1
|
Zhang N, Bai T, Jiang Y, Zhu K, Yao L, Ji J, Huang Q. Role of SFRP5 in Non-Small Cell Lung Cancer and Its Correlation with SUV of 18F-FDG PET-CT. J INVEST SURG 2024; 37:2381722. [PMID: 39074839 DOI: 10.1080/08941939.2024.2381722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
Aim: This study aimed to evaluate the relationship between secreted frizzled-related protein 5 (SFRP5) expression and fluorine 18-fluoro-deoxyglucose (18 F-FDG) uptake imaged with positron emission tomography/tomography (PET/CT) in patients with non-small cell lung cancer (NSCLC). In addition, we sought to elucidate the potential role and mechanism of action of SFRP5 in NSCLC.Materials and methods: The maximum standardized uptake value (SUVmax) of the lesions was calculated. SFRP5 expression was analyzed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The correlation between SFRP5 expression and SUVmax was evaluated using Pearson's correlation analysis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, wound healing, and transwell assays were used to analyze cell viability, apoptosis, migration, and invasion, respectively.Results and conclusion: The results indicated that the SUVmax was higher in patients with NSCLC than that in healthy volunteers. Moreover, SFRP5 expression was lower in tissues from the four types of NSCLC than that in the adjacent normal tissues. SUVmax negatively correlated with SFRP5 expression in the four types of NSCLC. In addition, up-regulation of SFRP5 decreased the viability, migration, and invasion abilities, and increased apoptosis of NSCLC cells. Furthermore, SFRP5 inhibited the Wnt/β-catenin pathway in NSCLC cells. In conclusion, SFRP5 modulates the biological behaviors of NSCLC through Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Na Zhang
- Radiographic Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Tian Bai
- Radiographic Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yunfei Jiang
- Respiratory Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Kun Zhu
- Cardiothoracic Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lan Yao
- Nuclear Medicine Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jia Ji
- Stomatology Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Qicheng Huang
- Radiographic Imaging Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
2
|
Doostmohammadi A, Jooya H, Ghorbanian K, Gohari S, Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 2024; 22:228. [PMID: 38622735 PMCID: PMC11020265 DOI: 10.1186/s12964-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Ali Doostmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kimia Ghorbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sargol Gohari
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Mazurakova A, Koklesova L, Csizmár SH, Samec M, Brockmueller A, Šudomová M, Biringer K, Kudela E, Pec M, Samuel SM, Kassayova M, Hassan STS, Smejkal K, Shakibaei M, Büsselberg D, Saso L, Kubatka P, Golubnitschaja O. Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells - A potential contribution to the predictive, preventive, and personalized medicine. J Adv Res 2024; 55:103-118. [PMID: 36871616 PMCID: PMC10770105 DOI: 10.1016/j.jare.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Cancer management faces multiple obstacles, including resistance to current therapeutic approaches. In the face of challenging microenvironments, cancer cells adapt metabolically to maintain their supply of energy and precursor molecules for biosynthesis and thus sustain rapid proliferation and tumor growth. Among the various metabolic adaptations observed in cancer cells, the altered glucose metabolism is the most widely studied. The aberrant glycolytic modification in cancer cells has been associated with rapid cell division, tumor growth, cancer progression, and drug resistance. The higher rates of glycolysis in cancer cells, as a hallmark of cancer progression, is modulated by the transcription factor hypoxia inducible factor 1 alpha (HIF-1α), a downstream target of the PI3K/Akt signaling, the most deregulated pathway in cancer. AIM OF REVIEW We provide a detailed overview of current, primarily experimental, evidence on the potential effectiveness of flavonoids to combat aberrant glycolysis-induced resistance of cancer cells to conventional and targeted therapies. The manuscript focuses primarily on flavonoids reducing cancer resistance via affecting PI3K/Akt, HIF-1α (as the transcription factor critical for glucose metabolism of cancer cells that is regulated by PI3K/Akt pathway), and key glycolytic mediators downstream of PI3K/Akt/HIF-1α signaling (glucose transporters and key glycolytic enzymes). KEY SCIENTIFIC CONCEPTS OF REVIEW The working hypothesis of the manuscript proposes HIF-1α - the transcription factor critical for glucose metabolism of cancer cells regulated by PI3K/Akt pathway as an attractive target for application of flavonoids to mitigate cancer resistance. Phytochemicals represent a source of promising substances for cancer management applicable to primary, secondary, and tertiary care. However, accurate patient stratification and individualized patient profiling represent crucial steps in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM / 3PM). The article is focused on targeting molecular patterns by natural substances and provides evidence-based recommendations for the 3PM relevant implementation.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Sandra Hurta Csizmár
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, 04001 Kosice, Slovakia
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 61242 Brno, Czech Republic
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
| |
Collapse
|
5
|
Costa A, Gozzellino L, Nannini M, Astolfi A, Pantaleo MA, Pasquinelli G. Preclinical Models of Visceral Sarcomas. Biomolecules 2023; 13:1624. [PMID: 38002306 PMCID: PMC10669128 DOI: 10.3390/biom13111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Visceral sarcomas are a rare malignant subgroup of soft tissue sarcomas (STSs). STSs, accounting for 1% of all adult tumors, are derived from mesenchymal tissues and exhibit a wide heterogeneity. Their rarity and the high number of histotypes hinder the understanding of tumor development mechanisms and negatively influence clinical outcomes and treatment approaches. Although some STSs (~20%) have identifiable genetic markers, as specific mutations or translocations, most are characterized by complex genomic profiles. Thus, identification of new therapeutic targets and development of personalized therapies are urgent clinical needs. Although cell lines are useful for preclinical investigations, more reliable preclinical models are required to develop and test new potential therapies. Here, we provide an overview of the available in vitro and in vivo models of visceral sarcomas, whose gene signatures are still not well characterized, to highlight current challenges and provide insights for future studies.
Collapse
Affiliation(s)
- Alice Costa
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Livia Gozzellino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Margherita Nannini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Division of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Frisardi V, Canovi S, Vaccaro S, Frazzi R. The Significance of Microenvironmental and Circulating Lactate in Breast Cancer. Int J Mol Sci 2023; 24:15369. [PMID: 37895048 PMCID: PMC10607673 DOI: 10.3390/ijms242015369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Lactate represents the main product of pyruvate reduction catalyzed by the lactic dehydrogenase family of enzymes. Cancer cells utilize great quantities of glucose, shifting toward a glycolytic metabolism. With the contribution of tumor stromal cells and under hypoxic conditions, this leads toward the acidification of the extracellular matrix. The ability to shift between different metabolic pathways is a characteristic of breast cancer cells and is associated with an aggressive phenotype. Furthermore, the preliminary scientific evidence concerning the levels of circulating lactate in breast cancer points toward a correlation between hyperlactacidemia and poor prognosis, even though no clear linkage has been demonstrated. Overall, lactate may represent a promising metabolic target that needs to be investigated in breast cancer.
Collapse
Affiliation(s)
- Vincenza Frisardi
- Geriatric Unit, Neuromotor Department, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Simone Canovi
- Clinical Laboratory, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Salvatore Vaccaro
- Clinical Nutrition Unit and Oncological Metabolic Centre, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Raffaele Frazzi
- Scientific Directorate, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| |
Collapse
|
7
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
8
|
Ling X, Wang R, Lin L, Wu Y, Cheng W. N6-methyladenosine-modified microRNA-675 advances the development of gastrointestinal stromal tumors via inhibiting myosin phosphatase targeting protein 1. Genomics 2023; 115:110704. [PMID: 37678441 DOI: 10.1016/j.ygeno.2023.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
RNA N6-methyladenosine (m6A) modifications influence gastrointestinal stromal tumors (GISTs) development, but the detailed molecular mechanisms have not been fully studied. Here, microRNA-675 was found to be aberrantly elevated in cancerous tissues and cells of GISTs, compared to the corresponding normal counterparts, and GISTs patients with high-expressed microRNA-675 have worse outcomes. Additional experiments confirmed that silencing of microRNA-675 hindered cell division, mobility and tumorigenesis in vitro and in vivo, whereas triggered apoptotic cell death in GISTs cells. Furthermore, microRNA-675-ablation increased the expression levels of myosin phosphatase targeting protein 1 (MYPT1) to inactivate the tumor-initiating RhoA/NF2/YAP1 signal pathway, and downregulation of MYPT1 recovered the malignant phenotypes in microRNA-675-silenced GISTs cells. In addition, we evidenced that METTL3-mediated m6A modifications were essential for sustaining the stability of microRNA-675, and silencing of METTL3 restrained tumorigenesis of GISTs cells by regulating the microRNA-675/MYPT1 axis. To summarize, theMETTL3/m6A/microRNA-675/MYPT1 axis could be used as novel biomarkers for the diagnosis and treatment of GISTs.
Collapse
Affiliation(s)
- Xiaohua Ling
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Ruifeng Wang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, Litang Road No. 168, Changping District, Beijing 102200, China
| | - Luoqiang Lin
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yuxuan Wu
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China
| | - Weipeng Cheng
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
9
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Kumari A, Jha A, Tiwari A, Nath N, Kumar A, Nagini S, Mishra R. Role and regulation of GLUT1/3 during oral cancer progression and therapy resistance. Arch Oral Biol 2023; 150:105688. [PMID: 36989865 DOI: 10.1016/j.archoralbio.2023.105688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE This study aimed to determine whether glucose transporter-1/3 (GLUT1/3) increased expression could contribute to oral tumor severity. Furthermore, this study detected whether GLUT1/3 mRNA/protein was associated with oncogenic transcription factors (HIF1α, AP1 and NFκB) and whether by blocking GLUT1 along with cisplatin could sensitize drug-resistant OSCC cells. DESIGN We used 120 post-operated human tissue samples, including 35 primary tumors (PT), 43 invasive tumors (N1-3), 17 recurrent chemoradiation-resistant tumors (RCRT), and 25 PT-adjacent normal tissues (AN). The cisplatin-resistant (CisR-SCC4/9) cells were generated using a drug escalation strategy from parental SCC4/9 cells. The BAY-876 treatment blocked GLUT1 in OSCC cells. Western Blot, Immunohistochemistry, and reverse transcription polymerase chain reaction (RT-PCR) were used to detect various proteins and mRNA. Cell survival was determined by MTT assay. RESULTS GLUT1/3 expression was observed more in PT over AN tissue (PT > AN), N1-3 > PT, and .RCRT > PT. GLUT1 expression was maximum in the RCRT group and CisR-SCC4/9 cells over their parental counterpart, linked with tumor size (p=0.0037) and loco-regional invasiveness (p=0.0422). GLUT1/3 mRNA/protein was correlated (positively) with oncogenic transcription factors (TFs) like HIF1α, AP1 and NFκB. We found the degree of positive correlation of these TFs with GLUT1/3 was in the order c-Jun > HIF1α > Fra-2 > NFκB > c-Fos. Treatment of BAY-876 and cisplatin-induced cell death in both CisR-SCC4/9 cells, possibly by triggering apoptosis and autophagy. CONCLUSION Collectively, our results demonstrated increased GLUT1/3 overexpression linked with oral tumor severity like invasion and therapy resistance, and it was powered mainly by c-Jun (AP1). Blocking GLUT1 receptors and cisplatin application can sensitize CisR-OSCC cells.
Collapse
|
11
|
Giraud EL, de Jong LAW, van den Hombergh E, Kaal SEJ, van Erp NP, Desar IME. Measuring Tumour Imatinib Concentrations in Gastrointestinal Stromal Tumours: Relevant or Redundant? Cancers (Basel) 2023; 15:cancers15112875. [PMID: 37296838 DOI: 10.3390/cancers15112875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Imatinib plasma trough concentrations are associated with efficacy for patients treated for advanced or metastatic KIT-positive gastrointestinal stromal tumours (GISTs). This relationship has not been studied for patients treated in the neoadjuvant setting, let alone its correlation with tumour drug concentrations. In this exploratory study we aimed to determine the correlation between plasma and tumour imatinib concentrations in the neoadjuvant setting, investigate tumour imatinib distribution patterns within GISTs, and analyse its correlation with pathological response. Imatinib concentrations were measured in both plasma and in three regions of the resected primary tumour: the core, middle part, and periphery. Twenty-four tumour samples derived from the primary tumours of eight patients were included in the analyses. Imatinib tumour concentrations were higher compared to plasma concentrations. No correlation was observed between plasma and tumour concentrations. Interpatient variability in tumour concentrations was high compared to interindividual variability in plasma concentrations. Although imatinib accumulates in tumour tissue, no distribution pattern of imatinib in tumour tissue could be identified. There was no correlation between imatinib concentrations in tumour tissue and pathological treatment response.
Collapse
Affiliation(s)
- Eline L Giraud
- Radboud University Medical Centre, Department of Pharmacy, 6500 HB Nijmegen, The Netherlands
| | - Loek A W de Jong
- Radboud University Medical Centre, Department of Pharmacy, 6500 HB Nijmegen, The Netherlands
| | - Erik van den Hombergh
- Radboud University Medical Centre, Department of Pharmacy, 6500 HB Nijmegen, The Netherlands
| | - Suzanne E J Kaal
- Radboud University Medical Centre, Department of Medical Oncology, 6500 HB Nijmegen, The Netherlands
| | - Nielka P van Erp
- Radboud University Medical Centre, Department of Pharmacy, 6500 HB Nijmegen, The Netherlands
| | - Ingrid M E Desar
- Radboud University Medical Centre, Department of Medical Oncology, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
12
|
Franczak MA, Krol O, Harasim G, Jedrzejewska A, Zaffaroni N, Granchi C, Minutolo F, Avan A, Giovannetti E, Smolenski RT, Peters GJ. Metabolic Effects of New Glucose Transporter (GLUT-1) and Lactate Dehydrogenase-A (LDH-A) Inhibitors against Chemoresistant Malignant Mesothelioma. Int J Mol Sci 2023; 24:ijms24097771. [PMID: 37175477 PMCID: PMC10177874 DOI: 10.3390/ijms24097771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive and resistant tumor. The prognostic role of key effectors of glycolytic metabolism in MM prompted our studies on the cytotoxicity of new inhibitors of glucose transporter type 1 (GLUT-1) and lactate dehydrogenase-A (LDH-A) in relation to ATP/NAD+ metabolism, glycolysis and mitochondrial respiration. The antiproliferative activity of GLUT-1 (PGL13, PGL14) and LDH-A (NHI-1, NHI-2) inhibitors, alone and in combination, were tested with the sulforhodamine-B assay in peritoneal (MESO-II, STO) and pleural (NCI-H2052 and NCI-H28) MM and non-cancerous (HMEC-1) cells. Effects on energy metabolism were measured by both analysis of nucleotides using RP-HPLC and evaluation of glycolysis and respiration parameters using a Seahorse Analyzer system. All compounds reduced the growth of MM cells in the µmolar range. Interestingly, in H2052 cells, PGL14 decreased ATP concentration from 37 to 23 and NAD+ from 6.5 to 2.3 nmol/mg protein. NHI-2 reduced the ATP/ADP ratio by 76%. The metabolic effects of the inhibitors were stronger in pleural MM and in combination, while in HMEC-1 ATP reduction was 10% lower compared to that of the H2052 cells, and we observed a minor influence on mitochondrial respiration. To conclude, both inhibitors showed cytotoxicity in MM cells, associated with a decrease in ATP and NAD+, and were synergistic in the cells with the highest metabolic modulation. This underlines cellular energy metabolism as a potential target for combined treatments in selected cases of MM.
Collapse
Affiliation(s)
- Marika A Franczak
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy
| | | | | | - Amir Avan
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56124 Pisa, Italy
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zhang RS, Li ZK, Liu J, Deng YT, Jiang Y. WZB117 enhanced the anti-tumor effect of apatinib against melanoma via blocking STAT3/PKM2 axis. Front Pharmacol 2022; 13:976117. [PMID: 36188586 PMCID: PMC9524253 DOI: 10.3389/fphar.2022.976117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Melanoma is the most lethal skin malignant tumor with a short survival once stepping into the metastatic status and poses a therapeutic challenge. Apatinib (a tyrosine kinase inhibitor) is a promising antiangiogenic agent for the treatment of metastatic melanoma. However, antiangiogenic monotherapy is prone to acquired drug resistance and has a limited therapeutic effect. The persistence dependence of glycolytic metabolism in antiangiogenic therapy-resistant cells provides evidence that glycolysis inhibitors may enhance the effect of antiangiogenic therapy. So, this study aimed to investigate whether WZB117 (a specific GLUT1 inhibitor) could enhance the anti-tumor effect of apatinib against melanoma and its potential mechanisms. Methods: We investigated the anti-tumor effects of apatinib alone or in combination with WZB117 on human melanoma cell lines (A375 and SK-MEL-28). The MTT assay determined cell viability and the half-maximal inhibitory concentration (IC50). Multiple drug effect/combination indexes (CI) analysis was conducted to assess interactions between apatinib and WZB117. Signal transducer and activator of transcription 3 (STAT3) pathway measured by western blotting and immunofluorescence staining. RNA expression analyses were performed using the reverse transcription-quantitative PCR method. Results: Apatinib and WZB117 showed dose and time-dependent growth inhibitory effects in both melanoma cells. The IC50 of apatinib at 48 h in A375 and SK-MEL-28 cells was 62.58 and 59.61 μM, respectively, while the IC50 of WZB117 was 116.85 and 113.91 μM, respectively. The CI values of the two drugs were 0.538 and 0.544, respectively, indicating a synergistic effect of apatinib combined with WZB117. We also found that glucose consumption and lactate production were suppressed by apatinib plus WZB117 in a dose-dependent manner, paralleled by reducing glycolytic enzyme pyruvate kinase M2 (PKM2). The potential mechanism of the combination was to suppress the phosphorylation of STAT3. Knockdown of STAT3 by siRNA inhibited the expression of PKM2, while the activation of STAT3 by IL-6 increased the expression of PKM2. The effects of IL-6 were attenuated by apatinib combined with WZB117 treatment. Conclusion: WZB117 enhanced the anti-tumor effect of apatinib against melanoma via modulating glycolysis by blocking the STAT3/PKM2 axis, which suggested the combination of apatinib with WZB117 could be a potential therapeutic candidate for melanoma.
Collapse
Affiliation(s)
- Ren-Shu Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Ke Li
- Department of Oncology, The First Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Hu X, Wang Z, Su P, Zhang Q, Kou Y. Advances in the research of the mechanism of secondary resistance to imatinib in gastrointestinal stromal tumors. Front Oncol 2022; 12:933248. [PMID: 36147927 PMCID: PMC9485670 DOI: 10.3389/fonc.2022.933248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At present, surgery is the first-line treatment for primary resectable GISTs; however, the recurrence rate is high. Imatinib mesylate (IM) is an effective first-line drug used for the treatment of unresectable or metastatic recurrent GISTs. More than 80% of patients with GISTs show significantly improved 5-year survival after treatment; however, approximately 50% of patients develop drug resistance after 2 years of IM treatment. Therefore, an in-depth research is urgently needed to reveal the mechanisms of secondary resistance to IM in patients with GISTs and to develop new therapeutic targets and regimens to improve their long-term prognoses. In this review, research on the mechanisms of secondary resistance to IM conducted in the last 5 years is discussed and summarized from the aspects of abnormal energy metabolism, gene mutations, non-coding RNA, and key proteins. Studies have shown that different drug-resistance mechanism networks are closely linked and interconnected. However, the influence of these drug-resistance mechanisms has not been compared. The combined inhibition of drug-resistance mechanisms with IM therapy and the combined inhibition of multiple drug-resistance mechanisms are expected to become new therapeutic options in the treatment of GISTs. In addition, implementing individualized therapies based on the identification of resistance mechanisms will provide new adjuvant treatment options for patients with IM-resistant GISTs, thereby delaying the progression of GISTs. Previous studies provide theoretical support for solving the problems of drug-resistance mechanisms. However, most studies on drug-resistance mechanisms are still in the research stage. Further clinical studies are needed to confirm the safety and efficacy of the inhibition of drug-resistance mechanisms as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiangchen Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youwei Kou
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Youwei Kou,
| |
Collapse
|