feedback loop of METTL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer. PLoS Genet 2022; 18:e1010366. [PMID: 36288387 PMCID: PMC9605029 DOI: 10.1371/journal.pgen.1010366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bladder cancer (BCa) is one of the most prevalent malignancies globally. Previous study has reported the inhibitory effect of methyltransferase-like 14 (METTL14) on BCa tumorigenesis, but its role in the cell migration, invasion and epithelial–mesenchymal transition (EMT) in BCa remains unknown. Materials and methods Quantitative real-time PCR (RT-qPCR) and western blot were applied to measure RNA and protein expression respectively. Cell migration, invasion and EMT were evaluated by wound healing, Transwell, and immunofluorescence (IF) assays as well as western blot of EMT-related proteins. In vivo experiments were performed to analyze metastasis of BCa. Mechanism investigation was also conducted to study METTL14-mediated regulation of BCa progression. Results METTL14 overexpression prohibits BCa cell migration, invasion in vitro and tumor metastasis in vivo. METTL14 stabilizes USP38 mRNA by inducing N6-methyladenosine (m6A) modification and enhances USP38 mRNA stability in YTHDF2-dependent manner. METTL14 represses BCa cell migration, invasion and EMT via USP38. Additionally, miR-3165 inhibits METTL14 expression to promote BCa progression. Conclusions Our study demonstrated that METTL14 suppresses BCa progression and forms a feedback loop with USP38. In addition, miR-3165 down-regulates METTL14 expression to promote BCa progression. The findings may provide novel insight into the underlying mechanism of METTL14 in BCa progression. Bladder cancer (BCa) is a common type of cancer that begins in the cells of the bladder and poses a significant threat to human health worldwide. In order to improve the diagnosis and treatment of BCa, molecular mechanisms associated with BCa tumorigenesis and tumor progression needs to be clarified. Currently, long non-coding RNAs (lncRNAs) have been suggested to act as regulators of cancer progression. Here, we identified lncRNA methyltransferase-like 14 (METTL14) as a tumor-suppressor gene in BCa, acting to inhibit cell migration, invasion and epithelial–mesenchymal transition (EMT) as well as tumor metastasis. We also found that METTL14 forms a feedback loop with ubiquitin specific peptidase 38 (USP38) in BCa. In addition, microRNA-3165 (miR-3165) was verified as an upstream regulator of METTL14 and was elucidated to downregulate METTL14 expression, contributing to the malignancy of BCa. Given that the therapeutic potential of some miRNAs have been identified in a number of diseases, targeting miR-3165 may be a potential therapeutic strategy in BCa treatment. Our study provides new insights into the understanding of molecular mechanism by which METTL14 regulates BCa progression and offer novel and potential targets for BCa treatment.
Collapse
Affiliation(s)
- Ji Huang
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Weimin Zhou
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Chao Hao
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Qiuming He
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Xinhua Tu
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China,* E-mail:
| |
Collapse
|
29
|
Zhang L, Chu XF, Xu JW, Yao XY, Zhang HQ, Guo YW. Identification and exploration of the pyroptosis-related molecular subtypes of breast cancer by bioinformatics and machine learning. Am J Transl Res 2022; 14:6521-6535. [PMID: 36247248 PMCID: PMC9556502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To classify breast cancer (BRCA) according to the expression of pyroptosis-related genes and explore their molecular characteristics. METHODS Nonnegative matrix factorization (NMF) was used for subtype classification based on 21 pyroptosis-related genes in the TCGA database. Survival analysis and t-distributed stochastic neighbor embedding (t-SNE) analysis were conducted to assess the NMF results' performance. XGBoost, CatBoost, logistic regression, neural network, random forest, and support vector machine were utilized to perform supervised machine learning and construct prediction models. Genetic mutations, tumor mutational burden, immune infiltration, methylation, and drug sensitivity were analyzed to explore the molecular signatures of different subtypes. Lasso, RF, and Cox regression were operated to construct a prognostic model based on differentially expressed genes. RESULTS BRCA patients were divided into two subtypes (named Cluster1 and Cluster2). Survival analysis (P = 0.02) and t-SNE analysis demonstrated that Cluster1 and Cluster2 were well classified. The XGBoost model achieved reliable predictions on both training and validation sets. Regarding molecular characteristics, Cluster1 had higher TMB, immune cell infiltration, and m6A methylation-related gene expression than Cluster2. There was also a statistically significant difference between the two subtypes concerning drug susceptibility. Finally, a 5-gene prognostic model was constructed using Lasso, RF, and Cox regression and validated in the GEO database. CONCLUSION Our study may provide new insights from bioinformatics and machine learning for exploring pyroptosis-related subtypes and their respective molecular signatures in BRCA. In addition, our models may be helpful for the treatment and prognosis of BRCA.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University Zhengzhou, China
| | - Xiu-Feng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University Zhengzhou, China
| | - Jing-Wei Xu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University Zhengzhou, China
| | - Xue-Yuan Yao
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University Zhengzhou, China
| | - Hong-Qiao Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University Zhengzhou, China
| | - Yan-Wei Guo
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University Zhengzhou, China
| |
Collapse
|
30
|
Li Z, Song Y, Wang M, Shen R, Qin K, Zhang Y, Jiang T, Chi Y. m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of coronary heart disease. Front Cardiovasc Med 2022; 9:905737. [PMID: 36093132 PMCID: PMC9453453 DOI: 10.3389/fcvm.2022.905737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although the roles of m6A modification in the immune responses to human diseases have been increasingly revealed, their roles in immune microenvironment regulation in coronary heart disease (CHD) are poorly understood. Methods The GSE20680 and GSE20681 datasets related to CHD were acquired from the Gene Expression Omnibus (GEO) database. A total of 30 m6A regulators were used to perform LASSO regression to identify the significant genes involved in CHD. Unsupervised clustering analysis was conducted using the m6A regulators to distinguish the m6A RNA methylation patterns in patients with CHD. The differentially expressed genes (DEGs) and biological characteristics, including GO and KEGG enrichment results, were assessed for the different m6A patterns to analyse the impacts of m6A regulators on CHD. Hub genes were identified, and subsequent microRNAs-mRNAs (miRNAs–mRNAs) and mRNAs-transcriptional factors (mRNA-TFs) interaction networks were constructed by the protein and protein interaction (PPI) network method using Cytoscape software. The infiltrating proportion of immune cells was assessed by ssGSEA and the CIBERSORT algorithm. Quantitative real-time PCR (qRT-PCR) was performed to detect the expression of the significant m6A regulators and hub genes. Results Four of 30 m6A regulators (HNRNPC, YTHDC2, YTHDF3, and ZC3H13) were identified to be significant in the development of CHD. Two m6A RNA methylation clusters were distinguished by unsupervised clustering analysis based on the expression of the 30 m6A regulators. A total of 491 genes were identified as DEGs between the two clusters. A PPI network including 308 mRNAs corresponding to proteins was constructed, and 30 genes were identified as hub genes that were enriched in the bioprocesses of peptide cross-linking, keratinocyte differentiation. Twenty-seven hub genes were found to be related to miRNAs, and seven hub genes were found to be related to TFs. Moreover, among the 30 hub genes, eight genes were found to be upregulated in CHD, and three were found to be downregulated in CHD compared to the normal people. The high m6A modification pattern was associated with a higher infiltrated abundance of immune cells. Conclusion Our findings demonstrated that m6A modification plays crucial roles in the diversity and complexity of the immune microenvironment in CHD.
Collapse
Affiliation(s)
- Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, China
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yanjie Song
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Meng Wang
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ruxin Shen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kun Qin
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ting Jiang
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Ting Jiang
| | - Yifan Chi
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
- Yifan Chi
| |
Collapse
|
31
|
Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K. Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. Int J Mol Sci 2022; 23:ijms23179521. [PMID: 36076918 PMCID: PMC9455804 DOI: 10.3390/ijms23179521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.
Collapse
Affiliation(s)
- Pourya Sarvari
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Correspondence:
| |
Collapse
|
32
|
Zhou M, Dong M, Yang X, Gong J, Liao X, Zhang Q, Liu Z. The emerging roles and mechanism of m6a in breast cancer progression. Front Genet 2022; 13:983564. [PMID: 36035182 PMCID: PMC9399344 DOI: 10.3389/fgene.2022.983564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has continued to be the leading cause of cancer deaths in women, accompanied by highly molecular heterogeneity. N6-methyladenosine (m6A), a methylation that happens on adenosine N6, is the most abundant internal mRNA modification type in eukaryotic cells. Functionally, m6A methylation is a reversible modification process and is regulated by 3 enzymes with different functions, namely “writer”, “reader”, and “eraser”. Abnormal m6A modifications trigger the expression, activation, or inhibition of key signaling molecules in critical signaling pathways and the regulatory factors acting on them in BC. These m6A-related enzymes can not only be used as markers for accurate diagnosis, prediction of prognosis, and risk model construction, but also as effective targets for BC treatment. Here, we have emphasized the roles of different types of m6A-related enzymes reported in BC proliferation, invasion, and metastasis, as well as immune regulation. The comprehensive and in-depth exploration of the molecular mechanisms related to m6A will benefit in finding effective potential targets and effective stratified management of BC.
Collapse
Affiliation(s)
- Mengying Zhou
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| |
Collapse
|
33
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Ni L, Tang C, Wang Y, Wan J, Charles MG, Zhang Z, Li C, Zeng R, Jin Y, Song P, Wei M, Li B, Zhang J, Wu Z. Construction of a miRNA-Based Nomogram Model to Predict the Prognosis of Endometrial Cancer. J Pers Med 2022; 12:jpm12071154. [PMID: 35887651 PMCID: PMC9318842 DOI: 10.3390/jpm12071154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Objective: To investigate the differential expression of microRNA (miRNA) in patients with endometrial cancer and its relationship with prognosis and survival. Method: We used The Cancer Genome Atlas (TCGA) database to analyze differentially expressed miRNAs in endometrial cancer tissues and adjacent normal tissues. In addition, we successfully screened out key microRNAs to build nomogram models for predicting prognosis and we performed survival analysis on the key miRNAs as well. Result: We identified 187 differentially expressed miRNAs, which includes 134 up-regulated miRNAs and 53 down-regulated miRNAs. Further univariate Cox regression analysis screened out 47 significantly differentially expressed miRNAs and selected 12 miRNAs from which the prognostic nomogram model for ECA patients by LASSO analysis was constructed. Survival analysis showed that high expression of hsa-mir-138-2, hsa-mir-548f-1, hsa-mir-934, hsa-mir-940, and hsa-mir-4758 as well as low-expression of hsa-mir-146a, hsa-mir-3170, hsa-mir-3614, hsa-mir-3616, and hsa-mir-4687 are associated with poor prognosis in EC patients. However, significant correlations between the expressions levels of has-mir-876 and hsa-mir-1269a and patients' prognosis are not found. Conclusion: Our study found that 12 significantly differentially expressed miRNAs might promote the proliferation, invasion, and metastasis of cancer cells by regulating the expression of upstream target genes, thereby affecting the prognosis of patients with endometrial cancer.
Collapse
Affiliation(s)
- Leyi Ni
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Chengyun Tang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Yuning Wang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Jiaming Wan
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Morgan G. Charles
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Zilong Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, 14195 Berlin, Germany;
| | - Ruijie Zeng
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Yiyao Jin
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Penghao Song
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Ming Wei
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Bocen Li
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence: (J.Z.); (Z.W.)
| | - Zhenghao Wu
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
- Correspondence: (J.Z.); (Z.W.)
| |
Collapse
|
35
|
Zhao C, Ling X, Xia Y, Yan B, Guan Q. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m 6A modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther 2022; 29:1043-1055. [PMID: 35022519 DOI: 10.1038/s41417-021-00390-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, a multifactorial disease, represents one of the leading causes of cancer-related morbidity and mortality in women. This study set out to elucidate the underlying mechanism by which lncRNA UCA1 affects the m6A modification of miR-375 by mediating the DNA methylation of METTL14 and then altering SOX12 expression in breast cancer. First, the expression patterns of lncRNA UCA1, miR-375, and apoptosis-related factors were quantitated by means of RT-qPCR and western blot analysis. In addition, the proliferation, invasion, and apoptosis of cells were detected using CCK-8, Transwell, and flow cytometry, respectively. RIP was performed to further uncover the interaction of lncRNA UCA1 and DNA methyltransferases, and MSP was employed for METTL14 promoter region methylation. The DNA methyltransferase enrichment in the METTL14 promoter region was measured by ChIP. The targeting relationship between miR-375 and SOX12 was confirmed by bioinformatics analysis and dual-luciferase report assay. Lastly, the aforementioned mechanism was also verified using tumor xenograft in vivo. It was found the elevated lncRNA UCA1 expression levels serve as a risk factor of poor prognosis in breast cancer. Meanwhile, silencing lncRNA UCA1 could inhibit the proliferation and invasion, but promote apoptosis of breast cancer cells by reducing the DNA methylation of METTL14 and augmenting its expression. Furthermore, METTL14 was observed to mediate the low miR-375 expression through m6A modification, leading to increased SOX12 expression levels in breast cancer. Altogether, findings obtained in our study indicated that silencing lncRNA UCA1 curbed the progression of breast cancer through the METTL14-miR-375-SOX12 axis.
Collapse
Affiliation(s)
- Chengpeng Zhao
- Department of Internal Medicine-Oncology, The First Hospital of Lanzhou University, 730000, Lanzhou, P.R. China
| | - Xiaoling Ling
- Department of Internal Medicine-Oncology, The First Hospital of Lanzhou University, 730000, Lanzhou, P.R. China
| | - Yunxia Xia
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, P.R. China
| | - Bingxue Yan
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, P.R. China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, 730000, Lanzhou, P.R. China.
| |
Collapse
|
36
|
Liu Y, Zhu T, Jiang Y, Bu J, Zhu X, Gu X. The Key Role of RNA Modification in Breast Cancer. Front Cell Dev Biol 2022; 10:885133. [PMID: 35721510 PMCID: PMC9198488 DOI: 10.3389/fcell.2022.885133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/25/2022] [Indexed: 12/09/2022] Open
Abstract
The modulation of the function and expression of epigenetic regulators of RNA modification has gradually become the hotspot of cancer research. Studies have shown that alteration of epigenetic modifications can promote the development and metastasis of breast cancer. This review highlights the progress in characterization of the link between RNA modification and the prognosis, carcinogenesis and treatment of breast cancer, which may provide a new theoretical basis for development of effective strategies for monitoring of breast cancer based on epigenetics.
Collapse
|
37
|
Sun J, Cheng B, Su Y, Li M, Ma S, Zhang Y, Zhang A, Cai S, Bao Q, Wang S, Zhu P. The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front Genet 2022; 13:869950. [PMID: 35518355 PMCID: PMC9065606 DOI: 10.3389/fgene.2022.869950] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA modification. m6A modification is a dynamic and reversible post-transcriptional regulatory modification, initiated by methylase and removed by RNA demethylase. m6A-binding proteins recognise the m6A modification to regulate gene expression. Recent studies have shown that altered m6A levels and abnormal regulator expression are crucial in the ageing process and the occurrence of age-related diseases. In this review, we summarise some key findings in the field of m6A modification in the ageing process and age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases (CVDs). We focused on the biological function and potential molecular mechanisms of m6A RNA methylation in ageing and age-related disease progression. We believe that m6A modification may provide a new target for anti-ageing therapies.
Collapse
Affiliation(s)
- Jin Sun
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Bokai Cheng
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yongkang Su
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shouyuan Ma
- Department of Geriatric Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Outpatient, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Anhang Zhang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuang Cai
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Qiligeer Bao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
38
|
Stoellinger HM, Alexanian AR. Modifications to the Transwell Migration/Invasion Assay Method That Eases Assay Performance and Improves the Accuracy. Assay Drug Dev Technol 2022; 20:75-82. [PMID: 35196113 PMCID: PMC8968842 DOI: 10.1089/adt.2021.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are especially useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology, and developmental biology. In vitro assays are excellent approaches to extrapolate to in vivo situations and study live cells behavior. The aim of this article is to discuss the existing methods for transwell migration/invasion studies, the problems associated with this assay, and proposed modifications to this methodological approach that makes it simple to perform and improve the assay accuracy. Results of our studies demonstrated that the count of cells that had grown on top of the membrane is important to accurately evaluate the percentage of migrated/invaded cells. The results also showed that the transparent transwell insert with 4',6-diamidino-2-phenylindole (DAPI) stained cells is the best approach to ease the analysis of cell numbers on top of the membranes. In addition, the overlay of bright light (representing membrane pores) and DAPI images can further improve the accuracy of cell count. All these modifications in combination simplify the assay performance and improve the accuracy of the transwell migration assay method.
Collapse
Affiliation(s)
| | - Arshak R. Alexanian
- Cell Reprogramming & Therapeutics LLC, Wauwatosa, Wisconsin, USA.,Address correspondence to: Arshak R. Alexanian, VMD, PhD, Cell Reprogramming & Therapeutics LLC, 10437 W Innovation Dr., Wauwatosa (Milwaukee County), WI 53226, USA
| |
Collapse
|
39
|
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022; 15:13. [PMID: 35115038 PMCID: PMC8812173 DOI: 10.1186/s13045-022-01231-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltransferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in various malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research progress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in cancer.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
40
|
Li F, Zhao J, Wang L, Chi Y, Huang X, Liu W. METTL14-Mediated miR-30c-1-3p Maturation Represses the Progression of Lung Cancer via Regulation of MARCKSL1 Expression. Mol Biotechnol 2022; 64:199-212. [PMID: 34586620 DOI: 10.1007/s12033-021-00406-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
Lung cancer (LC) is a pulmonary malignant tumor with extremely low 5-year survival rate. N6-methyladenosine (m6A) is confirmed to regulate diverse pathophysiological processes including cancers. Methyltransferase-like 14 (METTL14) is an important RNA methyltransferase in m6A modification. However, researches on the regulatory mechanism of METTL14 on LC progression are relatively rare. Tumor xenograft experiment was conducted to investigate the effect of METTL14 on LC in vivo. The relative expression of METTL14, miR-30c-1-3p, and myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1) in LC tissues and/or cell lines was determined using qRT-PCR. Western blot assay was used to measure the protein levels of METTL14 and MARCKSL1 in tumor xenograft model and/or LC cell lines. MTT, wound healing, and transwell assays were performed to detect LC cell viability and metastasis. RNA immunoprecipitation assay and qRT-PCR were used to verify the effects of METTL14 on pri-miR-30c-1-3p. The relationship between miR-30c-1-3p and MARCKSL1 was confirmed by the dual-luciferase reporter assay. METTL14 was remarkably downregulated in LC tissues and cell lines. METTL14 mediated the maturation of miR-30c-1-3p. The overexpressed METTL14 and overexpressed miR-30c-1-3p suppressed the cell viability and metastasis in LC. Meanwhile, the increased METTL14 also repressed the growth of tumor xenograft in vivo. In addition, MARCKSL1 was confirmed to be the target gene of miR-30c-1-3p. High expression of MARCKSL1 and low expression of miR-30c-1-3p reversed the suppressive effects of METTL14 overexpression on cell viability and metastasis. METTL14 promoted the maturation of miR-30c-1-3p and mediated MARCKSL1 expression to inhibit the progression of LC. This study may provide a new insight for the LC clinical therapy.
Collapse
Affiliation(s)
- Fei Li
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Rizhao, No. 126, Tai'an Road, Donggang District, Rizhao, 276800, Shandong, China.
| | - Jing Zhao
- Outreach Department, People's Hospital of Rizhao, Rizhao, 276800, Shandong, China
| | - Lei Wang
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Rizhao, No. 126, Tai'an Road, Donggang District, Rizhao, 276800, Shandong, China
| | - Yantong Chi
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Rizhao, No. 126, Tai'an Road, Donggang District, Rizhao, 276800, Shandong, China
| | - Xiaori Huang
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Rizhao, No. 126, Tai'an Road, Donggang District, Rizhao, 276800, Shandong, China
| | - Wei Liu
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Rizhao, No. 126, Tai'an Road, Donggang District, Rizhao, 276800, Shandong, China
| |
Collapse
|
41
|
Chen DH, Zhang JG, Wu CX, Li Q. Non-Coding RNA m6A Modification in Cancer: Mechanisms and Therapeutic Targets. Front Cell Dev Biol 2022; 9:778582. [PMID: 35004679 PMCID: PMC8728017 DOI: 10.3389/fcell.2021.778582] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, N6-methyl-adenosine (m6A) ribonucleic acid (RNA) modification, a critical and common internal RNA modification in higher eukaryotes, has generated considerable research interests. Extensive studies have revealed that non-coding RNA m6A modifications (e.g. microRNAs, long non-coding RNAs, and circular RNAs) are associated with tumorigenesis, metastasis, and other tumour characteristics; in addition, they are crucial molecular regulators of cancer progression. In this review, we discuss the relationship between non-coding RNA m6A modification and cancer progression from the perspective of various cancers. In particular, we focus on important mechanisms in tumour progression such as proliferation, apoptosis, invasion and metastasis, tumour angiogenesis. In addition, we introduce clinical applications to illustrate more vividly that non-coding RNA m6A modification has broad research prospects. With this review, we aim to summarize the latest insights and ideas into non-coding RNA m6A modification in cancer progression and targeted therapy, facilitating further research.
Collapse
Affiliation(s)
- Da-Hong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Gang Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xing Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Chen C, Guo Y, Guo Y, Wu X, Si C, Xu Y, Kang Q, Sun Z. m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Front Oncol 2021; 11:746789. [PMID: 34745970 PMCID: PMC8564146 DOI: 10.3389/fonc.2021.746789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer drug resistance has always been a major difficulty in cancer therapy. In the face of drug pressure, resistant cancer cells show complex molecular mechanisms including epigenetic changes to maintain survival. Studies prove that cancer cells exhibit abnormal m6A modification after acquiring drug resistance. m6A modification in the target RNA including non-coding RNA can be a controller to determine the fate and metabolism of RNA by regulating their stability, subcellular localization, or translation. In particular, m6A-modified non-coding RNA plays multiple roles in multiple drug-resistant cancer cells, which can be a target for cancer drug resistance. Here, we provide an overview of the complex regulatory mechanisms of m6A-modified non-coding RNA in cancer drug resistance, and we discuss its potential value and challenges in clinical applications.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Yuying Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaohua Si
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Yang F, Yuan WQ, Li J, Luo YQ. Knockdown of METTL14 suppresses the malignant progression of non-small cell lung cancer by reducing Twist expression. Oncol Lett 2021; 22:847. [PMID: 34733365 PMCID: PMC8561617 DOI: 10.3892/ol.2021.13108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant cancer types. N6-methyladenosine (m6A), an abundant eukaryotic mRNA modification, has been observed in multiple diseases, particularly cancer. Methyltransferase-like 14 (METTL14) is a central component of the m6A methyltransferase complex and has been reported to promote tumor development in several cancer types. The present study aimed to investigate the role of METTL14 in NSCLC. Relevant clinical and mRNA sequencing data for m6A-related genes were downloaded from The Cancer Genome Atlas database. R software was used to evaluate the expression of m6A regulators in NSCLC. The biological functions of METTL14 were evaluated using Cell Counting Kit-8, colony formation, Transwell migration and western blot analyses. The results demonstrated that METTL14 expression was upregulated in NSCLC tissues and cell lines, and its expression was high in cancer tissues from patients with NSCLC with all four stages (I, II, III and IV) of disease. METTL14 downregulation inhibited cell proliferation and migration in A549 and SK-MES-1 lung cancer cell lines. Knockdown of METTL14 in lung cancer cell lines increased E-cadherin expression and suppressed N-cadherin expression. Furthermore, METTL14 downregulation reduced the expression levels of the transcription factor Twist and the p-AKT/AKT ratio. In conclusion, the present findings revealed that silencing of METTL14 suppressed NSCLC malignancy by inhibiting Twist-mediated activation of AKT signaling. These data suggest that METTL14 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fang Yang
- Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Wei-Qi Yuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Juan Li
- Department of Blood Transfusion, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yi-Qin Luo
- Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
44
|
Wang Z, Liu J, Yang Y, Xing C, Jing J, Yuan Y. Expression and prognostic potential of ribosome 18S RNA m 6A methyltransferase METTL5 in gastric cancer. Cancer Cell Int 2021; 21:569. [PMID: 34702266 PMCID: PMC8549223 DOI: 10.1186/s12935-021-02274-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ribosomal RNA N6-methyltransferase METTL5 was reported to catalyze m6A in 18S rRNA. We aimed to investigate the expression and prognostic features of METTL5 in gastric cancer (GC). Methods In this study, 168 GC patients and their corresponding adjacent tissues were collected. Immunohistochemical staining was used to detect the expression of METTL5 protein. Univariate and multivariate Cox analysis were used to dertermine the prognostic role of METTL5 protein in GC, and a nomogram was constructed to evaluate GC patients’ prognosis based on METTL5 expression. Data from TCGA and GEO database were also used to validate the prognostic value of METTL5 in GC patients on mRNA level. We further performed GSEA enrichment analysis to explore the possible function and related pathways related to METTL5. Results METTL5 protein in gastric cancer tissues (GCTs) was significantly decreased compared with adjacent normal tissues (ANTs) and adjacent intestinal metaplasia tissues (AIMTs) (P < 0.001, respectively). Meanwhile, METTL5 expression was negatively correlated with clinicopathologic stage. According to multivariate Cox proportional hazards model analysis, METTL5 protein expression was a good independent predictor of GC prognosis (p < 0.05). Patients with high METTL5 expression had better prognosis. The nomogram constructed based on METTL5 expression could predict the prognosis of GC patients well. GSEA analysis showed that genes of METTL5 low expression group were enriched in some oncogenic signaling pathways such as ERBB, MAPK, JAK-STAT, Wnt, and mTOR, as well as some immune pathways, including Fc-gamma R mediated phagocytosis, Fc-epsilon Ri, chemokine, T cell receptor and B cell receptor signaling pathway. While the high expression group of METTL5 was mainly related to oxidative phosphorylation, nucleotide excision repair and mismatch repair. Conclusions METTL5 protein was decreased in GCTs compared with AIMTs and ANTs, and it may be a potential prognostic biomarker in GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02274-3.
Collapse
Affiliation(s)
- Zhenshuang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Yi Yang
- Department of Neurosurgery of the First Hospital of China Medical University, Shenyang, 110001, China
| | - Chenzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
45
|
Si C, Chen C, Guo Y, Kang Q, Sun Z. Effect, Mechanism, and Applications of Coding/Non-coding RNA m6A Modification in Tumor Microenvironment. Front Cell Dev Biol 2021; 9:711815. [PMID: 34660577 PMCID: PMC8514707 DOI: 10.3389/fcell.2021.711815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/30/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME), which includes immune cells, fibroblasts, and other components, is the site of tumor cell growth and metastasis and significantly impacts tumor development. Among them, N6-methyladenosine RNA modifications (m6A RNA modifications) are the most abundant internal modifications in coding and non-coding RNAs, which can significantly influence the cancer process and have potential as biomarkers and potential therapeutic targets for tumor therapy. This manuscript reviews the role of m6A RNA modifications in TME and their application in tumor therapy. To some extent, an in-depth understanding of the relationship between TME and m6A RNA modifications will provide new approaches and ideas for future cancer therapy.
Collapse
Affiliation(s)
- Chaohua Si
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Deng M, Fang L, Li SH, Zhao RC, Mei J, Zou JW, Wei W, Guo RP. Expression pattern and prognostic value of N6-methyladenosine RNA methylation key regulators in hepatocellular carcinoma. Mutagenesis 2021; 36:369-379. [PMID: 34467992 PMCID: PMC8493108 DOI: 10.1093/mutage/geab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the most common malignancies worldwide. The accuracy of biomarkers for predicting the prognosis of HCC and the therapeutic effect is not satisfactory. N6-methyladenosine (m6A) methylation regulators play a crucial role in various tumours. Our research aims further to determine the predictive value of m6A methylation regulators and establish a prognostic model for HCC. In this study, the data of HCC from The Cancer Genome Atlas (TCGA) database was obtained, and the expression level of 15 genes and survival was examined. Then we identified two clusters of HCC with different clinical factors, constructed prognostic markers and analysed gene set enrichment, proteins’ interaction and gene co-expression. Three subgroups by consensus clustering according to the expression of the 13 genes were identified. The risk score generated by five genes divided HCC patients into high-risk and low-risk groups. In addition, we developed a prognostic marker that can identify high-risk HCC. Finally, a novel prognostic nomogram was developed to accurately predict HCC patients’ prognosis. The expression levels of 13 m6A RNA methylation regulators were significantly upregulated in HCC samples. The prognosis of cluster 1 and cluster 3 was worse. Patients in the high-risk group show a poor prognosis. Moreover, the risk score was an independent prognostic factor for HCC patients. In conclusion, we reveal the critical role of m6A RNA methylation modification in HCC and develop a predictive model based on the m6A RNA methylation regulators, which can accurately predict HCC patients’ prognosis and provide meaningful guidance for clinical treatment.
Collapse
Affiliation(s)
- Min Deng
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ce Zhao
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing-Wen Zou
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
47
|
Kumari K, Groza P, Aguilo F. Regulatory roles of RNA modifications in breast cancer. NAR Cancer 2021; 3:zcab036. [PMID: 34541538 PMCID: PMC8445368 DOI: 10.1093/narcan/zcab036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.
Collapse
Affiliation(s)
- Kanchan Kumari
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
48
|
TNF-α-mediated m 6A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun 2021; 12:5373. [PMID: 34508078 PMCID: PMC8433149 DOI: 10.1038/s41467-021-25710-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a type of rheumatic disease characterized by chronic inflammation and pathological osteogenesis in the entheses. Previously, we demonstrated that enhanced osteogenic differentiation of MSC from AS patients (AS-MSC) resulted in pathological osteogenesis, and that during the enhanced osteogenic differentiation course, AS-MSC induced TNF-α-mediated local inflammation. However, whether TNF-α in turn affects AS-MSC remains unknown. Herein, we further demonstrate that a high-concentration TNF-α treatment triggers enhanced directional migration of AS-MSC in vitro and in vivo, which enforces AS pathogenesis. Mechanistically, TNF-α leads to increased expression of ELMO1 in AS-MSC, which is mediated by a METTL14 dependent m6A modification in ELMO1 3′UTR. Higher ELMO1 expression of AS-MSC is found in vivo in AS patients, and inhibiting ELMO1 in SKG mice produces therapeutic effects in this spondyloarthritis model. This study may provide insight into not only the pathogenesis but also clinical therapy for AS. Abnormal functions of mesenchymal stem cells (MSC) contribute into the pathogenensis of ankylosing spondylitis (AS). Here, the authors show that TNF-α at high concentration induces enhances migration of AS-MSC through METTL14 mediated m6A modification of the ELMO1 3′ UTR.
Collapse
|
49
|
Zhang Y, Zeng F, Zeng M, Han X, Cai L, Zhang J, Weng J, Gao Y. Identification and Characterization of Alcohol-related Hepatocellular Carcinoma Prognostic Subtypes based on an Integrative N6-methyladenosine methylation Model. Int J Biol Sci 2021; 17:3554-3572. [PMID: 34512165 PMCID: PMC8416726 DOI: 10.7150/ijbs.62168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Alcohol consumption increases the risk of hepatocellular carcinoma (HCC), and associated with a high mortality rate and poor prognosis. N6-methyladenosine (m6A) methylations play key roles in tumorigenesis and progression. However, our current knowledge about m6A in alcohol-related HCC (A-HCC) remains elucidated. Herein, the authors construct an integrative m6A model based on A-HCC subtyping and mechanism exploration workflow. Methods: Based on the m6A expressions of A-HCC and in vivo experiment, different prognosis risk A-HCC subtypes are identified. Meanwhile, multiple interdependent indicators of prognosis including patient survival rate, clinical pathological prognosis and immunotherapy sensitivity. Results: The m6A model includes LRPPRC, YTHDF2, KIAA14219, and RBM15B, classified A-HCC patients into high/low-risk subtypes. The high-risk subtype compared to the low-risk subtype showed phenotypic malignancy, poor prognosis, immunosuppression, and activation of tumorigenesis and proliferation-related pathways, including the E2F target, DNA repair, and mTORC1 signalling pathways. The expression of Immunosuppressive cytokines DNMT1/EZH2 was up-regulated in A-HCC patients, and teniposide may be a potential therapeutic drug for A-HCC. Conclusion: Our model redefined A-HCC prognosis risk, identified potential m6As linking tumour progress and immune regulations and selected possible therapy target, thus promoting understanding and clinical applications about A-HCC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Min Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiajun Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 2021; 14:117. [PMID: 34315512 PMCID: PMC8313886 DOI: 10.1186/s13045-021-01129-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) has emerged as an abundant modification throughout the transcriptome with widespread functions in protein-coding and noncoding RNAs. It affects the fates of modified RNAs, including their stability, splicing, and/or translation, and thus plays important roles in posttranscriptional regulation. To date, m6A methyltransferases have been reported to execute m6A deposition on distinct RNAs by their own or forming different complexes with additional partner proteins. In this review, we summarize the function of these m6A methyltransferases or complexes in regulating the key genes and pathways of cancer biology. We also highlight the progress in the use of m6A methyltransferases in mediating therapy resistance, including chemotherapy, targeted therapy, immunotherapy and radiotherapy. Finally, we discuss the current approaches and clinical potential of m6A methyltransferase-targeting strategies.
Collapse
Affiliation(s)
- Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hua Ye
- Department of Hepatobiliary, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|