1
|
Dai Y, Chen S, Wang Y, Wang Y, Yang Z, Yu H. Molecular phylogenetics of the Ophiocordyceps sinensis-species complex lineage (Ascomycota, Hypocreales), with the discovery of new species and predictions of species distribution. IMA Fungus 2024; 15:2. [PMID: 38336758 PMCID: PMC10858606 DOI: 10.1186/s43008-023-00131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Ophiocordyceps sinensis is a famous traditional Chinese medicine adapted to the alpine environment of the Qinghai-Tibet Plateau and adjacent regions. Clarification of the species diversity of Ophiocordyceps sinensis and its relatives could expand the traditional medicinal resources and provide insights into the speciation and adaptation. The study is prompted by the discovery of a new species, O. megala, described here from a biodiversity hotspot in the Hengduan Mountains, China. Combined morphological, ecological, and phylogenetic evidence supports its distinctiveness from O. sinensis, O. xuefengensis, and O. macroacicularis. Additionally, based on the phylogenetic construction of Ophiocordyceps, a special clade was focused phylogenetically on the more closely related O. sinensis complex, which was defined as the O. sinensis- species complex lineage. A total of 10 species were currently confirmed in this lineage. We made a comprehensive comparison of the sexual/asexual morphological structures among this species complex, distinguishing their common and distinctive features. Furthermore, using the method of species distribution modelling, we studied the species ocurrences in relation to climatic, edaphic, and altitudinal variables for the eight species in the O. sinensis-species complex, and determined that their potential distribution could extend from the southeastern Qinghai-Tibet Plateau to the Xuefeng Mountains without isolating barrier. Thus, the biodiversity corridor hypothesis was proposed around the O. sinensis-species complex. Our study highlights the phylogeny, species diversity, and suitable distribution of the O. sinensis-species complex lineage, which should have a positive implication for the resource discovery and adaptive evolution of this unique and valuable group.
Collapse
Affiliation(s)
- Yongdong Dai
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
- School of Basic Medical Science, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Siqi Chen
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
| | - Yuanbing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
| | - Zhuliang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China.
- , Kunming, China.
| |
Collapse
|
2
|
Hsu SY, Xu YC, Lin YC, Chuang WY, Lin SR, Stadler M, Tangthirasunun N, Cheewangkoon R, AL-Shwaiman HA, Elgorban AM, Ariyawansa HA. Hidden diversity of Pestalotiopsis and Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan. MycoKeys 2024; 101:275-312. [PMID: 38333551 PMCID: PMC10851163 DOI: 10.3897/mycokeys.101.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Pestalotiopsissensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsismanyueyuanani and four new records, N.camelliae-oleiferae, N.haikouensis, P.chamaeropis and P.hispanica, were reported for the first time in Taiwan. In addition, P.formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa.
Collapse
Affiliation(s)
- Sheng-Yu Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Yuan-Cheng Xu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Yu-Chen Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Wei-Yu Chuang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| | - Shiou-Ruei Lin
- Section of Tea Agronomy, Tea Research and Extension Station, Council of Agriculture, Taoyuan City 326011, TaiwanCouncil of AgricultureTaoyuan CityTaiwan
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, GermanyHelmholtz Centre for Infection Research GmbH (HZI)BraunschweigGermany
| | - Narumon Tangthirasunun
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, ThailandKing Mongkut’s Institute of Technology Ladkrabang (KMITL)BangkokThailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, ThailandChiang Mai UniversityChiang MaiThailand
| | - Hind A. AL-Shwaiman
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi ArabiaKing Saud UniversityRiyadhSaudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi ArabiaKing Saud UniversityRiyadhSaudi Arabia
| | - Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, TaiwanNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Species diversity of Pleosporalean taxa associated with Camellia sinensis (L.) Kuntze in Taiwan. Sci Rep 2020; 10:12762. [PMID: 32728102 PMCID: PMC7391694 DOI: 10.1038/s41598-020-69718-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023] Open
Abstract
Pleosporales species are important plant pathogens, saprobes, and endophytes on a wide range of economically important plant hosts. The classification of Pleosporales has undergone various modifications in recent years due to the addition of many families described from multiple habitats with a high level of morphological deviation. Numerous asexual genera have been described in Pleosporales that can be either hyphomyceteous or coelomycetous. Phoma- or coniothyrium-like species are common and have been revealed as polyphyletic in the order Pleosporales and linked with several sexual genera. A total of 31 pleosporalean strains were isolated in different regions of Taiwan between 2017 and 2018 from the leaves of Camellia sinensis plants with symptoms of leaf spot disease. These strains were evaluated morphologically and genotypically using multi-locus sequence analyses of the ITS, LSU, SSU, rpb2, tef1 and tub2 genes. The results demonstrated the affiliation of these strains with the various families in Pleosporales and revealed the presence of one new genus (Neoshiraia) and eight new species (Alloconiothyrium camelliae, Amorocoelophoma camelliae, Leucaenicola camelliae, L. taiwanensis, Neoshiraia camelliae, N. taiwanensis, Paraconiothyrium camelliae and Paraphaeosphaeria camelliae). Furthermore, to the best of our understanding, Didymella segeticola, Ectophoma pomi and Roussoella mexican were reported for the first time from C. sinensis in Taiwan.
Collapse
|
4
|
Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei D, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao DF, Li J, Samarakoon MC, Chaiwan N, Lin CG, Phutthacharoen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phukhamsakda C, Tennakoon DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK(J, Wijesinghe SN, Tian Q, Tibpromma S, Brahmanage RS, Boonmee S, Huang SK, Thiyagaraja V, Lu YZ, Jayawardena RS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pfliegler WP, Horváth E, Imre A, Alves AL, da Silva Santos AC, Tiago PV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu J, Sheng J. Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00439-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa, as well as providing new information of fungal taxa worldwide. This article is the 11th contribution to the fungal diversity notes series, in which 126 taxa distributed in two phyla, six classes, 24 orders and 55 families are described and illustrated. Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China, India and Thailand, as well as in some other European, North American and South American countries. Taxa described in the present study include two new families, 12 new genera, 82 new species, five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports. The two new families are Eriomycetaceae (Dothideomycetes, family incertae sedis) and Fasciatisporaceae (Xylariales, Sordariomycetes). The twelve new genera comprise Bhagirathimyces (Phaeosphaeriaceae), Camporesiomyces (Tubeufiaceae), Eriocamporesia (Cryphonectriaceae), Eriomyces (Eriomycetaceae), Neomonodictys (Pleurotheciaceae), Paraloratospora (Phaeosphaeriaceae), Paramonodictys (Parabambusicolaceae), Pseudoconlarium (Diaporthomycetidae, genus incertae sedis), Pseudomurilentithecium (Lentitheciaceae), Setoapiospora (Muyocopronaceae), Srinivasanomyces (Vibrisseaceae) and Xenoanthostomella (Xylariales, genera incertae sedis). The 82 new species comprise Acremonium chiangraiense, Adustochaete nivea, Angustimassarina camporesii, Bhagirathimyces himalayensis, Brunneoclavispora camporesii, Camarosporidiella camporesii, Camporesiomyces mali, Camposporium appendiculatum, Camposporium multiseptatum, Camposporium septatum, Canalisporium aquaticium, Clonostachys eriocamporesiana, Clonostachys eriocamporesii, Colletotrichum hederiicola, Coniochaeta vineae, Conioscypha verrucosa, Cortinarius ainsworthii, Cortinarius aurae, Cortinarius britannicus, Cortinarius heatherae, Cortinarius scoticus, Cortinarius subsaniosus, Cytospora fusispora, Cytospora rosigena, Diaporthe camporesii, Diaporthe nigra, Diatrypella yunnanensis, Dictyosporium muriformis, Didymella camporesii, Diutina bernali, Diutina sipiczkii, Eriocamporesia aurantia, Eriomyces heveae, Ernakulamia tanakae, Falciformispora uttaraditensis, Fasciatispora cocoes, Foliophoma camporesii, Fuscostagonospora camporesii, Helvella subtinta, Kalmusia erioi, Keissleriella camporesiana, Keissleriella camporesii, Lanspora cylindrospora, Loratospora arezzoensis, Mariannaea atlantica, Melanographium phoenicis, Montagnula camporesii, Neodidymelliopsis camporesii, Neokalmusia kunmingensis, Neoleptosporella camporesiana, Neomonodictys muriformis, Neomyrmecridium guizhouense, Neosetophoma camporesii, Paraloratospora camporesii, Paramonodictys solitarius, Periconia palmicola, Plenodomus triseptatus, Pseudocamarosporium camporesii, Pseudocercospora maetaengensis, Pseudochaetosphaeronema kunmingense, Pseudoconlarium punctiforme, Pseudodactylaria camporesiana, Pseudomurilentithecium camporesii, Pseudotetraploa rajmachiensis, Pseudotruncatella camporesii, Rhexocercosporidium senecionis, Rhytidhysteron camporesii, Rhytidhysteron erioi, Septoriella camporesii, Setoapiospora thailandica, Srinivasanomyces kangrensis, Tetraploa dwibahubeeja, Tetraploa pseudoaristata, Tetraploa thrayabahubeeja, Torula camporesii, Tremateia camporesii, Tremateia lamiacearum, Uzbekistanica pruni, Verruconis mangrovei, Wilcoxina verruculosa, Xenoanthostomella chromolaenae and Xenodidymella camporesii. The five new combinations are Camporesiomyces patagoniensis, Camporesiomyces vaccinia, Camposporium lycopodiellae, Paraloratospora gahniae and Rhexocercosporidium microsporum. The 22 new records on host and geographical distribution comprise Arthrinium marii, Ascochyta medicaginicola, Ascochyta pisi, Astrocystis bambusicola, Camposporium pellucidum, Dendryphiella phitsanulokensis, Diaporthe foeniculina, Didymella macrostoma, Diplodia mutila, Diplodia seriata, Heterosphaeria patella, Hysterobrevium constrictum, Neodidymelliopsis ranunculi, Neovaginatispora fuckelii, Nothophoma quercina, Occultibambusa bambusae, Phaeosphaeria chinensis, Pseudopestalotiopsis theae, Pyxine berteriana, Tetraploa sasicola, Torula gaodangensis and Wojnowiciella dactylidis. In addition, the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy, respectively. The holomorph of Diaporthe cynaroidis is also reported for the first time.
Collapse
|
5
|
In vitro inferred interactions of selected entomopathogenic fungi from Taiwan and eggs of Meloidogyne graminicola. Mycol Prog 2020. [DOI: 10.1007/s11557-019-01546-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yuan Z, Druzhinina IS, Wang X, Zhang X, Peng L, Labbé J. Insight into a highly polymorphic endophyte isolated from the roots of the halophytic seepweed Suaeda salsa: Laburnicola rhizohalophila sp. nov. (Didymosphaeriaceae, Pleosporales). Fungal Biol 2019; 124:327-337. [PMID: 32389295 DOI: 10.1016/j.funbio.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
We surveyed root endophytic fungi of the coastal halophyte Suaeda salsa and detected a population of a novel species that we described here as Laburnicola rhizohalophila sp. nov. No sexual sporulating structure was observed. Instead, it produced a large amount of thalloconidia, 0-1 transverse septa, hyaline to darkly pigmented, often peanut-shaped and sometimes dumbbell-shaped, both ends enlarged with numerous oil droplets inside the hyphal cells. Surprisingly, a high degree of phenotypic and physiological intraspecific variation (e.g., salinity tolerance, growth under different carbon:nitrogen ratios, and carbon utilization pattern) was recorded. The inoculation test indicated that the isolates could successfully infect host roots and form microsclerotia-like structures in cortical cells, a typical trait of dark septate endophytes (DSEs). Furthermore, most isolates were shown to promote host seedling growth. To evaluate conspecificity and infer its phylogenetic affinity, multiloci data including nuclear rRNA loci (ITS1 and 2, partial 28S), partial RNA Polymerase II second-largest subunit (rpb2), and partial translation elongation factor-1α (tef1) were characterized. Genealogical concordance phylogenetic species recognition (GCPSR) detected a genetically isolated clade of L. rhizohalophila within the Pleosporales in the Didymosphaeriaceae. Maximum likelihood phylogenetic reconstruction revealed that the endophytic fungus was genetically close to Laburnicoladactylidis but separated by a relatively long genetic distance. Our work highlights that the pleosporalean taxa might represent an underexplored reservoir of root DSEs.
Collapse
Affiliation(s)
- Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China; The Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China.
| | - Irina S Druzhinina
- Fungal Genomics Group, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Wang
- The Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoguo Zhang
- The Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China; The Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
7
|
Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu J. Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00421-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Yang CL, Xu XL, Wanasinghe DN, Jeewon R, Phookamsak R, Liu YG, Liu LJ, Hyde KD. Neostagonosporellasichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Phyllostachysheteroclada (Poaceae) from Sichuan Province, China. MycoKeys 2019:119-150. [PMID: 30814907 PMCID: PMC6389646 DOI: 10.3897/mycokeys.46.32458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023] Open
Abstract
Neostagonosporellasichuanensis sp. nov. was found on Phyllostachysheteroclada collected from Sichuan Province in China and is introduced in a new genus Neostagonosporella gen. nov. in this paper. Evidence for the placement of the new taxon in the family Phaeosphaeriaceae is supported by morphology and phylogenetic analysis of a combined LSU, SSU, ITS and TEF 1-α DNA sequence dataset. Maximum-likelihood, maximum-parsimony and Bayesian inference phylogenetic analyses support Neostagonosporella as a distinct genus within this family. The new genus is compared with related genera of Phaeosphaeriaceae and full descriptions and illustrations are provided. Neostagonosporella is characterised by its unique suite of characters, such as multiloculate ascostromata and cylindrical to fusiform, transversely multiseptate, straight or curved ascospores, which are widest at the central cells. Conidiostromata are multiloculate, fusiform to long fusiform or rhomboid, with two types conidia; macroconidia vermiform or subcylindrical to cylindrical, transversely multiseptate, sometimes curved, almost equidistant between septa and microconidia oval, ellipsoidal or long ellipsoidal, aseptate, rounded at both ends. An updated phylogeny of the Phaeosphaeriaceae based on multigene analysis is provided.
Collapse
Affiliation(s)
- Chun-Lin Yang
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Huiming Road 211, Chengdu 611130, Sichuan, China Sichuan Agricultural University Chengdu China.,Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Nongke Road 200, Chengdu 611130, Sichuan, China Mae Fah Luang University Chiang Rai Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences Chengdu China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 649201, Yunnan, China Kunming Institute of Botany, Chinese Academy of Science Kunming China.,Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius University of Mauritius Reduit Mauritius
| | - Xiu-Lan Xu
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Huiming Road 211, Chengdu 611130, Sichuan, China Sichuan Agricultural University Chengdu China.,Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Nongke Road 200, Chengdu 611130, Sichuan, China Mae Fah Luang University Chiang Rai Thailand
| | - Dhanushka N Wanasinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences Chengdu China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 649201, Yunnan, China Kunming Institute of Botany, Chinese Academy of Science Kunming China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius University of Mauritius Reduit Mauritius
| | - Rungtiwa Phookamsak
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences Chengdu China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 649201, Yunnan, China Kunming Institute of Botany, Chinese Academy of Science Kunming China
| | - Ying-Gao Liu
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Huiming Road 211, Chengdu 611130, Sichuan, China Sichuan Agricultural University Chengdu China
| | - Li-Juan Liu
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Huiming Road 211, Chengdu 611130, Sichuan, China Sichuan Agricultural University Chengdu China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences Chengdu China
| |
Collapse
|
9
|
Ariyawansa HA, Jaklitsch WM, Voglmayr H. Additions to Taiwan Fungal Flora 1: Neomassariaceae fam. nov. CRYPTOGAMIE MYCOL 2018. [DOI: 10.7872/crym/v39.iss3.2018.359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan
| | - Walter M. Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030, Wien, Austria
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz Schwackhöfer Haus, Peter-Jordan-Straße 82/I, 1190 Wien, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030, Wien, Austria
| |
Collapse
|