1
|
Liu H, Gou X, Tan Y, Fan Q, Chen J. Immunotherapy and delivery systems for melanoma. Hum Vaccin Immunother 2024; 20:2394252. [PMID: 39286868 PMCID: PMC11409522 DOI: 10.1080/21645515.2024.2394252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Melanoma is a highly malignant tumor of melanocyte origin that is prone to early metastasis and has a very poor prognosis. Early melanoma treatment modalities are mainly surgical, and treatment strategies for advanced or metastatic melanoma contain chemotherapy, radiotherapy, targeted therapy and immunotherapy. The efficacy of chemotherapy and radiotherapy has been unsatisfactory due to low sensitivity and strong toxic side effects. And targeted therapy is prone to drug resistance, so its clinical application is limited. Melanoma has always been the leader of immunotherapy for solid tumors, and how to maximize the role of immunotherapy and how to implement immunotherapy more accurately are still urgent to be explored. This review summarizes the common immunotherapies and applications for melanoma, illustrates the current research status of melanoma immunotherapy delivery systems, and discusses the advantages and disadvantages of each delivery system and its prospects for clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanfang Tan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wang T, Wu Z, Bi Y, Wang Y, Zhao C, Sun H, Wu Z, Tan Z, Zhang H, Wei H, Yan W. PARVB promotes malignant melanoma progression and is enhanced by hypoxic conditions. Transl Oncol 2024; 42:101861. [PMID: 38301409 PMCID: PMC10847701 DOI: 10.1016/j.tranon.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
Beta-Parvin (PARVB) is an actin-binding protein with functionality in extracellular matrix binding. Recent studies suggest its potential as a biomarker for various cancers, given its role in governing several malignancies. Yet, its involvement and modulatory mechanisms in malignant melanoma remain under-explored. In this research, we undertook a comprehensive pan-cancer analysis centered on PARVB. We probed its aberrant expression and prognostic implications, and assessed correlations between PARVB expression and immunocyte infiltration. This expression was subsequently corroborated using clinical samples. Both in vitro and in vivo, we discerned the functional ramifications of PARVB on melanoma. Furthermore, we scrutinized how HIF-1α/2α modulates PARVB and initiated a preliminary investigation into potential downstream pathways influenced by PARVB. Our results illuminate that elevated PARVB expression manifests across various tumors and significantly influences the prognosis of multiple cancers, emphasizing its peculiar expression and prognostic relevance in melanoma. Augmented PARVB levels were inversely proportional to immunocyte penetration in melanoma. Silencing PARVB curtailed cellular proliferation, migration, and invasion in vitro and decelerated tumor expansion in vivo. Notably, hypoxic conditions, triggering HIF-1α/2α activation, appear to elevate PARVB expression by anchoring to the hypoxia-specific responsive element within the PARVB promoter. Enhanced PARVB levels seem intertwined with the activation of cellular proliferation circuits and the damping of inflammatory trajectories. Collectively, these revelations posit PARVB as a potential prognostic indicator and therapeutic linchpin for malignant melanoma.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yifeng Bi
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yao Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chenglong Zhao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Haitao Sun
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhen Tan
- Department of General Surgery, General Hospital of Western Theater Command PLA, Chengdu 610083, China
| | - Hao Zhang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of CPLA, Second Military Medical University, Shanghai 200052, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
3
|
He W, Zhang Y, Qu Y, Liu M, Li G, Pan L, Xu X, Shi G, Hao Q, Liu F, Gao Y. Research progress on hydrogel-based drug therapy in melanoma immunotherapy. BMB Rep 2024; 57:71-78. [PMID: 38053295 PMCID: PMC10910090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration. [BMB Reports 2024; 57(2): 71-78].
Collapse
Affiliation(s)
- Wei He
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Yanqin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Yi Qu
- Department of Xi’an Shunmei Medical Cosmetology Outpatient, Xi’an 710075, China
| | - Mengmeng Liu
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Guodong Li
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Luxiang Pan
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Xinyao Xu
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Gege Shi
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Fen Liu
- Department of Periodontology, Shenzhen Stomatological Hospital (Pingshan), Southern Medical University, Shenzhen 510515, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
de Melo MRS, Ribeiro AB, Fernandes G, Squarisi IS, de Melo Junqueira M, Batista AA, da Silva MM, Tavares DC. Ruthenium(II) complex with 2-mercaptothiazoline ligand induces selective cytotoxicity involving DNA damage and apoptosis in melanoma cells. J Biol Inorg Chem 2024; 29:159-168. [PMID: 38182820 DOI: 10.1007/s00775-023-02036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer due to its characteristics such as high metastatic potential and low response rate to existing treatment modalities. In this way, new drug prototypes are being studied to solve the problem of treating patients with melanoma. Among these, ruthenium-based metallopharmaceuticals may be promising alternatives due to their antitumor characteristics and low systemic toxicity. In this context, the present study evaluated the antineoplastic effect of the ruthenium complex [Ru(mtz)(dppe)2]PF6-2-mercaptothiazoline-di-1,2-bis(diphenylphosphine) ethaneruthenium(II), namely RuMTZ, on human melanoma (A-375) and murine (B16-F10) cells, considering different approaches. Through XTT colorimetric and clonogenic efficiency assays, the complex revealed the selective cytotoxic activity, with the lowest IC50 (0.4 µM) observed for A375 cells. RuMTZ also induced changes in cell morphology, increased cell population in the sub-G0 phase and inhibiting cell migration. The levels of γH2AX and cleaved caspase 3 proteins were increased in both cell lines treated with RuMTZ. These findings indicated that the cytotoxic activity of RuMTZ on melanoma cells is related, at least in part, to the induction of DNA damage and apoptosis. Therefore, RuMTZ exhibited promising antineoplastic activity against melanoma cells.
Collapse
Affiliation(s)
| | | | - Gabriela Fernandes
- Laboratory of Mutagenesis, University of Franca, Franca, São Paulo, 14404-600, Brazil
| | - Iara Silva Squarisi
- Laboratory of Mutagenesis, University of Franca, Franca, São Paulo, 14404-600, Brazil
| | | | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Monize Martins da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | | |
Collapse
|
5
|
Stachyra-Strawa P, Szatkowska-Sieczek L, Cisek P, Gołębiowski P, Grzybowska-Szatkowska L. Cardiac and Nephrological Complications Related to the Use of Antiangiogenic and Anti-Programmed Cell Death Protein 1 Receptor/Programmed Cell Death Protein 1 Ligand Therapy. Genes (Basel) 2024; 15:177. [PMID: 38397167 PMCID: PMC10887630 DOI: 10.3390/genes15020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The ability to undergo neoangiogenesis is a common feature with all cancers. Signaling related to vascular endothelial growth factors (VEGF) and their receptors (VEGFR) plays a key role in the process of tumor neoangiogenesis. A close relationship has been demonstrated between excessive VEGF levels and the induction of immunosuppression in the tumor microenvironment. The use of drugs blocking the VEGF function, apart from the anticancer effect, also result in adverse effects, in particular related to the circulatory system and kidneys. Cardiac toxicity associated with the use of such therapy manifests itself mainly in the form of hypertension, thromboembolic episodes and ischemic heart disease. In the case of renal complications, the most common symptoms include renal arterial hypertension, proteinuria and microangiopathy. Although these complications are reversible in 60-80% of cases after cessation of VSP (VEGF pathway inhibitor) therapy, in some cases they can lead to irreversible changes in renal function, whereas cardiac complications may be fatal. Also, the use of PD-1/PD-L1 inhibitors may result in kidney and heart damage. In the case of cardiac complications, the most common symptoms include myocarditis, pericarditis, arrhythmia, acute coronary syndrome and vasculitis, while kidney damage most often manifests as acute kidney injury (AKI), nephrotic syndrome, pyuria or hematuria. The decision whether to resume treatment after the occurrence of cardiovascular and renal complications remains a problem.
Collapse
Affiliation(s)
- Paulina Stachyra-Strawa
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Lidia Szatkowska-Sieczek
- Clinical Department of Cardiology, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wroclaw, Poland;
| | - Paweł Cisek
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Paweł Gołębiowski
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| |
Collapse
|
6
|
Lin J, Huang N, Li M, Zheng M, Wang Z, Zhang X, Gao H, Lao Y, Zhang J, Ding B. Dendritic Cell-Derived Exosomes Driven Drug Co-Delivery Biomimetic Nanosystem for Effective Combination of Malignant Melanoma Immunotherapy and Gene Therapy. Drug Des Devel Ther 2023; 17:2087-2106. [PMID: 37489176 PMCID: PMC10363389 DOI: 10.2147/dddt.s414758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Purpose Malignant melanoma (MM), the most lethal skin cancer, is highly invasive and metastatic. These qualities are related to not only genetic mutations in MM itself but also the interaction of MM cells with the immune system and microenvironment. This study aimed to construct a combined immunotherapy and gene therapy drug delivery system for the effective treatment of MM. Methods Mature dendritic cell (mDC) exosomes (mDexos) with immune induction functions were used as carriers. BRAF siRNA (siBRAF) with the ability to silence mutated BRAF in MM was encapsulated in mDexos by electroporation to construct a biomimetic nanosystem for the codelivery of immunotherapy and gene therapy drugs (siBRAF-mDexos) to the MM microenvironment. Then, we investigated the nanosystem's serum stability and biocompatibility, uptake efficiency in mouse melanoma cells (B16-F10 cells), cytotoxicity against B16-F10 cells and inhibitory effect on BRAF expression. Furthermore, we evaluated its antimelanoma activity and safety in vivo. Results SiBRAF-mDexos were nanosized. Compared to siBRAF, siBRAF-mDexos displayed significantly increased serum stability, biocompatibility, uptake efficiency in B16-F10 cells, and cytotoxicity to B16-F10 melanoma cells; they also had a significantly greater inhibitory effect on BRAF expression and induced T-lymphocyte proliferation. Moreover, compared with siBRAF, siBRAF-mDexos showed significantly enhanced anti-MM activity and a high level of safety in vivo. Conclusion The study suggests that the siBRAF-mDexo biomimetic drug codelivery system can be used to effectively treat MM, which provides a new strategy for combined gene therapy and immunotherapy for MM.
Collapse
Affiliation(s)
- Jiecheng Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 214122, People’s Republic of China
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Na Huang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Mingjuan Li
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Mengyuan Zheng
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Zhuoxiang Wang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Xiaojuan Zhang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Huan Gao
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Yunzhe Lao
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Jie Zhang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Baoyue Ding
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| |
Collapse
|
7
|
Ma W, Zhang X, Zhuang L. Exogenous Hydrogen Sulfide Induces A375 Melanoma Cell Apoptosis Through Overactivation of the Unfolded Protein Response. Clin Cosmet Investig Dermatol 2023; 16:1641-1651. [PMID: 37396710 PMCID: PMC10314752 DOI: 10.2147/ccid.s412588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Purpose Melanomas are highly malignant and rapidly develop drug resistance due to dysregulated apoptosis. Therefore, pro-apoptotic agents could be effective for the management of melanoma. Hydrogen sulfide is ubiquitous in the body, and exogenous hydrogen sulfide has been reported to show inhibitory and pro-apoptotic effects on cancer cells. However, whether high concentrations of exogenous hydrogen sulfide have pro-apoptotic effects on melanoma and its mechanisms remain unknown. Hence, this study aimed to explore the pro-apoptotic effects and mechanisms of exogenous hydrogen sulfide on the A375 melanoma cell line treated with a hydrogen sulfide donor (NaHS). Methods The cell proliferation test, flow cytometric analysis, Hoechst 33258 staining, and Western blotting of B-cell lymphoma 2 and cleaved caspase-3 were used to explore the pro-apoptotic effects of hydrogen sulfide on A375 cells. The transcriptional profile of NaHS-treated A375 cells was further explored via high-throughput sequencing. Western blotting of phosphorylated inositol-requiring enzyme 1α (p-IRE1α), phosphorylated protein kinase R-like ER kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homologous protein, glucose-regulating protein 78, IRE1α, PERK, and eIF2α was performed to verify the changes in the transcriptional profile. Results NaHS inhibited A375 melanoma cell proliferation and induced apoptosis. The endoplasmic reticulum stress unfolded protein response and apoptosis-associated gene expression was upregulated in NaHS-treated A375 melanoma cells. The overactivation of the unfolded protein response and increase in endoplasmic reticulum stress was verified at the protein level. Conclusion Treatment with NaHS increased endoplasmic reticulum stress, which triggered the overactivation of the unfolded protein response and ultimately lead to melanoma cell apoptosis. The pro-apoptotic effect of NaHS suggests that it can be explored as a potential therapeutic agent in melanoma.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Xiuwen Zhang
- Department of Dermatology, Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China
| | - Le Zhuang
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
8
|
Rok J, Kowalska J, Rzepka Z, Stencel D, Skorek A, Banach K, Wrześniok D. The Assessment of Anti-Melanoma Potential of Tigecycline-Cellular and Molecular Studies of Cell Proliferation, Apoptosis and Autophagy on Amelanotic and Melanotic Melanoma Cells. Cells 2023; 12:1564. [PMID: 37371034 DOI: 10.3390/cells12121564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
High mortality, aggressiveness, and the relatively low effectiveness of therapy make melanoma the most dangerous of skin cancers. Previously published studies presented the promising therapeutic potential of minocycline, doxycycline, and chlortetracycline on melanoma cells. This study aimed to assess the cytotoxicity of tigecycline, a third-generation tetracycline, on melanotic (COLO 829) and amelanotic (A375) melanoma cell lines. The obtained results showed that tigecycline, proportionally to the concentration and incubation time, efficiently inhibited proliferation of both types of melanoma cells. The effect was accompanied by the dysregulation of the cell cycle, the depolarization of the mitochondrial membrane, and a decrease in the reduced thiols and the levels of MITF and p44/42 MAPK. However, the ability to induce apoptosis was only found in COLO 829 melanoma cells. A375 cells appeared to be more resistant to the treatment with tigecycline. The drug did not induce apoptosis but caused an increase in LC3A/B protein levels-an autophagy marker. The observed differences in drug action on the tested cell lines also involved an increase in p21 and p16 protein levels in melanotic melanoma, which was related to cell cycle arrest in the G1/G0 phase. The greater sensitivity of melanotic melanoma cells to the action of tigecycline suggests the possibility of considering the use of the drug in targeted therapy.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dominika Stencel
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Anna Skorek
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
9
|
Abstract
LEARNING OBJECTIVES After reading this article and viewing the videos, the participant should be able to: 1. Discuss margins for in situ and invasive disease and describe reconstructive options for wide excision defects, including the keystone flap. 2. Describe a digit-sparing alternative for subungual melanoma. 3. Calculate personalized risk estimates for sentinel node biopsy using predictive nomograms. 4. Describe the indications for lymphadenectomy and describe a technique intended to reduce the risk of lymphedema following lymphadenectomy. 5. Offer options for in-transit melanoma management. SUMMARY Melanoma management continues to evolve, and plastic surgeons need to stay at the forefront of advances and controversies. Appropriate margins for in situ and invasive disease require consideration of the trials on which they are based. A workhorse reconstruction option for wide excision defects, particularly in extremities, is the keystone flap. There are alternative surgical approaches to subungual tumors besides amputation. It is now possible to personalize a risk estimate for sentinel node positivity beyond what is available for groups of patients with a given stage of disease. Sentinel node biopsy can be made more accurate and less morbid with novel adjuncts. Positive sentinel node biopsies are now rarely managed with completion lymphadenectomy. Should a patient require lymphadenectomy, immediate lymphatic reconstruction may mitigate the lymphedema risk. Finally, there are minimally invasive modalities for effective control of in-transit recurrences.
Collapse
|
10
|
Sha Y, Mao AQ, Liu YJ, Li JP, Gong YT, Xiao D, Huang J, Gao YW, Wu MY, Shen H. Nidogen-2 (NID2) is a Key Factor in Collagen Causing Poor Response to Immunotherapy in Melanoma. Pharmgenomics Pers Med 2023; 16:153-172. [PMID: 36908806 PMCID: PMC9994630 DOI: 10.2147/pgpm.s399886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Background The incidence of cutaneous melanoma continues to rise rapidly and has an extremely poor prognosis. Immunotherapy strategies are the most effective approach for patients who have developed metastases, but not all cases have been successful due to the complex and variable mechanisms of melanoma response to immune checkpoint inhibition. Methods We synthesized collagen-coding gene expression data (second-generation and single-cell sequencing) from public Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis was performed using R software and several database resources such as Metascape database, Gene Set Cancer Analysis (GSCA) database, and Cytoscape software, etc., to investigate the biological mechanisms that may be related with collagens. Immunofluorescence and immunohistochemical staining were used to validate the expression and localization of Nidogen-2 (NID2). Results Melanoma patients can be divided into two collagen clusters. Patients with high collagen levels (C1) had a shorter survival than those with low collagen levels (C2) and were less likely to benefit from immunotherapy. We demonstrated that NID2 is a potential key factor in the collagen phenotype, is involved in fibroblast activation in melanoma, and forms a barrier to limit the proximity of CD8+ T cells to tumor cells. Conclusion We clarified the adverse effects of collagen on melanoma patients and identified NID2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yan Sha
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - An-Qi Mao
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Jie-Pin Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Ya-Ting Gong
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Dong Xiao
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Jun Huang
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Yan-Wei Gao
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Mu-Yao Wu
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Hui Shen
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| |
Collapse
|
11
|
Gao W, Pan J, Pan J. Antitumor Activities of Interleukin-12 in Melanoma. Cancers (Basel) 2022; 14:cancers14225592. [PMID: 36428682 PMCID: PMC9688694 DOI: 10.3390/cancers14225592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most common and serious malignant tumor among skin cancers. Although more and more studies have revolutionized the systematic treatment of advanced melanoma in recent years, access to innovative drugs for melanoma is still greatly restricted in many countries. IL-12 produced mainly by antigen-presenting cells regulates the immune response and affects the differentiation of T cells in the process of antigen presentation. However, the dose-limited toxicity of IL-12 limits its clinical application. The present review summarizes the basic biological functions and toxicity of IL-12 in the treatment of melanoma and discusses the clinical application of IL-12, especially the combination of IL-12 with immune checkpoint inhibitors, cytokines and other therapeutic drugs. We also summarize several promising technological approaches such as carriers that have been developed to improve the pharmacokinetics, efficacy and safety of IL-12 or IL-12 encoding plasmid application.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jun Pan
- Institute of Cancer, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianping Pan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China
- Correspondence: ; Tel.: +86-0571-88285702
| |
Collapse
|
12
|
Ren K, Zhou M, Li L, Wang C, Yuan S, Li H. C118P exerted potent anti-tumor effects against melanoma with induction of G2/M arrest via inhibiting the expression of BUB1B. J Dermatol Sci 2022; 108:58-67. [PMID: 36424293 DOI: 10.1016/j.jdermsci.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The incidence of melanoma rapidly increased in the past decades, and the clinical treatment of melanoma met huge challenges because of tumor heterogeneity and drug resistance. C118P, a novel tubulin polymerization inhibitor, exhibited strong anticancer effects in many tumors. However, there was no data regarding the potential effects of C118P in melanoma cells. OBJECTIVE To investigate of the efficacy and potential target of C118P in melanoma cells. METHODS Human melanoma cells were treated with C118P, followed by assessments of proliferation, apoptosis and cell cycle distribution. Subsequently, RNA sequencing was performed to further identify the drug targets of C118P in melanoma cells. GO analysis and protein-protein interaction networks analysis were used to screen the potential targets, and verified by a series of assays. Finally, the anti-growth activity of C118P was evaluated in A375-xenografted nude mice, and the expression of BUB1B (BUB1 mitotic checkpoint serine/threonine kinase B), Ki67 and Tunel were determined. RESULTS We found that C118P concentration-dependently inhibited proliferation of melanoma cells. Moreover, C118P simultaneously triggered dramatic G2/M arrest and apoptosis via independent mechanisms in melanoma cells in vitro. C118P exerted anti-melanoma effects by inducing potent G2/M arrest, which was mechanistically related to downregulation of the expression of BUB1B. Importantly, C118P inhibited the tumor growth in A375-xenografted nude, and increased the staining of Ki-67 and Tunel and suppressed the expression of BUB1B in melanoma tissues, which was consistent with in vitro study. CONCLUSION C118P might provide a novel strategy for the clinical treatment of melanoma by inhibition of BUB1B.
Collapse
Affiliation(s)
- Kun Ren
- Pharmacal Research Laboratory, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Meng Zhou
- Pharmacal Research Laboratory, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Lingjun Li
- Pharmacal Research Laboratory, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Cheng Wang
- Department of Dermatology, Zhongda Hospital Southeast Universtiy, Nanjing, PR China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.
| | - Hongyang Li
- Pharmacal Research Laboratory, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
13
|
Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing Metastatic Melanoma in 2022: A Clinical Review. JCO Oncol Pract 2022; 18:335-351. [PMID: 35133862 PMCID: PMC9810138 DOI: 10.1200/op.21.00686] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cutaneous melanoma remains the most lethal of the primary cutaneous neoplasms, and although the incidence of primary melanoma continues to rise, the mortality from metastatic disease remains unchanged, in part through advances in treatment. Major developments in immunomodulatory and targeted therapies have provided robust improvements in response and survival trends that have transformed the clinical management of patients with metastatic melanoma. Additional advances in immunologic and cancer cell biology have contributed to further optimization in (1) risk stratification, (2) prognostication, (3) treatment, (4) toxicity management, and (5) surveillance approaches for patients with an advanced melanoma diagnosis. In this review, we provide a comprehensive overview of the historical and future advances regarding the translational and clinical implications of advanced melanoma and share multidisciplinary recommendations to aid clinicians in the navigation of current treatment approaches for a variety of patient cohorts.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Joseph J. Skitzki
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Lamya Hamad
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Marc S. Ernstoff
- ImmunoOncology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD,Marc S. Ernstoff, MD, National Cancer Institute, Rockville, MD 20850; e-mail:
| |
Collapse
|
14
|
Szatkowska L, Sieczek J, Tekiela K, Ziętek M, Stachyra-Strawa P, Cisek P, Matkowski R. Outcomes of Patients with Metastatic Melanoma-A Single-Institution Retrospective Analysis. Cancers (Basel) 2022; 14:cancers14071672. [PMID: 35406444 PMCID: PMC8997072 DOI: 10.3390/cancers14071672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background: This study assessed risk factors and the results of treatment with anti-PD-1 antibodies and BRAF/MEK inhibitors for advanced malignant melanoma. Methods: A retrospective analysis was performed on 52 patients treated with immunotherapy and BRAF/MEK inhibitors for disseminated malignant melanoma. Results: The median follow-up was 31 months (6−108 months). The median PFS1 was 6 months (1−44 months). Second-line systemic treatment was applied in 27 patients (52%). The median PFS2 was 2 months (0−27 months), and the median OS was 31 months (6−108 months). Among the analyzed risk factors, only the presence of the BRAF mutation was statistically significant for disease recurrence after surgery. In patients undergoing anti-BRAF/MEK therapy, the median PFS1 was 7 months, and in patients undergoing mono-immunotherapy, 4 months. The 12- and 24-month PFS1 rates in the group treated with BRAF inhibitors were 29 and 7%, respectively, and in patients treated with mono-immunotherapy 13 and 0%, respectively (Z = 1.998, p = 0.04). The type of treatment used had no effect on OS (Z = 0.237, p > 0.05). Conclusion: Patients with the V600 mutation should be closely monitored. In the event of disease recurrence, treatment with BRAF/MEK inhibitors should be considered. The type of treatment used has no effect on OS.
Collapse
Affiliation(s)
- Lidia Szatkowska
- Clinical Department of Cardiology, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wrocław, Poland
- Correspondence:
| | - Jan Sieczek
- Department of Orthopedic Surgery, Provincial Specialist Hospital, Kamieńskiego 73A, 51-124 Wrocław, Poland;
| | - Katarzyna Tekiela
- Department of Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 53-413 Wrocław, Poland;
| | - Marcin Ziętek
- Department of Oncology, Wrocław Medical University, wyb. L. Pasteura 1, 50-367 Wrocław, Poland; (M.Z.); (R.M.)
- Department of Surgical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 53-413 Wrocław, Poland
| | - Paulina Stachyra-Strawa
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.)
| | - Paweł Cisek
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.)
| | - Rafał Matkowski
- Department of Oncology, Wrocław Medical University, wyb. L. Pasteura 1, 50-367 Wrocław, Poland; (M.Z.); (R.M.)
- Department of Surgical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 53-413 Wrocław, Poland
| |
Collapse
|