1
|
Rios Valle DI, Medina EYG, Advíncula Zeballos O. Airborne fungal concentrations around the Modelo Callao Landfill. Heliyon 2024; 10:e38186. [PMID: 39640674 PMCID: PMC11619965 DOI: 10.1016/j.heliyon.2024.e38186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024] Open
Abstract
Non-hazardous waste generated in Metropolitan Lima and Callao is transported to the Modelo Callao landfill for safe disposal. The accumulation of waste constitutes a significant source of fungal particles released into the atmosphere, posing a potential health risk to nearby populations. The aim of this research was to evaluate the concentration of outdoor fungal particles, considering environmental conditions (temperature, relative humidity, wind speed, and direction) during summer and winter seasons in the 18 de octubre settlement and Chillón Avenue, areas located in the vicinity of the Modelo Callao Landfill in Ventanilla during 2022. The gravitational method was used for sampling. The highest concentrations were detected at 150 and 200 m from the landfill, where a kindergarten and a local park are located. Fifteen fungal genera were identified in both seasons. The predominant fungi were Aspergillus spp. (46.09 %), Penicillium spp. (23.29 %) and Alternaria spp. (11.33 %). The average concentrations during summer and winter were 297.21 CFU/m3 and 471.69 CFU/m3, respectively. Based on these findings, we recommend that residential areas be located beyond 200 m from the landfill to minimize exposure to fungal aerosols. Additionally, we propose the implementation of an action plan to improve air quality in the areas surrounding the final disposal infrastructure.
Collapse
Affiliation(s)
- Diana Isabel Rios Valle
- Department of Engineering, Faculty of Environmental Engineering, San Ignacio Loyola University, Fontana Avenue 750, La Molina (SL02), Lima, Peru
| | - Erika Yovana Gonzales Medina
- Department of Medicine, Faculty of Health Sciences, San Ignacio Loyola University, Fontana Avenue 750, La Molina (SL02), Lima, Peru
| | - Orlando Advíncula Zeballos
- Department of Engineering, Faculty of Environmental Engineering, San Ignacio Loyola University, Fontana Avenue 750, La Molina (SL02), Lima, Peru
| |
Collapse
|
2
|
Sousa MDB, Pereira ML, Cruz FPN, Romano LH, Albuquerque YR, Correia RO, Oliveira FM, Primo FL, Baptista-Neto Á, Sousa CP, Anibal FF, Moraes LAB, Badino AC. Red biocolorant from endophytic Talaromyces minnesotensis: production, properties, and potential applications. Appl Microbiol Biotechnol 2023; 107:3699-3716. [PMID: 37083969 DOI: 10.1007/s00253-023-12491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/22/2023]
Abstract
Fungal colorants are gradually entering the global color market, given their advantages of being less harmful to human health, as well as having greater stability and biotechnological potential, compared to other natural sources. The present work concerns the isolation and identification of an endophytic filamentous fungus, together with the chemical characterization and assessment of the fluorescence, toxicity, stability, and application potential of its synthesized red colorant. The endophytic fungus was isolated from Hymenaea courbaril, a tree from the Brazilian savannah, and was identified as Talaromyces minnesotensis by phenotypic and genotypic characterization. Submerged cultivation of the fungus resulted in the production of approximately 12 AU500 of a red biocolorant which according to LC-DAD-MS analysis is characterized by being a complex mixture of molecules of the azaphilone class. Regarding cytotoxicity assays, activity against human hepatoblastoma (HepG2) cells was only observed at concentrations above 5.0 g L-1, while antimicrobial effects against pathogenic bacteria and yeast occurred at concentrations above 50.0 g L-1. The biocolorant showed high stability at neutral pH values and low temperatures (10 to 20 °C) and high half-life values (t1/2), which indicates potential versatility for application in different matrices, as observed in tests using detergent, gelatin, enamel, paint, and fabrics. The results demonstrated that the biocolorant synthesized by Talaromyces minnesotensis has potential for future biotechnological applications. KEY POINTS: • An endophytic fungus, which was isolated and identified, synthesize a red colorant. • The colorant showed fluorescence property, low toxicity, and application potential. • The red biocolorant was highly stable at pH 8.0 and temperatures below 20°C.
Collapse
Affiliation(s)
- Marina D B Sousa
- Graduate Program of Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo, 13565-905, Brazil
| | - Murilo L Pereira
- Chemical Engineering Undergraduate Course, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Felipe P N Cruz
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Luis H Romano
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Yulli R Albuquerque
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo O Correia
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Fernanda M Oliveira
- Graduate Program of Chemistry, Laboratory of Mass Spectrometry Applied to Natural Products, Chemistry Department, School of Philosophy, Sciences and Languages, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Álvaro Baptista-Neto
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Cristina P Sousa
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Fernanda F Anibal
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Luiz Alberto B Moraes
- Graduate Program of Chemistry, Laboratory of Mass Spectrometry Applied to Natural Products, Chemistry Department, School of Philosophy, Sciences and Languages, University of São Paulo, Ribeirão Preto, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
3
|
Two Novel Species of Talaromyces Discovered in a Karst Cave in the Satun UNESCO Global Geopark of Southern Thailand. J Fungi (Basel) 2022; 8:jof8080825. [PMID: 36012813 PMCID: PMC9410482 DOI: 10.3390/jof8080825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Karst caves are oligotrophic environments that appear to support a high diversity of fungi. Studies of fungi in Thailand’s caves are limited. During a 2019 exploration of the mycobiota associated with soil samples from a karst cave, namely, Phu Pha Phet in the Satun UNESCO Global Geopark in Satun Province, southern Thailand, two previously undescribed fungi belonging to Talaromyces (Trichocomaceae, Eurotiales, Eurotiomycetes) were studied using a polyphasic approach combining phenotypic and molecular data. Based on datasets of four loci (ITS, BenA, CaM, and RPB2), phylogenetic trees of the section Trachyspermi were constructed, and two new species—Talaromyces phuphaphetensis sp. nov. and T. satunensis sp. nov.—phylogenetically related to T. subericola, T. resinae, and T. brasiliensis, are described. Detailed descriptions and illustrations of the new species are provided. This study increases the number of cave-dwelling soil fungi discovered in Thailand’s Satun UNESCO Global Geopark, which appears to be a unique environment with a high potential for discovering fungal species previously undescribed.
Collapse
|
4
|
A new Penicillium section Citrina species and series from India. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Characterization and phylogeny of fungi isolated from industrial wastewater using multiple genes. Sci Rep 2022; 12:2094. [PMID: 35136108 PMCID: PMC8827091 DOI: 10.1038/s41598-022-05820-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was the isolation and molecular characterization of fungi from untreated refinery effluent by using multiple conserved genes. The Fungi isolated were characterized based on PCR amplification and genomic sequencing of the internal transcribed spacer region (ITS), partial β-tubulin (BenA), calmodulin (CaM), and RNA polymerase second large subunit (RPB2) genes, along with morphological characterization. The obtained sequences were subjected to BLAST analysis and the corresponding fungal isolates were assigned species names after comparison with representative sequences available in GenBank. Fifteen (15) Fungi species belonging to four genera of Aspergillus, Penicillium, Fusarium, and Trichoderma with Aspergillus as the predominant genus were identified. Therefore these genes should be used as molecular markers for species level identification of fungi (especially Aspergillus and Penicillium as proven in this study.
Collapse
|
6
|
Discovery and Extrolite Production of Three New Species of Talaromyces Belonging to Sections Helici and Purpurei from Freshwater in Korea. J Fungi (Basel) 2021; 7:jof7090722. [PMID: 34575760 PMCID: PMC8471979 DOI: 10.3390/jof7090722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Three novel fungal species, Talaromyces gwangjuensis, T. koreana, and T. teleomorpha were found in Korea during an investigation of fungi in freshwater. The new species are described here using morphological characters, a multi-gene phylogenetic analysis of the ITS, BenA, CaM, RPB2 regions, and extrolite data. Talaromyces gwangjuensis is characterized by restricted growth on CYA, YES, monoverticillate and biverticillate conidiophores, and globose smooth-walled conidia. Talaromyces koreana is characterized by fast growth on MEA, biverticillate conidiophores, or sometimes with additional branches and the production of acid on CREA. Talaromyces teleomorpha is characterized by producing creamish-white or yellow ascomata on OA and MEA, restricted growth on CREA, and no asexual morph observed in the culture. A phylogenetic analysis of the ITS, BenA, CaM, and RPB2 sequences showed that the three new taxa form distinct monophyletic clades. Detailed descriptions, illustrations, and phylogenetic trees are provided.
Collapse
|
7
|
Abstract
Four new Talaromyces species without any close relatives are reported here, namely, T. aureolinus (ex-type AS3.15865 T), T. bannicus (ex-type AS3.15862 T), T. penicillioides (ex-type AS3.15822 T), and T. sparsus (ex-type AS3.16003 T). Morphologically, T. aureolinus is unique in producing orange-yellow mycelium and gymnothecia, singly borne asci, and ellipsoidal, spiny ascospores. Talaromyces bannicus is characterized by the slow growth rate, polymorphic conidiophores, inconsistent stipe lengths, and pyriform to ellipsoidal, echinulate conidia. Talaromyces penicillioides is distinguished by good growth and sporulation on malt extract agar (MEA) and yeast extract sucrose agar (YES) media, resembling the colony appearances of certain Penicillium species, and appressed biverticillate and occasionally monoverticillate penicilli bearing globose to ellipsoidal, echinulate conidia. Talaromyces sparsus has wide, submerged colony margins with sparse aerial mycelium, and conidial areas overlaid with yellow-green, sterile hyphae on MEA medium. These four new species are well supported by individual phylogenetic trees based on β-tubulin (BENA), calmodulin (CALM), DNA-dependent RNA polymerase II second largest subunit (RPB2), and internal transcribed spacer region (ITS) gene sequences and the tree of the concatenated BENA-CALM-RPB2 sequence.
Collapse
Affiliation(s)
- Shangzhu Wei
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Gao H, Wang Y, Luo Q, Yang L, He X, Wu J, Kachanuban K, Wilaipun P, Zhu W, Wang Y. Bioactive Metabolites From Acid-Tolerant Fungi in a Thai Mangrove Sediment. Front Microbiol 2021; 11:609952. [PMID: 33552019 PMCID: PMC7862741 DOI: 10.3389/fmicb.2020.609952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
Despite being potentially useful extremophile resources, there have been few reports on acid-tolerant fungi and their bioactive metabolites. Acidophilic/aciduric fungi (n = 237) were isolated from Thai mangrove sediments in an acidic medium. Using fungal identification technology (including morphologic observation, chemical screening, and sequence comparisons) all the isolates were identified and 41 representative isolates were selected for analysis of the phylogenetic relationships (ITS rDNA, β-tubulin, calmodulin, and actin gene sequences). There were seven genera identified – Penicillium; Aspergillus; Talaromyces; Cladosporium; Allophoma; Alternaria; and Trichoderma – in four taxonomic orders of the phylum Ascomycota, and Penicillium, Aspergillus, and Talaromyces were the dominant genera. Acidity tolerance was evaluated and 95% of the isolates could grow under extremely acidic conditions (pH 2). Six strains were classed as acidophilic fungi that cannot survive under pH 7, all of which had an extraordinarily close genetic relationship and belonged to the genus Talaromyces. This is the first report on the acidophilic characteristics of this genus. The antimicrobial, anti-tumor, and antiviral activities of the fermentation extracts were evaluated. Nearly three-quarters of the extracts showed cytotoxic activity, while less than a quarter showed antimicrobial or anti-H1N1 activity. The typical aciduric fungus Penicillium oxalicum OUCMDZ-5207 showed similar growth but completely different chemical diversity at pH 3 and 7. The metabolites of OUCMDZ-5207 that were obtained only at pH 3 were identified as tetrahydroauroglaucin (1), flavoglaucin (2), and auroglaucin (3), among which auroglaucin showed strong selective inhibition of A549 cells with an IC50 value of 5.67 μM. These results suggest that acid stress can activate silent gene clusters to expand the diversity of secondary metabolites, and the bioprospecting of aciduric/acidophilic microorganism resources in Thai mangrove sediments may lead to the discovery of compounds with potential medicinal applications.
Collapse
Affiliation(s)
- Hai Gao
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanan Wang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiao Luo
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liyuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xingxing He
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | | | | | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Sun BD, Chen AJ, Houbraken J, Frisvad JC, Wu WP, Wei HL, Zhou YG, Jiang XZ, Samson RA. New section and species in Talaromyces. MycoKeys 2020; 68:75-113. [PMID: 32733145 PMCID: PMC7360636 DOI: 10.3897/mycokeys.68.52092] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Talaromyces is a monophyletic genus containing seven sections. The number of species in Talaromyces grows rapidly due to reliable and complete sequence data contributed from all over the world. In this study agricultural soil samples from Fujiang, Guangdong, Jiangxi, Shandong, Tibet and Zhejiang provinces of China were collected and analyzed for fungal diversity. Based on a polyphasic approach including phylogenetic analysis of partial ITS, BenA, CaM and RPB2 gene sequences, macro- and micro-morphological analyses, six of them could not be assigned to any described species, and one cannot be assigned to any known sections. Morphological characters as well as their phylogenetic relationship with other Talaromyces species are presented for these putative new species. Penicillium resedanum is combined in Talaromyces section Subinflati as T. resedanus.
Collapse
Affiliation(s)
- Bing-Da Sun
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of MicrobiologyBeijingChina
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, ChinaInstitute of Materia MedicaBeijingChina
| | - Amanda J. Chen
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of MicrobiologyBeijingChina
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The NetherlandsWesterdijk Fungal Biodiversity InstituteUtrechtNetherlands
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, DenmarkTechnical University of DenmarkKongens LyngbyDenmark
| | - Wen-Ping Wu
- Novozymes China, No. 14, Xinxi Rd, Shangdi, Beijing, ChinaUnaffiliatedBeijingChina
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, ChinaInstitute of Agricultural Resources and Regional PlanningBeijingChina
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of MicrobiologyBeijingChina
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou 510535, ChinaMicrobiome Research CenterGuangzhouChina
| | - Robert A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The NetherlandsWesterdijk Fungal Biodiversity InstituteUtrechtNetherlands
| |
Collapse
|
10
|
Stošić S, Ristić D, Gašić K, Starović M, Ljaljević Grbić M, Vukojević J, Živković S. Talaromyces minioluteus: New Postharvest Fungal Pathogen in Serbia. PLANT DISEASE 2020; 104:656-667. [PMID: 31961769 DOI: 10.1094/pdis-08-19-1806-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Talaromyces minioluteus is one of the important species of genus Talaromyces, which has cosmopolitan distribution and is encountered on a wide range of different habitats. This species has not been considered as an important plant pathogen, even though it has been isolated from various plant hosts. Fruits and vegetables with Penicillium-like mold symptoms were collected from 2015 to 2017 from markets in Serbia. Isolates originating from quince, tomato, and orange fruits, onion bulbs, and potato tubers were identified and characterized on a morphological, physiological, and molecular level. Morphological and physiological examination included observing micromorphology, testing growth on six different media and at five different temperatures, and production of three enzymes. Molecular identification and characterization were performed using four molecular markers: internal transcribed spacer, β-tubulin, calmodulin, and DNA-dependent RNA polymerase II second largest subunit. The results of morphological and molecular analyses were in agreement, and they proved that the obtained isolates are T. minioluteus. In the pathogenicity assay, T. minioluteus was confirmed as a pathogen of all species tested with the exception of potato tubers. This is the first report of T. minioluteus as a postharvest plant pathogen on quince, tomato, and orange fruit and onion bulbs. Also, this is the first record of T. minioluteus in Serbia.
Collapse
Affiliation(s)
- Stefan Stošić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Danijela Ristić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Katarina Gašić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Mira Starović
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Milica Ljaljević Grbić
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Vukojević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, 11000 Belgrade, Serbia
| | - Svetlana Živković
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
You YH, Aktaruzzaman M, Heo I, Park JM, Hong JW, Hong SB. Talaromyces halophytorum sp. nov. Isolated from Roots of Limonium tetragonum in Korea. MYCOBIOLOGY 2020; 48:133-138. [PMID: 32363041 PMCID: PMC7178876 DOI: 10.1080/12298093.2020.1723389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
Talaromyces halophytorum sp. nov. was isolated from the roots of halophyte Limonium tetragonum collected from Seocheon-gun, Korea in November 2015. It showed a slow growth on yeast extract sucrose agar at 25 °C, no growth at 4 °C or 37 °C and produced smooth-walled and globose to sub-globose conidia. T. halophytorum is phylogenetically distinct from the other reported Talaromyces species of section Trachyspermi based on multi-locus sequence typing results using partial fragments of β-tubulin, calmodulin, ITS, and RNA polymerase II genes.
Collapse
Affiliation(s)
- Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Md. Aktaruzzaman
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Wanju, South Korea
| | - Inbeom Heo
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Wanju, South Korea
| | - Jong Myong Park
- Department of Infectious Disease Diagnosis, Incheon Institute of Public Health and Environment, Incheon, South Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energies, Kyungpook National University, Daegu, South Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Wanju, South Korea
- CONTACT Seung-Beom Hong
| |
Collapse
|
12
|
Guevara-Suarez M, García D, Cano-Lira JF, Guarro J, Gené J. Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae. Fungal Syst Evol 2019; 5:39-75. [PMID: 32467914 PMCID: PMC7250020 DOI: 10.3114/fuse.2020.05.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coprophilous fungi are saprotrophic organisms that show great diversity, mainly on herbivore dung. The physico-chemical characteristics of this peculiar substrate combined with the high level of fungal adaptation to different environmental conditions offer the perfect setting for discovering new taxa. This study focused on the species diversity of penicillium-like fungi isolated mainly from herbivore dung collected at different Spanish locations. From 130 samples, a total of 104 isolates were obtained, and 48 species were identified. Preliminary identifications were based on morphology and partial β-tubulin (tub2) gene sequences. Putative new taxa were characterized by a multi-gene sequencing analysis testing the tub2, the internal transcribed spacer rDNA (ITS), calmodulin (cmdA), and RNA polymerase II second largest subunit (rpb2) genes, and a detailed phenotypic study. Using this polyphasic approach and following the genealogical concordance phylogenetic species recognition (GCPSR) method, we propose the new genera Penicillago (for Penicillium nodositatum) and Pseudopenicillium (for Penicillium megasporum and P. giganteum) in the family Aspergillaceae, and 11 new species, including seven Penicillium, three Talaromyces and one Pseudopenicillium. A lectotype and epitype are designed for Penicillium nodositatum. Our results show that the species diversity of penicillium-like fungi on herbivore dung has not been widely studied and that this substrate seems to be a good reservoir of interesting Eurotialean fungi.
Collapse
Affiliation(s)
- M Guevara-Suarez
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Laboratorio de Micología y Fitopatología (LAMFU), Vicerrectoría de Investigaciones, Universidad de los Andes, Bogotá, Colombia
| | - D García
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J F Cano-Lira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|