1
|
Giuliani C, Di Dalmazi G, Bucci I, Napolitano G. Quercetin and Thyroid. Antioxidants (Basel) 2024; 13:1202. [PMID: 39456456 PMCID: PMC11505551 DOI: 10.3390/antiox13101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Quercetin is the most abundant flavonoid present in fruits and vegetables. For its antiproliferative, antiviral, anti-inflammatory and antioxidants activities, it is an active ingredient of several herbal remedies and is available as a nutraceutical. Experimental studies performed in vitro have demonstrated that quercetin inhibits growth and function in normal thyroid cells and may act as a thyroid disruptor. These effects have also been confirmed in vivo using rodent models. Some studies have reported the ability of quercetin to interfere with the metabolism of thyroid hormones, since it inhibits the 5'-deiodinase type 1 (D1) activity in the thyroid, as well as in the liver. Besides the effects on normal thyroid cells, several experiments performed in vitro have shown a potential therapeutic role of quercetin in thyroid cancer. Indeed, quercetin inhibits the growth, the adhesion and the migration of thyroid cancer cells, and it also has redifferentiation properties in some thyroid cancer cell lines. In conclusion, these data suggest that, although its effects can be of benefit in hyperthyroidism and thyroid cancer, caution is required in the use of high doses of quercetin due to its anti-thyroid properties. Further in vivo studies are certainly needed to confirm these hypotheses.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging and Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy; (G.D.D.); (I.B.); (G.N.)
| | | | | | | |
Collapse
|
2
|
Guo M, Sun Y, Wei Y, Xu J, Zhang C. Advances in targeted therapy and biomarker research in thyroid cancer. Front Endocrinol (Lausanne) 2024; 15:1372553. [PMID: 38501105 PMCID: PMC10944873 DOI: 10.3389/fendo.2024.1372553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Driven by the intricacy of the illness and the need for individualized treatments, targeted therapy and biomarker research in thyroid cancer represent an important frontier in oncology. The variety of genetic changes associated with thyroid cancer demand more investigation to elucidate molecular details. This research is clinically significant since it can be used to develop customized treatment plans. A more focused approach is provided by targeted therapies, which target certain molecular targets such as mutant BRAF or RET proteins. This strategy minimizes collateral harm to healthy tissues and may also reduce adverse effects. Simultaneously, patient categorization based on molecular profiles is made possible by biomarker exploration, which allows for customized therapy regimens and maximizes therapeutic results. The benefits of targeted therapy and biomarker research go beyond their immediate clinical impact to encompass the whole cancer landscape. Comprehending the genetic underpinnings of thyroid cancer facilitates the creation of novel treatments that specifically target aberrant molecules. This advances the treatment of thyroid cancer and advances precision medicine, paving the way for the treatment of other cancers. Taken simply, more study on thyroid cancer is promising for better patient care. The concepts discovered during this investigation have the potential to completely transform the way that care is provided, bringing in a new era of personalized, precision medicine. This paradigm shift could improve the prognosis and quality of life for individuals with thyroid cancer and act as an inspiration for advances in other cancer types.
Collapse
Affiliation(s)
- Mei Guo
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuyao Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianxin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Wu Y, Chen W, Miao H, Xu T. SIRT7 promotes the proliferation and migration of anaplastic thyroid cancer cells by regulating the desuccinylation of KIF23. BMC Cancer 2024; 24:210. [PMID: 38360598 PMCID: PMC10870498 DOI: 10.1186/s12885-024-11965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE This study was designed to investigate the regulatory effects of kinesin family member (KIF) 23 on anaplastic thyroid cancer (ATC) cell viability and migration and the underlying mechanism. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to analyze the levels of KIF23 in ATC cells. Besides, the effects of KIF23 and sirtuin (SIRT) 7 on the viability and migration of ATC cells were detected using cell counting kit-8, transwell and wound healing assays. The interaction between SIRT7 and KIF23 was evaluated by co-immunoprecipitation (Co-IP) assay. The succinylation (succ) of KIF23 was analyzed by western blot. RESULTS The KIF23 expression was upregulated in ATC cells. Silencing of KIF23 suppressed the viability and migration of 8505C and BCPAP cells. The KIF23-succ level was decreased in ATC cells. SIRT7 interacted with KIF23 to inhibit the succinylation of KIF23 at K537 site in human embryonic kidney (HEK)-293T cells. Overexpression of SIRT7 enhanced the protein stability of KIF23 in HEK-293T cells. Besides, overexpression of KIF23 promoted the viability and migration of 8505C and BCPAP cells, which was partly blocked by silenced SIRT7. CONCLUSIONS SIRT7 promoted the proliferation and migration of ATC cells by regulating the desuccinylation of KIF23.
Collapse
Affiliation(s)
- Yongkang Wu
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, South Renmindadao, Xiashan District, Zhanjiang, Guangdong, 524001, China
| | - Weijie Chen
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, South Renmindadao, Xiashan District, Zhanjiang, Guangdong, 524001, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tuo Xu
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, South Renmindadao, Xiashan District, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
4
|
Govindasamy B, Muthu M, Gopal J, Chun S. A review on the impact of TRAIL on cancer signaling and targeting via phytochemicals for possible cancer therapy. Int J Biol Macromol 2023; 253:127162. [PMID: 37788732 DOI: 10.1016/j.ijbiomac.2023.127162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.
Collapse
Affiliation(s)
- Balasubramani Govindasamy
- Department of Product Development, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Sechul Chun
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Kumar S, Swamy N, Tuli HS, Rani S, Garg A, Mishra D, Abdulabbas HS, Sandhu SS. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2179-2196. [PMID: 37083713 DOI: 10.1007/s00210-023-02479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promising results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancreatic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Botany, Government Girls College Khargone, 451001, Khargone, Madhya Pradesh, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Seema Rani
- Department of Chemistry, Government M. H. College of Home Science & Science for Women, Autonomous, Jabalpur, 482002, Madhya Pradesh, India
| | - Abhijeet Garg
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Deepa Mishra
- Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya Jabalpur, 482001, Jabalpur, Madhya Pradesh, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India.
| |
Collapse
|
6
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Hedayati M. The effect of Apigenin on glycometabolism and cell death in an anaplastic thyroid cancer cell line. Toxicol Appl Pharmacol 2023; 475:116626. [PMID: 37437745 DOI: 10.1016/j.taap.2023.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
AIMS AND BACKGROUND A more pronounced characteristic of cancer cells is the energy dependence on glucose, which mitigated by glucose transporters. The comprehension of the regulatory mechanisms behind the Warburg effect holds promise for developing therapeutic interventions for cancers. Studies are lacking which targeted the GLUTs for treatment of malignancy of thyroid tumors. In our current investigation, we have undertaken this study to determine the potential of Apigenin, plant derived flavonoid in modulating tumor apoptosis by targeting GLUTs expression in SW1736 cell line of anaplastic thyroid carcinoma. MATERIAL METHODS Flow cytometry with propidium iodide staining was used to determine cell apoptosis. For glucose uptake detection, the "GOD-PAP" enzymatic colorimetric test was used to measure the direct glucose levels inside the cells. To determine the expression of GLUT1 and GLUT3 mRNA in the SW1736 cell line qRT-PCR was employed. Protein levels of GLUT1 and GLUT3 in the SW1736 cell line were detected with western blotting. Also, the scratch wound healing assay was conducted for cell migration. RESULTS According to qRT-PCR analysis, the levels of GLUT1 and GLUT3 mRNA were lower in the group that received Apigenin relative to the control group. The Apigenin treatment of SW1736 cells decreased protein expression of the GLUT1 and GLUT3 levels in conformity to qRT-PCR. The scratch assays revealed that Apigenin treatment of cancer cell lines inhibited cell migration as compared to control. CONCLUSION These findings demonstrate the possibility of targeting the glucose facilitators' pathway for making thyroid cancer cells more susceptible to programmed cell death.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Kościuszko M, Buczyńska A, Krętowski AJ, Popławska-Kita A. Could Oxidative Stress Play a Role in the Development and Clinical Management of Differentiated Thyroid Cancer? Cancers (Basel) 2023; 15:3182. [PMID: 37370792 DOI: 10.3390/cancers15123182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Increased oxidative stress (OS) has been implicated as a relevant risk factor for cancer progression. Furthermore, patients diagnosed with differentiated thyroid cancer (DTC) have been characterized by an increased OS status. Therefore, assessing OS status could potentially be considered a useful tool in DTC clinical management. This measurement could be particularly valuable in personalizing treatment protocols and determining new potential medical targets to improve commonly used therapies. A literature review was conducted to gather new information on DTC clinical management, with a particular focus on evaluating the clinical utility of OS. These meta-analyses concentrate on novel approaches that employ the measurement of oxidative-antioxidant status, which could represent the most promising area for implementing clinical management.
Collapse
Affiliation(s)
- Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Angelika Buczyńska
- Clinical Research Center, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-274 Bialystok, Poland
- Clinical Research Center, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-274 Bialystok, Poland
| |
Collapse
|
8
|
Asam Raza M, Farwa U, Waseem Mumtaz M, Kainat J, Sabir A, Al-Sehemi AG. Green synthesis of gold and silver nanoparticles as antidiabetic and anticancerous agents. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2275666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/21/2023] [Indexed: 01/05/2025]
Affiliation(s)
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | - Javeria Kainat
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Areej Sabir
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
9
|
Teixeira MP, Haddad NF, Passos EF, Andrade MN, Campos MLA, da Silva JMC, de Figueiredo CS, Giestal-de-Araujo E, de Carvalho DP, Miranda-Alves L, de Paiva LS. Ouabain Effects on Human Anaplastic Thyroid Carcinoma 8505C Cells. Cancers (Basel) 2022; 14:cancers14246168. [PMID: 36551653 PMCID: PMC9777381 DOI: 10.3390/cancers14246168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare, but aggressive, carcinoma derived from follicular cells. While conventional treatments may improve patients' survival, the lethality remains high. Therefore, there is an urgent need for more effective ATC treatments. Cardiotonic steroids, such as ouabain, have been shown to have therapeutic potential in cancer treatment. Thus, we aimed to evaluate ouabain's effects in human anaplastic thyroid cells. For this, 8505C cells were cultured in the presence or absence of ouabain. Viability, cell death, cell cycle, colony formation and migratory ability were evaluated in ouabain-treated and control 8505C cells. The expression of differentiation and epithelial-to-mesenchymal transition (EMT) markers, as well as IL-6, TGFb1 and their respective receptors were also quantified in these same cells. Our results showed that ouabain in vitro decreased the number of viable 8505C cells, possibly due to an inhibition of proliferation. A reduction in migration was also observed in ouabain-treated 8505C cells. In contrast, decreased mRNA levels of PAX8 and TTF1 differentiation markers and increased levels of the N-cadherin EMT marker, as well as IL-6 and TGFb1, were found in ouabain-treated 8505C cells. In short, ouabain may have anti-proliferative and anti-migratory effect on 8505C cells, but maintains an aggressive and undifferentiated profile.
Collapse
Affiliation(s)
- Mariana Pires Teixeira
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Correspondence: ; Tel.: +55-21-987080309
| | - Natalia Ferreira Haddad
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliza Freitas Passos
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil
| | - Maria Luisa Arantes Campos
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | - Joyle Moreira Carvalho da Silva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | - Camila Saggioro de Figueiredo
- Departamento de Neurobiologia e Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-200, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Elizabeth Giestal-de-Araujo
- Departamento de Neurobiologia e Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-200, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil
| | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| |
Collapse
|
10
|
Khannanov A, Burmatova A, Ignatyeva K, Vagizov F, Kiiamov A, Tayurskii D, Cherosov M, Gerasimov A, Vladimir E, Kutyreva M. Effect of the Synthetic Approach on the Formation and Magnetic Properties of Iron-Based Nanophase in Branched Polyester Polyol Matrix. Int J Mol Sci 2022; 23:ijms232314764. [PMID: 36499092 PMCID: PMC9735957 DOI: 10.3390/ijms232314764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
This article shows the success of using the chemical reduction method, the polyol thermolytic process, the sonochemistry method, and the hybrid sonochemistry/polyol process method to design iron-based magnetically active composite nanomaterials in a hyperbranched polyester polyol matrix. Four samples were obtained and characterized by transmission and scanning electron microscopy, infrared spectroscopy and thermogravimetry. In all cases, the hyperbranched polymer is an excellent stabilizer of the iron and iron oxides nanophase. In addition, during the thermolytic process and hybrid method, the branched polyol exhibits the properties of a good reducing agent. The use of various approaches to the synthesis of iron nanoparticles in a branched polyester polyol matrix makes it possible to control the composition, geometry, dispersity, and size of the iron-based nanophase and to create new promising materials with colloidal stability, low hemolytic activity, and good magnetic properties. The NMR relaxation method proved the possibility of using the obtained composites as tomographic probes.
Collapse
Affiliation(s)
- Artur Khannanov
- Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Anastasia Burmatova
- Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Klara Ignatyeva
- Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Farit Vagizov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Airat Kiiamov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| | - Dmitrii Tayurskii
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail Cherosov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Gerasimov
- Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Evtugyn Vladimir
- Interdisciplinary Center “Analytical Microscopy”, Kazan Federal University, 420008 Kazan, Russia
| | - Marianna Kutyreva
- Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|