1
|
Topham B, Hock B, Phillips E, Wiggins G, Currie M. The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype. FRONT BIOSCI-LANDMRK 2024; 29:418. [PMID: 39735978 DOI: 10.31083/j.fbl2912418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 12/31/2024]
Abstract
Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy. TAM phenotypes are driven by cytokines and physical cues produced by tumor cells, adipocytes, fibroblasts, pericytes, immune cells, and other cells within the TME. Research has shown that TAMs can be primed by environmental stimuli, adding another layer of complexity to the environmental context that determines TAM phenotype. Innate priming is a functional consequence of metabolic and epigenetic reprogramming of innate cells by a primary stimulant, resulting in altered cellular response to future secondary stimulation. Innate priming offers a novel target for development of cancer immunotherapy and improved prognosis of disease, but also raises the risk of exacerbating existing inflammatory pathologies. This review will discuss the mechanisms underlying innate priming including metabolic and epigenetic modification, its relevance to TAMs and tumor progression, and possible clinical implications for cancer treatment.
Collapse
Affiliation(s)
- Ben Topham
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Barry Hock
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - George Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Margaret Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| |
Collapse
|
2
|
Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother 2024; 180:117483. [PMID: 39353319 DOI: 10.1016/j.biopha.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The progression of high-grade squamous intraepithelial lesion (HSIL) to invasive cervical cancer (ICC) is a complex process involving persistent human papillomavirus (HPV) infection and changes in signal transduction regulation, energy and material metabolism, cell proliferation, autoimmune, and other biological process in vaginal microenvironment and immune microenviroment. Signaling pathways are a series of interacting molecules in cells that regulate various physiological functions of cells, such as growth, differentiation, metabolism, and death. In the progression of HSIL to ICC, abnormal activation or inhibition in signaling pathways plays an essensial role. This review presented some signaling pathways related to the malignant progression of HSIL to ICC, including p53, Rb, PI3K/AKT/mTOR, Wnt/β-catenin, Notch, NF-κB, MAPK, TGF-β, JAK-STAT, Hippo, and Hedgehog. The molecular mechanisms involved in the biological process of pathway regulation were also analyzed, in order to illustrate the molecular pathway of HSIL progression to ICC and provide references for the development of more effective prevention and treatment methods.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical College, Quanzhou, Fujian 362010, China
| | - Chang Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Keer Jin
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiang Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jiaxin Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
3
|
Guo W, Liu W, Wang J, Fan X. Extracellular vesicles and macrophages in tumor microenvironment: Impact on cervical cancer. Heliyon 2024; 10:e35063. [PMID: 39165926 PMCID: PMC11334669 DOI: 10.1016/j.heliyon.2024.e35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Cervical cancer is a serious threat to women's health. Extracellular vesicles exist in most body fluids for communication between organisms, having different effects on the occurrence, development, angiogenesis, and metastasis of cervical cancer, and are expected to become new targets for treatment. Macrophages are natural immune systems closely linked to the development of cervical cancer. In recent years, an increasing number of studies have confirmed the role of extracellular vesicles and macrophages in the gynecologic tumor environment. This article reviews the mechanism of action and application prospects of extracellular vesicles and macrophages in the cervical cancer microenvironment. In addition, the relationship between extracellular vesicles and macrophages from different sources is described, which provides ideas for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Wen Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Wenqiong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Junqing Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xinran Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| |
Collapse
|
4
|
Tcyganov EN, Kwak T, Yang X, Poli ANR, Hart C, Bhuniya A, Cassel J, Kossenkov A, Auslander N, Lu L, Sharma P, Mendoza MDGC, Zhigarev D, Cadungog MG, Jean S, Chatterjee-Paer S, Weiner D, Donthireddy L, Bristow B, Zhang R, Tyurin VA, Tyurina YY, Bayir H, Kagan VE, Salvino JM, Montaner LJ. Targeting LxCxE cleft pocket of retinoblastoma protein in M2 macrophages inhibits ovarian cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593562. [PMID: 38798466 PMCID: PMC11118332 DOI: 10.1101/2024.05.10.593562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor- associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket, causes cell death in TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways. A reduction of pro-tumor Rb high M2-type macrophages from TME in vivo enhanced T cell infiltration and inhibited cancer progression. We demonstrate an increased Rb expression in TAMs in women with ovarian cancer is associated with poorer prognosis. Ex vivo, we show analogous cell death induction by therapeutic Rb targeting in TAMs in post-surgery ascites from ovarian cancer patients. Overall, our data elucidates therapeutic targeting of the Rb LxCxE cleft pocket as a novel promising approach for ovarian cancer treatment through depletion of TAMs and re-shaping TME immune landscape. Statement of significance Currently, targeting immunosuppressive myeloid cells in ovarian cancer microenvironment is the first priority need to enable successful immunotherapy, but no effective solutions are clinically available. We show that targeting LxCxE cleft pocket of Retinoblastoma protein unexpectedly induces preferential cell death in M2 tumor-associated macrophages. Depletion of immunosuppressive M2 tumor-associated macrophages reshapes tumor microenvironment, enhances anti-tumor T cell responses, and inhibits ovarian cancer. Thus, we identify a novel paradoxical function of Retinoblastoma protein in regulating macrophage viability as well as a promising target to enhance immunotherapy efficacy in ovarian cancer.
Collapse
|
5
|
Sadeghi S, Nimtz L, Niebergall-Roth E, Norrick A, Hägele S, Vollmer L, Esterlechner J, Frank MH, Ganss C, Scharffetter-Kochanek K, Kluth MA. Potency assay to predict the anti-inflammatory capacity of a cell therapy product for macrophage-driven diseases: overcoming the challenges of assay development and validation. Cytotherapy 2024; 26:512-523. [PMID: 38441512 PMCID: PMC11065629 DOI: 10.1016/j.jcyt.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | | | | | | |
Collapse
|
6
|
Xu S, Xiong Y, Fu B, Guo D, Sha Z, Lin X, Wu H. Bacteria and macrophages in the tumor microenvironment. Front Microbiol 2023; 14:1115556. [PMID: 36825088 PMCID: PMC9941202 DOI: 10.3389/fmicb.2023.1115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Collapse
Affiliation(s)
| | | | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | | |
Collapse
|
7
|
Yang B, Wang Z, Deng Y, Xiao L, Zhang K. LncRNA LAMTOR5-AS1 sponges miR-210-3p and regulates cervical cancer progression. J Obstet Gynaecol Res 2022; 48:3171-3178. [PMID: 36173004 DOI: 10.1111/jog.15439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
AIM Cervical cancer has attracted increasing attention in recent years, and the incidence has shown a trend of younger age. Therefore, it is an effective method to regulate the progression of cervical cancer through new prognostic biomarkers. The purpose of this study was to evaluate the potential of lncRNA LAMTOR5-AS1 (LAMTOR5-AS1) as a prognostic biomarker and reveal its regulatory role in cervical cancer. METHODS A total of 120 patients with cervical cancer were selected as research subjects to verify the prognostic effect of LAMTOR5-AS1 in a series of experiments. The expression of LAMTOR5-AS1 in cervical cancer tissues and cells was determined by polymerase chain reaction assay. The proliferation, migration, and invasion ability of cervical cancer cells were evaluated by Cell Counting Kit-8 (CCK-8) and Transwell assay. Luciferase reporter gene detection was used to determine the mechanism of LAMTOR5-AS1 targeting miR-210-3p, and to reflect the prognostic value of LAMTOR5-AS1 according to statistical methods. RESULTS LAMTOR5-AS1 decreased in cervical cancer tissues, while miR-210-3p expression increased. In the study of cervical cancer cells, it was found that the LAMTOR5-AS1 sponge miR-210-3p was associated with the malignant progression of cervical cancer. Overexpression of LAMTOR5-AS1 could effectively inhibit the development of cervical cancer cells and might be chosen as a prognostic biomarker of cervical cancer. CONCLUSIONS LAMTOR5-AS1 sponges miR-210-3p and modulates the progression of cervical cancer, which predict the prognosis of cervical cancer patients.
Collapse
Affiliation(s)
- Bo Yang
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziyi Wang
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuping Deng
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lingzhi Xiao
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Keqiang Zhang
- Department of Gynecologic Oncology (5), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|