1
|
Zhao M, Pan Y, Gao B. Diagnostic and prognostic role of microRNA-525 in different cancers: a systematic review and meta-analysis. Transl Cancer Res 2024; 13:4301-4314. [PMID: 39262458 PMCID: PMC11384311 DOI: 10.21037/tcr-24-383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/25/2024] [Indexed: 09/13/2024]
Abstract
Background New prospect of cancer therapeutical management seems to be early diagnosis and prognosis prediction by microRNAs. The aim of our study is to explore the role of miR-525 in cancer diagnosis and prognosis through a systematic review and meta-analysis. Methods We conducted systematic search on PubMed, Embase, Web of Science, Scopus, Medline, Chinese National Knowledge Infrastructure (CNKI) and Wanfang databases as at November 25, 2023, regardless of languages. Sensitivity, specificity, and diagnostic odds ratio (DOR) were extracted for diagnostic meta-analysis, while hazard ratio (HR) with 95% confidence interval (CI) for prognostic meta-analysis. Subgroup analysis and publication bias analysis were performed appropriately to investigate possible sources of heterogeneity. Results A total of 8 studies were included in the meta-analysis, of which 7 were used for diagnostic meta-analysis, covering 559 patients, and 3 were used for prognostic meta-analysis, covering 324 patients. The pooled sensitivity was 0.75 (95% CI: 0.70-0.79), specificity was 0.73 (95% CI: 0.68-0.78), DOR was 13.08 (95% CI: 4.18-40.91), and the area under the curve (AUC) was 0.86 (95% CI: 0.83-0.89). Subgroup analysis showed that miR-525 may have good diagnostic ability in the early tumor node metastasis (TNM) stage of cancer. Prognostic meta-analysis showed that low miR-525 expression in patients was associated with preferable survival (HR =0.17, 95% CI: 0.07-0.41). Conclusions Our findings suggest that miR-525 could be used as a potential biomarker for cancer patients. Low expression of miR-525 in cancers predicted a good prognosis.
Collapse
Affiliation(s)
- Meng Zhao
- School of Basic Medicine, Dali University, Dali, China
| | - Yun Pan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, China
| | - Bo Gao
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
2
|
Liu X, Song X, Li H. Retraction Note: Transcription elongation factor A-like 7, regulated by miR-758-3p inhibits the progression of melanoma through decreasing the expression levels of c-Myc and AKT1. Cancer Cell Int 2024; 24:289. [PMID: 39143572 PMCID: PMC11323343 DOI: 10.1186/s12935-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xianji Song
- Orthopaedic Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hong Li
- Emergency Medical of China Japan Union Hospital of Jilin University, No. 126 Xian Tai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
3
|
Yousefnia S. A comprehensive review on lncRNA LOXL1-AS1: molecular mechanistic pathways of lncRNA LOXL1-AS1 in tumorigenicity of cancer cells. Front Oncol 2024; 14:1384342. [PMID: 39136001 PMCID: PMC11317273 DOI: 10.3389/fonc.2024.1384342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are versatile RNAs that regulate various cellular processes, such as gene regulation, by acting as signals, decoys, guides, and scaffolds. A novel recognized lncRNA, LOXL1-antisense RNA 1 (LOXL1-AS1), is dysregulated in some diseases, including cancer, and acts as an oncogenic lncRNA in many types of cancer cells. Upregulation of LOXL1-AS1 has been involved in proliferation, migration, metastasis, and EMT, as well as inhibiting apoptosis in cancer cells. Most importantly, the malignant promoting activity of LOXL1-AS1 can be mostly mediated by sequestering specific miRNAs and inhibiting their binding to the 3´UTR of their target mRNAs, thereby indirectly regulating gene expression. Additionally, LOXL1-AS1 can decoy transcription factors and proteins and prevent their binding to their regulatory regions, inhibiting their mechanistic activity on the regulation of gene expression and signaling pathways. This review presents the mechanistic pathways of the oncogenic role of LOXL1-AS1 by modulating its target miRNAs and proteins in various cancer cells. Having information about the molecular mechanisms regulated by LOXL1-AS1 in cancer cells can open ways to find out particular prognostic biomarkers, as well as discover novel therapeutic approaches for different types of cancer.
Collapse
Affiliation(s)
- Saghar Yousefnia
- Department of Cell and Molecular Biology, Semnan University, Semnan, Iran
| |
Collapse
|
4
|
Wang X, Liu R, Li J, Wang B, Lin Y, Zi J, Yu M, Pu Y, Xiong W. Involvement of long non-coding RNA LOXL1-AS1 in the tumourigenesis and development of malignant tumours: a narrative review. Transl Cancer Res 2024; 13:3142-3155. [PMID: 38988912 PMCID: PMC11231786 DOI: 10.21037/tcr-23-2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
Background and Objective Long noncoding RNAs (lncRNAs) are involved in a wide variety of physiological and pathological processes in organisms. LncRNAs play a significant role as oncogenic or tumour-suppressing factors in various biological processes associated with malignant tumours and are closely linked to the occurrence and development of malignancies. Lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) is a recently discovered lncRNA. It is upregulated in various malignant tumours and is associated with pathological characteristics such as tumour size, tumour node metastasis (TNM) staging, lymph node metastasis, and tumour prognosis. LOXL1-AS1 exerts its oncogenic role by competitively binding with multiple microRNAs (miRs), thereby regulating the expression of downstream target genes and controlling relevant signalling pathways. This article aims to explore the structure and the function of LOXL1-AS1, and the relationship between LOXL1-AS1 and the occurrence and development of human malignant tumours to provide a reference for further clinical research. Methods English literature on LOXL1-AS1 in the occurrence and development of various malignant tumours was searched in PubMed. The main search terms were "LOXL1-AS1", "tumour". Key Content and Findings This article mainly summarizes the biological processes in which LOXL1-AS1 is involved in various human malignant tumours and the ways in which this lncRNA affects malignant biological behaviours such as proliferation, metastasis, invasion, and apoptosis of tumour cells through different molecular regulatory mechanisms. This article also explores the potential clinical significance and application prospects of LOXL1-AS1, aiming to provide a theoretical basis and reference for the clinical diagnosis, treatment, and screening of prognostic markers for malignant tumours. Conclusions LOXL1-AS1 acts as a competing endogenous RNA (ceRNA), binding to miRs to regulate downstream target genes and exert its oncogenic effects. LOXL1-AS1 may become a novel molecular biomarker for cancer diagnosis and treatment in humans, and it may also serve as an independent prognostic indicator.
Collapse
Affiliation(s)
- Xinmeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| | - Ruai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| | - Jinsong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| | - Boyong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| | - Yaru Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| | - Jiaji Zi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuanqian Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
5
|
Fu XP, Ji CY, Tang WQ, Yu TT, Luo L. Long non-coding RNA LOXL1-AS1: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2024; 24:93. [PMID: 38693424 PMCID: PMC11062969 DOI: 10.1007/s10238-024-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.
Collapse
Affiliation(s)
- Xiao-Ping Fu
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Chun-Yan Ji
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, 430015, People's Republic of China
| | - Wen-Qian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Ting-Ting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, 443000, People's Republic of China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
6
|
Tang M, Rong Y, Liu S, Wu Z, Ma G, Li X, Cai H. Potential role of lncRNA LOXL1-AS1 in human cancer development: a narrative review. Transl Cancer Res 2024; 13:1997-2011. [PMID: 38737681 PMCID: PMC11082674 DOI: 10.21037/tcr-23-1450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs consisting of more than 200 nucleotides that are widely involved in various physiological and pathobiological processes in the body. LncRNA plays a crucial role in tumorigenesis and development with its unique functions, such as playing a role in a variety of biological processes of malignant tumors as a cancer-promoting factor or a cancer-suppressor factor. Lysyl oxidase-like protein 1-antisense RNA1 (LOXL1-AS1) is a novel functional lncRNA recently reported. This article reviews the current findings on the role of LOXL1-AS1 in cancer, and discusses the potential clinical significance and application prospects, in order to provide a theoretical basis and reference for the clinical diagnosis, treatment and screening of prognostic markers for malignant tumors. Methods The PubMed and Embase databases were searched using the keywords "cancer" or "tumor" or "neoplasm" and "LOXL1-AS1" for publications from 2018 to the present. The English literature was searched, with a focus on relevant articles. These articles validated the role and mechanism of LOXL1-AS1 in different cancers. Key Content and Findings LOXL1-AS1 is a recently reported novel lncRNA, which is abnormally expressed and upregulated in more than ten cancers, and is positively correlated with adverse clinical features and poor prognosis in cancer patients. LOXL1-AS1 competently binds to a variety of microRNAs to regulate the expression of downstream target genes and regulate related signaling pathways, including proliferation, migration, invasion and inhibition of malignant biological behaviors such as apoptosis. Conclusions LOXL1-AS1 is expected to become a novel biomarker for cancer diagnosis and treatment, with great potential as an independent prognostic indicator.
Collapse
Affiliation(s)
- Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- National Health Council Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- National Health Council Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Zhihang Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xiaofeng Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- National Health Council Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Chang X, Ji C, Zhang T, Huang H. Prenatal to preimplantation genetic diagnosis of a novel compound heterozygous mutation in HSPA9 associated with Even-Plus syndrome. Clin Chim Acta 2024; 555:117803. [PMID: 38281662 DOI: 10.1016/j.cca.2024.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Heat shock protein family A member 9 (HSPA9) prevents unfolded and dysfunctional protein accumulation, with genetic variants known to be pathogenic. Here, we determined the genetic cause of Even-Plus syndrome (OMIM: 616854) in a Chinese family. METHODS We collected samples from two affected and two normal individuals. Whole-exome sequencing was performed to identify their genetic profiles. Potential variants were validated using Sanger sequencing. Assisted reproduction with mutation-free embryos successfully blocked the transmission of mutations. RESULTS We identified novel inherited pathogenic complex heterozygous variations in the HSPA9 gene in the two affected fetuses. Three-dimensional spatial simulation of the HSPA9 protein after prediction of the mutated RNA splicing pattern abolished part of the substrate-binding domain of the protein. According to ACMG guidelines, c. 1822-1G>A and c. 1411-3T>G were classified as pathogenic and likely pathogenic, respectively. Mutation-free embryos were selected for transplantation and reconfirmed to possess no mutations. A healthy daughter was successfully born into the family. CONCLUSIONS This study is the first to report complex heterozygous variations in the HSPA9 gene that influence alternative splicing in early pregnancy. Our findings expand on the mutational spectrum leading to Even-Plus syndrome and provide a basis for genetic counseling and future embryonic studies.
Collapse
Affiliation(s)
- Xiaoxia Chang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunmin Ji
- Department of Obstetrics and Gynecology, Air Force Hospital of Eastern Theater, Nanjing, Jiangsu Province, China
| | - Ting Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Küffer S, Müller D, Marx A, Ströbel P. Non-Mutational Key Features in the Biology of Thymomas. Cancers (Basel) 2024; 16:942. [PMID: 38473304 DOI: 10.3390/cancers16050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thymomas (THs) are a unique group of heterogeneous tumors of the thymic epithelium. In particular, the subtypes B2 and B3 tend to be aggressive and metastatic. Radical tumor resection remains the only curative option for localized tumors, while more advanced THs require multimodal treatment. Deep sequencing analyses have failed to identify known oncogenic driver mutations in TH, with the notable exception of the GTF2I mutation, which occurs predominantly in type A and AB THs. However, there are multiple alternative non-mutational mechanisms (e.g., perturbed thymic developmental programs, metabolism, non-coding RNA networks) that control cellular behavior and tumorigenesis through the deregulation of critical molecular pathways. Here, we attempted to show how the results of studies investigating such alternative mechanisms could be integrated into a current model of TH biology. This model could be used to focus ongoing research and therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Guo X, Zhang J, Zeng J, Guo Y, Zhao L. MiR-525-5p inhibits diffuse large B cell lymphoma progression via the Myd88/NF-κB signaling pathway. PeerJ 2023; 11:e16388. [PMID: 37953776 PMCID: PMC10634338 DOI: 10.7717/peerj.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a B-cell lymphoma with a high degree of aggressiveness. Recently, evidence has shown that miR-525-5p is decreased in DLBCL, suggesting its possible involvement in tumor progression. In this study, miR-525-5p suppressed proliferation, invasion and clonogenicity, and increased apoptosis of U2932 cells, whereas miR-525-5p silencing enhanced tumor cell growth. Next, miR-525-5p targets the 3'-UTR of Myd88, and Myd88 protein was increased in lymphoma tissues. Similar to the miR-525-5p mimic, Myd88 siRNA suppressed proliferation, invasion, and clonogenicity, and enhanced apoptosis of U2932 cells. We observed that Myd88 reversed the inhibitory effect of miR-525-5p on tumor cell growth by transfecting cells with miR-525-5p mimics alone or together with Myd88 overexpression vector. In addition, in vivo studies have shown that compared to the control group, U2932 cells with upregulated miR-525-5p expression have a reduced ability to induce tumor formation. In conclusion, our results demonstrate that miR-525-5p inhibits the progression of DLBCL through the Myd88/NF-κB pathway, which largely fills the gap of previous studies, and our results may provide a new reference for the targeted treatment of DLBCL.
Collapse
Affiliation(s)
- Xiuchen Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingbo Zhang
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yiwei Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Zhao
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
10
|
Zhang X, Zhang P, Cong A, Feng Y, Chi H, Xia Z, Tang H. Unraveling molecular networks in thymic epithelial tumors: deciphering the unique signatures. Front Immunol 2023; 14:1264325. [PMID: 37849766 PMCID: PMC10577431 DOI: 10.3389/fimmu.2023.1264325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Thymic epithelial tumors (TETs) are a rare and diverse group of neoplasms characterized by distinct molecular signatures. This review delves into the complex molecular networks of TETs, highlighting key aspects such as chromosomal abnormalities, molecular subtypes, aberrant gene mutations and expressions, structural gene rearrangements, and epigenetic changes. Additionally, the influence of the dynamic tumor microenvironment on TET behavior and therapeutic responses is examined. A thorough understanding of these facets elucidates TET pathogenesis, offering avenues for enhancing diagnostic accuracy, refining prognostic assessments, and tailoring targeted therapeutic strategies. Our review underscores the importance of deciphering TETs' unique molecular signatures to advance personalized treatment paradigms and improve patient outcomes. We also discuss future research directions and anticipated challenges in this intriguing field.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ansheng Cong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Huang L, Xiong S, Liu H, Li M, Zhang R, Liu Y, Hu X. Bioinformatics Analysis of the Inflammation-Associated lncRNA-mRNA Coexpression Network in Type 2 Diabetes. J Renin Angiotensin Aldosterone Syst 2023; 2023:6072438. [PMID: 36874406 PMCID: PMC9977555 DOI: 10.1155/2023/6072438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Diabetes is a chronic inflammatory state, and a key role of lncRNAs in diabetes complications is a new area of research. Methods In this study, key lncRNAs related to diabetes inflammation were identified by RNA-chip mining and lncRNA-mRNA coexpression network construction and finally verified by RT-qPCR. Results We ultimately obtained 12 genes, including A1BG-AS1, AC084125.4, RAMP2-AS1, FTX, DBH-AS1, LOXL1-AS1, LINC00893, LINC00894, PVT1, RUSC1-AS1, HCG25, and ATP1B3-AS1. RT-qPCR assays verified that LOXL1-AS1, A1BG-AS1, FTX, PVT1, and HCG25 were upregulated in the HG+LPS-induced THP-1 cells, and LINC00893, LINC00894, RUSC1-AS1, DBH-AS1, and RAMP2-AS1 were downregulated in the HG+LPS-induced THP-1 cells. Conclusions lncRNAs and mRNAs are extensively linked and form a coexpression network, and lncRNAs may influence the development of type 2 diabetes by regulating the corresponding mRNAs. The ten key genes obtained may become biomarkers of inflammation in type 2 diabetes in the future.
Collapse
Affiliation(s)
- Linjuan Huang
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Shengxi Xiong
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Hanshuang Liu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Min Li
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Ranran Zhang
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Yan Liu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Xiaolei Hu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
12
|
Nicolì V, Coppedè F. Epigenetics of Thymic Epithelial Tumors. Cancers (Basel) 2023; 15:360. [PMID: 36672310 PMCID: PMC9856807 DOI: 10.3390/cancers15020360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial tumors (TETs) arise from the epithelial cells of the thymus and consist in the 1% of all adult malignancies, despite the fact that they are the most common lesions of the anterior mediastinum. TETs can be divided mainly into thymomas, thymic carcinomas, and the rarest ad aggressive neuroendocrine forms. Despite the surgical resection is quite resolving, the diagnosis of TETs is complicated by the absence of symptoms and the clinical presentation aggravated by several paraneoplastic disorders, including myasthenia gravis. Thus, the heterogeneity of TETs prompts the search for molecular biomarkers that could be helpful for tumor characterization and clinical outcomes prediction. With these aims, several researchers investigated the epigenetic profiles of TETs. In this manuscript, we narratively review the works investigating the deregulation of epigenetic mechanisms in TETs, highlighting the need for further studies combining genetic, epigenetic, and expression data to better characterize the different molecular subtypes and identify, for each of them, the most relevant epigenetic biomarkers of clinical utility.
Collapse
Affiliation(s)
- Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
13
|
Wang X, Chen Z, Zhou H, Liu W, Luo J. LncRNA LOXL1-AS1 expression in cancer prognosis: A meta-analysis. Medicine (Baltimore) 2022; 101:e32436. [PMID: 36596047 PMCID: PMC9803452 DOI: 10.1097/md.0000000000032436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Several studies showed that LncRNA LOXL1 antisense RNA 1 (LOXL1-AS1) is overexpressed in a variety of cancers and plays a role as an oncogene in cancer. The present meta-analysis aims to elucidate the relationship between LOXL1-AS1 expression and prognosis and clinicopathological features among cancer patients. METHODS PubMed, Web of Science, Cochrane Library, and EMBASE database were comprehensively and systematically searched. Pooled odds ratios (ORs) and hazard ratios with a 95% confidence interval (CI) were employed to assess the relationship between LOXL1-AS1 expression and clinical outcomes and clinicopathological features in cancer patients. RESULTS The present study finally enrolled 8 studies which included 657 cancer patients. The combined results indicated that the overexpression of LOXL1-AS1 was significantly associated with shorter overall survival (pooled hazard ratio = 1.99, 95% CI 1.49-2.65, P < .00001). Meanwhile, regarding clinicopathology of cancer patients, the upregulation of LOXL1-AS1 expression was closely related to lymph node metastasis (yes vs no OR = 4.01, 95% CI: 2.02-7.96, P < .0001) and distant metastasis (yes vs no OR = 3.04, 95% CI: 1.82-5.06, P < .0001), respectively. CONCLUSION High expression of LOXL1-AS1 in some cancers predicts shorter overall survival, distant metastasis, and lymph node metastasis. LOXL1-AS1 shows great promise as a prognostic biomarker in cancer patients.
Collapse
Affiliation(s)
- Xuhua Wang
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Zhaoyuan Chen
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Huaqiang Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Wuyang Liu
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Jiaquan Luo
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
- * Correspondence: Jiaquan Luo Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, No. 128, Jingling West Road, Ganzhou City, Jiangxi Province 341099, China (e-mail: )
| |
Collapse
|
14
|
Thymic epithelial tumors: examining the GTF2I mutation and developing a novel prognostic signature with LncRNA pairs to predict tumor recurrence. BMC Genomics 2022; 23:656. [PMID: 36114454 PMCID: PMC9482307 DOI: 10.1186/s12864-022-08880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background General transcription factor IIi (GTF2I) mutations are very common in thymic epithelial tumors (TETs) and are related to a more favorable prognosis in TET patients. However, limited research has been conducted on the role of GTF2I in the tumor immune microenvironment (TIME). Further, long non-coding RNAs (lncRNAs) have been associated with the survival of patients with TETs. Therefore, this study aimed to explore the relationship between GTF2I mutations and TIME and build a new potential signature for predicting tumor recurrence in the TETs. Research data was downloaded from The Cancer Genome Atlas database and the CIBERSORT algorithm was used to evaluate TIME differences between GTF2I mutant and wild-type TETs. Relevant differentially expressed lncRNAs based on differentially expressed immune-related genes were identified to establish lncRNA pairs. We constructed a signature using univariate and multivariate Cox regression analyses. Results GTF2I is the most commonly mutated gene in TETs, and is associated with an increased number of early-stage pathological types, as well as no history of myasthenia gravis or radiotherapy treatment. In the GTF2I wild-type group, immune score and immune cell infiltrations with M2 macrophages, activated mast cells, neutrophils, plasma, T helper follicular cells, and activated memory CD4 T cells were higher than the GTF2I mutant group. A risk model was built using five lncRNA pairs, and the 1-, 3-, and 5-year area under the curves were 0.782, 0.873, and 0.895, respectively. A higher risk score was related to more advanced histologic type. Conclusion We can define the GTF2I mutant-type TET as an immune stable type and the GTF2I wild-type as an immune stressed type. A signature based on lncRNA pairs was also constructed to effectively predict tumor recurrence.
Collapse
|
15
|
LINC01234 Accelerates the Progression of Breast Cancer via the miR-525-5p/Cold Shock Domain-Containing E1 Axis. DISEASE MARKERS 2022; 2022:6899777. [PMID: 35923244 PMCID: PMC9343190 DOI: 10.1155/2022/6899777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Backgrounds. Long noncoding RNAs (lncRNAs) are strongly associated with the development of breast cancer (BC). As yet, the function of LINC01234 in BC remains unknown. Methods. Using biological information, the potential lncRNA, miRNA, and target gene were predicted. LINC01234 and miR-525-5p expression in BC tissues was detected using quantitative real-time reverse transcription polymerase chain reaction. Fluorescence in situ hybridization was used to determine the distribution of LINC01234. Cell proliferation was analyzed using CCK-8 assay, colony formation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and apoptosis evaluated using flow cytometry. Western blotting was used to evaluate protein expression. Dual-luciferase® reporter, RNA pull-down, and RNA immunoprecipitation assays were performed to analyze the binding relationships among LINC01234, miR-525-5p, and cold shock domain-containing E1 (CSDE1). Results. We screened out LINC01234, found to be significantly increased in BC tissues, associated with a poor prognosis, and positively correlated with tumor size of BC. Knockdown of LINC01234 suppressed BC cell growth and facilitated apoptosis. Dual-luciferase reporter®, RNA pull-down, and RNA immunoprecipitation assays confirmed that LINC01234 and CSDE1 directly interacted with miR-525-5p. Upregulation of miR-525-5p and suppression of CSDE1 inhibited BC cell growth and induced cell apoptosis. Conclusion. Upregulation of LINC01234 contributes to the development of BC through the miR-525-5p/CSDE1 axis. LINC01234 may be one of the potential diagnostic and treatment targets for BC.
Collapse
|
16
|
Structural and Functional Thymic Biomarkers Are Involved in the Pathogenesis of Thymic Epithelial Tumors: An Overview. IMMUNO 2022. [DOI: 10.3390/immuno2020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The normal human thymus originates from the third branchial cleft as two paired anlages that descend into the thorax and fuse on the midline of the anterior–superior mediastinum. Alongside the epithelial and lymphoid components, different types of lymphoid accessory cells, stromal mesenchymal and endothelial cells migrate to, or develop in, the thymus. After reaching maximum development during early postnatal life, the human thymus decreases in size and lymphocyte output drops with age. However, thymic immunological functions persist, although they deteriorate progressively. Several major techniques were fundamental to increasing the knowledge of thymic development and function during embryogenesis, postnatal and adult life; these include immunohistochemistry, immunofluorescence, flow cytometry, in vitro colony assays, transplantation in mice models, fetal organ cultures (FTOC), re-aggregated thymic organ cultures (RTOC), and whole-organ thymic scaffolds. The thymic morphological and functional characterization, first performed in the mouse, was then extended to humans. The purpose of this overview is to provide a report on selected structural and functional biomarkers of thymic epithelial cells (TEC) involved in thymus development and lymphoid cell maturation, and on the historical aspects of their characterization, with particular attention being paid to biomarkers also involved in Thymic Epithelial Tumor (TET) pathogenesis. Moreover, a short overview of targeted therapies in TET, based on currently available experimental and clinical data and on potential future advances will be proposed.
Collapse
|
17
|
Iaiza A, Tito C, Ganci F, Sacconi A, Gallo E, Masciarelli S, Fontemaggi G, Fatica A, Melis E, Petrozza V, Venuta F, Marino M, Blandino G, Fazi F. Long Non-Coding RNAs in the Cell Fate Determination of Neoplastic Thymic Epithelial Cells. Front Immunol 2022; 13:867181. [PMID: 35529877 PMCID: PMC9073009 DOI: 10.3389/fimmu.2022.867181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Thymic Epithelial Tumors (TETs) arise from epithelial cells of the thymus and are very rare neoplasms comprising Thymoma, Thymic carcinoma, and Thymic Neuroendocrine tumors that still require in-depth molecular characterization. Long non-coding RNAs (lncRNAs) are emerging as relevant gene expression modulators involved in the deregulation of several networks in almost all types of human cancer, including TETs. LncRNAs act at different control levels in the regulation of gene expression, from transcription to translation, and modulate several pathways relevant to cell fate determination under normal and pathological conditions. The activity of lncRNAs is strongly dependent on their expression, localization, and post-transcriptional modifications. Starting from our recently published studies, this review focuses on the involvement of lncRNAs in the acquisition of malignant traits by neoplastic thymic epithelial cells, and describes the possible use of these molecules as targets for the design of novel therapeutic approaches specific for TET. Furthermore, the involvement of lncRNAs in myasthenia gravis (MG)-related thymoma, which is still under investigation, is discussed.
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
- Department of Life Science and Public Health, Histology and Embryology Unit, Catholic University of the Sacred Hearth, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Enrico Melis
- Thoracic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Petrozza
- Pathology Unit, ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, Sapienza University of Rome, Rome, Italy
| | - Mirella Marino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| |
Collapse
|
18
|
Thymic Epithelial Neoplasms: Focusing on the Epigenetic Alterations. Int J Mol Sci 2022; 23:ijms23074045. [PMID: 35409405 PMCID: PMC8999627 DOI: 10.3390/ijms23074045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023] Open
Abstract
Thymic Epithelial Neoplasms (TENs) represent the most common tumors of the thymus gland. Epigenetic alterations are generally involved in initiation and progression of various cancer entities. However, little is known about the role of epigenetic modifications in TENs. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms thymoma, thymic carcinoma, thymic epithelial neoplasm, epigenetics, DNA methylation, HDAC and miRNA were employed and we were able to identify forty studies focused on TENs and published between 1997 and 2021. Aberrant epigenetic alterations seem to be involved in the tumorigenesis of thymomas and thymic carcinomas, with numerous studies reporting on non-coding RNA clusters and altered gene methylation as possible biomarkers in different types of TENs. Interestingly, Histone Deacetylase Inhibitors have shown potent antitumor effects in clinical trials, thus possibly representing effective epigenetic therapeutic agents in TENs. Additional studies in larger patient cohorts are, nevertheless, needed to verify the clinical utility and safety of novel epigenetic agents in the treatment of patients with TENs.
Collapse
|