1
|
Chen W, Zhang L, Gao M, Zhang N, Wang R, Liu Y, Niu Y, Jia L. Role of tertiary lymphoid structures and B cells in clinical immunotherapy of gastric cancer. Front Immunol 2025; 15:1519034. [PMID: 39840050 PMCID: PMC11747648 DOI: 10.3389/fimmu.2024.1519034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, and its treatment remains a significant challenge. In recent years, the role of various immune cells in the tumor microenvironment in cancer progression and treatment has gained increasing attention. Immunotherapy, primarily based on immune checkpoint inhibitors, has notably improved the prognosis of patients with gastric cancer; however, challenges regarding therapeutic efficacy persist. Histological features within the tumor microenvironment, such as tertiary lymphoid structures (TLSs), tumor-infiltrating lymphocytes, and the proportion of intratumoral stroma, are emerging as potentially effective prognostic factors. In gastric cancer, TLSs may serve as local immune hubs, enhancing the ability of immune cells to interact with and recognize tumor antigens, which is closely linked to the effectiveness of immunotherapy and improved survival rates in patients. However, the specific cell type driving TLS formation in tumors has not yet been elucidated. Mature TLSs are B-cell regions containing germinal centers. During germinal center formation, B cells undergo transformations to become mature cells with immune function, exerting anti-tumor effects. Therefore, targeting B cells within TLSs could provide new avenues for gastric cancer immunotherapy. This review, combined with current research on TLSs and B cells in gastric cancer, elaborates on the relationship between TLSs and B cells in the prognosis and immunotherapy of patients with gastric cancer, aiming to provide effective guidance for precise immunotherapy.
Collapse
Affiliation(s)
- Weiyi Chen
- Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lingli Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Man Gao
- Bayannur Clinical Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yan Niu
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Xu J, Lu W, Yang J, Liu X. B cells present a double-sided effect in digestive system tumors: a review for tumor microenvironment. Transl Gastroenterol Hepatol 2024; 9:46. [PMID: 39091659 PMCID: PMC11292093 DOI: 10.21037/tgh-23-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past few years, there has been an increasing interest in investigating tumor-infiltrating lymphocytes. B lymphocytes (B cells) are extensively distributed within tertiary lymphoid structure (TLS) as multifaceted subgroups and are intimately linked to the anti-tumor properties of TLS, as well as the survival and prognostication of individuals. While the investigation of T lymphocytes in the TLS has advanced to the level of clinical practice, the study of B cells remains limited. The principal impediment to the utilization of B cells in immunotherapy is their notable dual impact on tumors. Compared with tumors in other parts and systems, the function of B cells in the microenvironment of digestive system tumors to promote tumors proliferation, differentiation and migration cannot be ignored. Therefore, this review collects the studies of B cell subsets in tumor microenvironments, particularly related single cell sequencing research. The multifaceted role and function of B cells are investigated in esophageal, liver, colorectal, gastric and pancreatic cancers. And through the identification of B cell subsets and specific markers, this review attempts to explain the reasons why B cells produce different tumor-promoting effects in those tumors. The insights gleaned from this review may provide potential help and support the development of B cell-based immunotherapies.
Collapse
Affiliation(s)
- Jiaren Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Kustrimovic N, Bilato G, Mortara L, Baci D. The Urinary Microbiome in Health and Disease: Relevance for Bladder Cancer. Int J Mol Sci 2024; 25:1732. [PMID: 38339010 PMCID: PMC10855347 DOI: 10.3390/ijms25031732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Bladder cancer (BC) constitutes one of the most diagnosed types of cancer worldwide. Advancements in and new methodologies for DNA sequencing, leading to high-throughput microbiota testing, have pinpointed discrepancies in urinary microbial fingerprints between healthy individuals and patients with BC. Although several studies suggest an involvement of microbiota dysbiosis in the pathogenesis, progression, and therapeutic response to bladder cancer, an established direct causal relationship remains to be elucidated due to the lack of standardized methodologies associated with such studies. This review compiles an overview of the microbiota of the human urinary tract in healthy and diseased individuals and discusses the evidence to date on microbiome involvement and potential mechanisms by which the microbiota may contribute to the development of BC. We also explore the potential profiling of urinary microbiota as a biomarker for risk stratification, as well as the prediction of the response to intravesical therapies and immunotherapy in BC patients. Further investigation into the urinary microbiome of BC patients is imperative to unravel the complexities of the role played by host-microbe interactions in shaping wellness or disease and yield valuable insights into and strategies for the prevention and personalized treatment of BC.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Giorgia Bilato
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- Molecular Cardiology Laboratory, IRCCS—Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
4
|
Xiong J, Chi H, Yang G, Zhao S, Zhang J, Tran LJ, Xia Z, Yang F, Tian G. Revolutionizing anti-tumor therapy: unleashing the potential of B cell-derived exosomes. Front Immunol 2023; 14:1188760. [PMID: 37342327 PMCID: PMC10277631 DOI: 10.3389/fimmu.2023.1188760] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
B cells occupy a vital role in the functioning of the immune system, working in tandem with T cells to either suppress or promote tumor growth within the tumor microenvironment(TME). In addition to direct cell-to-cell communication, B cells and other cells release exosomes, small membrane vesicles ranging in size from 30-150 nm, that facilitate intercellular signaling. Exosome research is an important development in cancer research, as they have been shown to carry various molecules such as major histocompatibility complex(MHC) molecules and integrins, which regulate the TME. Given the close association between TME and cancer development, targeting substances within the TME has emerged as a promising strategy for cancer therapy. This review aims to present a comprehensive overview of the contributions made by B cells and exosomes to the tumor microenvironment (TME). Additionally, we delve into the potential role of B cell-derived exosomes in the progression of cancer.
Collapse
Affiliation(s)
- Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fang Yang
- Department of Ophthalmology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Xiao Y, Zhou H, Chen Y, Liu L, Wu Q, Li H, Lin P, Li J, Wu J, Tang L. A novel anoikis-related gene prognostic signature and its correlation with the immune microenvironment in colorectal cancer. Front Genet 2023; 14:1186862. [PMID: 37323657 PMCID: PMC10265740 DOI: 10.3389/fgene.2023.1186862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Anoikis is a type of apoptosis associated with cell detachment. Resistance to anoikis is a focal point of tumor metastasis. This study aimed to explore the relationship among anoikis-related genes (ARGs), immune infiltration, and prognosis in colorectal cancer (CRC). Methods: The transcriptome profile and clinical data on patients with CRC were retrieved from The Cancer Genome Atlas and Gene Expression Omnibus databases. Patients were divided into two clusters based on the expression of ARGs. Differences between the two ARG molecular subtypes were analyzed in terms of prognosis, functional enrichment, gene mutation frequency, and immune cell infiltration. An ARG-related prognostic signature for predicting overall survival in patients with CRC was developed and validated using absolute value convergence and selection operator (LASSO) regression analysis. The correlation between the signature risk score and clinicopathological features, immune cell infiltration, immune typing, and immunotherapy response was analyzed. The risk score combined with clinicopathological characteristics was used to construct a nomogram to assess CRC patients' prognosis. Results: Overall, 151 ARGs were differentially expressed in CRC. Two ARG subtypes, namely, ARG-high and ARG-low groups, were identified and correlated with CRC prognosis. The gene mutation frequency and immune, stromal, and ESTIMATE scores of the ARG-high group were higher than those of the ARG-low group. Moreover, CD8, natural killer cells, M1 macrophages, human leukocyte antigen (HLA), and immune checkpoint-related genes were significantly increased in the ARG-high group. An optimized 25-gene CRC prognostic signature was successfully constructed, and its prognostic predictive ability was validated. The high-risk score was correlated with T, N, M, and TNM stages. Risk scores were negatively correlated with dendritic cells, eosinophils, and CD4 cells, and significantly positively correlated with regulatory T cells. Patients in the high-risk group were more likely to exhibit immune unresponsiveness. Finally, the nomogram model was constructed and showed good prognostic predictive power. Conclusion: ARGs are associated with clinicopathological features and the prognosis of CRC, and play important roles in the immune microenvironment. Herein, we underpinned the usefulness of ARGs in CRC to develop more effective immunotherapy techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Junxin Wu
- *Correspondence: Lirui Tang, ; Junxin Wu,
| | - Lirui Tang
- *Correspondence: Lirui Tang, ; Junxin Wu,
| |
Collapse
|
6
|
Friedrich V, Choi HW. The Urinary Microbiome: Role in Bladder Cancer and Treatment. Diagnostics (Basel) 2022; 12:diagnostics12092068. [PMID: 36140470 PMCID: PMC9497549 DOI: 10.3390/diagnostics12092068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Commensal microbes have increasingly been found to be involved in the development and progression of cancer. The recent discovery of the urinary microbiome bolstered the notion that microbes might play a role in bladder cancer. Although microbial involvement in bladder neoplastic transformation and metastatic progression, except schisto somiasis, has not been established, accumulating research suggests that dysbiosis of the urinary microbiome can produce a chronically inflammatory urothelial microenvironment and lead to bladder cancer. In this review, we describe how the urinary microbiome might facilitate the development of bladder cancer by altering the host immune system and the kind of cytokines that are directly involved in these responses. We investigated the therapeutic possibilities of modulating the urinary microbiome, including immune checkpoint therapy. The responsiveness of patients to intravesical Bacillus Calmette-Guerin therapy was evaluated with respect to microbiome composition. We conclude by noting that the application of microbes to orchestrate the inflammatory response in the bladder may facilitate the development of treatments for bladder cancer.
Collapse
|